VECTOR CALCULUS
 MATH 21D, Winter Quarter, 2024
 Blake Temple
 (Sects A01-A02 CRNs 30682-30683)

TEXT: Thomas' Calculus, Early Transcendentals, 11th Edition
(Ch 13,15,16 available on my webpage)
Authors: Weir, Hass and Giordano
Chapters: 15 and 16 (including topics from Chapter 12, 13).
PROFESSOR: Blake Temple, 3148 MSB
Lecture: 6 WELLMAN, MWF 1:10-2:00
Office Hours: WF 2:10-3:20PM; e-mail: temple@math.ucdavis.edu Class Webpage: http://www.math.ucdavis.edu/~ temple/MAT21D/

Tuesday Discussion Sections: 1132 BAINER

A01 6:10-7:00pm; A02 7:10-8:00pm
TA: Shouwie Hui
email: huisw@math.ucdavis.edu
GRADING: Midterms I,II=100pts each, Final $=200$ pts.
Midterm I: Friday, February 2, Sections 15.1-15.7
Midterm II: Friday, Mar 8, Sections 13.1-13.4, 16.1-16.6
Final Exam: Wednesday, March 20, 3:30-5:30, 6 WELLMAN

HOMEWORK/Solutions Posted Online:

https://www.math.ucdavis.edu/ temple/MAT21D
HW will not be collected. There will be a weekly homework quiz each Tuesday discussion covering the homework from the preceding week. No makeups. I will use the homework score to (at most) adjust a grade by + or - according to my judgement.

SYLLABUS

DAY

MO - Jan 8
WE - Jan 10
FR - Jan 12
MO - Jan 15
WE - Jan 17
FR - Jan 19
MO - Jan 22
WE - Jan 24
FR - Jan 26
MO - Jan 29
WE - Jan 31
FR - Feb 2
MO - Feb 5
WE - Feb 7
FR - Feb 9
MO - Feb 12
WE - Feb 14
FR - Feb 16
MO - Feb 19
WE - Feb 21
FR - Feb 23
MO - Feb 26
WE - Feb 28
FR - Mar 1
MO - Mar 4
WE - Mar 6
FR - Mar 8
MO - Mar 11
WE - Mar 13
FR - Mar 15

SECTION

Introduction/15.1
15.1
15.2

Martin Luther King Day
15.2
15.3
15.4
15.5
15.6
$15.6-15.7$
15.7

Midterm I
13.1
13.2
13.3
13.4 (12ed13.4/5)
16.1
16.2

Presidents' Day
16.2
16.3
16.4
16.4/5
16.5
16.6

Review/Catchup
Midterm II
16.7
16.7/8
16.8

HOMEWORK

15.1-1, 2, 4, 5, 7, 9, 13, 21, 23, 38
15.1-41, 43, 44, 45, 46, 51, 59
$15.2-2,3,7,9,11,12$
$15.2-14,15 a, 17,19,24,33,34$
15.3-1, 3, 4, 12, 13, 18
15.4-7, $8,11,12,17,42$
$15.5-2,3,4,11,13,15$
15.6-1, 6, 8, 18, 19, 44, 56
15.6-21, 27, 35, 56, 70
$15.7-1,4,6,8,12,15 a, 16 a b$
13.1-1, $3,4,6,8,10,12,13,19,33,43,45,48$
13.2-1, 2, 3, 5, 7, 11, 18
13.3-1, 3, 6, 9, 12, 14, 19, 20
13.4-2, 3, 9, 11, 19, 21
16.1-1 - 8, 10, 17, 18, 29
$16.2-1,3,4,5,6,7,15,20,22,31,35$
16.2-17, 23, 27, 37, 43
16.3-1, 2, 3, 7, 9, 13, 19, 37
16.4-1,5, 7, 8, 11
16.4-15, 19, 22
16.5-1, 3, 5, 6, 7, 13, 15, 17, 19, 21, 24, 27
16.6-1, 4, 5, 9, 17, 27, 30, 39
16.7-1, 3, 6, 7
16.7-8, 13, 17 16.8-5, 6, 7
$16.8-8,14,16,26$

COURSE DESCRIPTION:

Math 21D Vector Calculus describes the calculus of functions whose inputs and outputs depend on more than one variable. Chapter 15 covers multiple integration for scalar functions of two and three variables, with application to finding centers of mass and moments of inertia. Integration in polar, cylindrical and spherical coordinates will be covered, as well as the general formula for changing variables of integration. Chapters 13 and 16 cover vector valued functions (Vector Fields). Applications include line integrals, work, conservative vector fields, potential functions, Green's Theorem, the Divergence Theorem and Stokes Theorem. The latter four involve different ways to generalize the Fundamental Theorem of Calculus to vector valued functions.

HISTORY/MOTIVATION: Essentially, MAT21D covers the mathematics required to complete the physical meanings of the three first order operators of classical physics: The Gradient, the Divergence and the Curl. We already know that the Gradient points in the direction of steepest increase of a function. The meaning of the latter two, the Divergence as flux per volume, and the Curl as circulation per area, comes from the Divergence Theorem and Stokes Theorem, respectively; and the mathematics developed in MAT21D is pretty much exactly what is necessary to describe and interpret these theorems with mathematical precision. The notation of vector calculus in terms of the Gradient, Divergence and Curl was created by Willard Gibbs of Yale University in the late 1800s. By this notation, Gibbs achieved his goal of giving a simple physical expression to Maxwell's equations of electromagnetism (1861). With the vector calculus of

MAT21D, Gibbs reduced Maxwell's original twenty equations in twenty unknowns, to the four famous equations we know today. The student who learns the vector calculus of MAT21D has the mathematical background to comprehend Maxwell's theory, and thereby has the opportunity to be a part of one of the greatest true stories of all time - the story of how Maxwell, building on Faraday's idea that electricity and magnetism could be described by electric and magnetic Vector Fields, discovered, by pure thought, that light consists of waves propagating in these electric and magnetic fields. To quote from Wikipedia:

Around 1862, while lecturing at King's College, Maxwell calculated that the speed of propagation of an electromagnetic field is approximately that of the speed of light. He considered this to be more than just a coincidence, and commented 'We can scarcely avoid the conclusion that light consists in the transverse undulations of the same medium which is the cause of electric and magnetic phenomena.'

Maxwell's theory of light remained controversial until 1887, when Heinrich Hertz demonstrated that radio waves could be created from oscillating electric and magnetic fields.

Blake Temple, UC-Davis, Winter-2024

