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Problem #1 (20pts): (a) Sketch the region of integration Rxy which is
the quarter circle of radius r = 2, above the x-axis and to the right of the
y-axis. Iterate the integral

∫ ∫
Rxy

xy dA in order dydx, and order dxdy. (Do

not evaluate.)

(b) Evaluate the integral of Part (a) using polar coordinates.
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Problem #2 (20pts): Assume the region Rxy of Problem 1 is a metal
plate with density δ(x, y) = xy. Set up an iterated integral in x and y for the
following: (You need not evaluate.)

(a) The total mass M .

(b) The coordinates of the center of mass.
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(c) The kinetic energy of rotation for angular rotation rate ω about z-axis.
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Problem #3 (20pts): Assume a mass m moves along a path r(t) = x(t)i+
y(t)j + z(t)k, a ≤ t ≤ b, through a conservative force field F = ∇f .

(a) Show that
∫
C F ·T ds = f(B)− f(A) for any curve taking A to B.

(b) Show that if further, F = ma, then also
∫
C F · Tds = 1

2mv
2
B − 1

2mv
2
A.

(Here vA = ‖v(a)‖2, vB = ‖v(b)‖2.)
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Problem #4 (20pts): Let

~F = − y
r2

i +
x

r2
j, r =

√
x2 + y2,

and let C denote the helix ~r(t) = cos t i + sin t j + ct(t− 2πn)k restricted to
0 ≤ t ≤ 2πn, where c > 0 is constant, and n > 0 is an integer. Show that C
is closed, and evaluate

∫
C
~F · ~T ds.
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Problem #5 (20pts): (a) Let C be a positively oriented simple closed
curve in the plane, and let ~F = M(x, y)i + N(x, y)j. Manipulate ~F and ~T
to rewrite the line integral

∫
C
~F · ~T ds as a flux integral. Define your terms

carefully.

(b) Assume an infinite plate of density δ(x, y) = xy2. Find N(x, y) such that
the vector field ~F = xy i + N(x, y) j has the property that its line integral
around every simple closed curve gives the total mass inside that curve. (Hint:
Green’s Theorem)
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Problem #6 (20pts): (a) Define ∇f , Curl ~F and Div ~F.

(b) Show that Div(Curl ~F) = 0.
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Problem #7 (20pts): Let ~v ≡ ~F = xi + xyzk be the velocity field of a
moving fluid.

(a) Find the maximal circulation per area, and the axis around which it is
maximal, at P = (1,−1, 2).

(b) Describe all axes ~n around which there is zero circulation per area at
point P = (1,−1, 2).
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(c) Find the circulation per area around axis ~w =
−−−−−−→
(2,−2, 1) at point P.

(d) Find the frequency ω and period T for a bead rotating with ~v around a

circle of radius ε, center P , around axis ~w =
−−−−−−→
(2,−2, 1), (in the limit ε→ 0.)
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Problem #8 (20pts): Consider Kepler’s Laws under the simplifying as-
sumption that the planets move in circular orbits with the sun at the center,
(not a terrible approximation). In this case, each planet moves around a
circle with position vector

~r(t) = R cosωt i +R sinωt j, (1)

where R and ω are constants which depend on the planet, and t is the time.
Assuming Newton’s inverse square force law in the form

−→a = −G 1

r2

−→r
r
, (2)

(where G is Newton’s gravitational constant), derive Kepler’s third law

T 2

R3
= K, (3)

where T is the period of the planet’s rotation and K is a constant independent
of the planet.
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Problem #9 (20pts): Let S denote the upper hemisphere x2 +y2 +z2 = 9,
z ≥ 0, let C denote its boundary circle x2 + y2 = 9 in the (x, y)-plane, and
let ~F = −y

2 i + x
2 j. Verify Stokes Theorem

∫ ∫
S Curl

~F · ~n dS =
∫
C
~F · ~T ds as

follows:

(a) Evaluate
∫
C
~F · ~T ds directly by parameterization.

(b) Find the unit normal ~n on S.
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(c) Find J(x, y) so that dS = J(x, y) dxdy on S.

(d) Use (b) and (c) to evaluate
∫ ∫
S Curl

~F ·~n dS using (x, y) as a coordinate
system.
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Problem #10 (20pts): Let Vxyz denote the volume enclosed by the ellipsoid
x2

a2 + y2

b2 + z2

c2 = 1, for a, b, c positive, let S denote the surface which is its closed

boundary, and let ~F = xi + yj + zk. Evaluate the flux
∫ ∫
S
~F · ~n dS = 0.

(Hint: Use the Divergence Theorem, the substitution x = au, y = bv, z = cw,
and volume of sphere is 4

3πr
3.)
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