
   

Maxwell's equations
(Redirected from Maxwells equations)

Maxwell's equations are the set of  four equations, attributed to James Clerk Maxwell, that describe
the behavior of  both the electric and magnetic fields, as well as their interactions with matter.

Maxwell's four equations express, respectively, how electric charges produce electric fields (Gauss's law),
the experimental absence of  magnetic charges, how currents produce magnetic fields (Ampère's law), and
how changing magnetic fields produce electric fields (Faraday's law of induction). Maxwell, in 1864, was
the first to put all four equations together and to notice that a correction was required to Ampere's
law: changing electric fields act like currents, likewise producing magnetic fields.

Furthermore, Maxwell showed that the four equations, with his correction, predict waves of  oscillating
electric and magnetic fields that travel through empty space at a speed that could be predicted from
simple electrical experiments—using the data available at the time, Maxwell obtained a velocity of
310,740,000 m/s. Maxwell (1865) wrote:

This velocity is so nearly that  of light, that it seems we have strong reason to conclude that
light itself (including radiant heat, and other radiations if  any) is an electromagnetic
disturbance in the form of  waves propagated through the electromagnetic field according to
electromagnetic laws.

Maxwell was correct in this conjecture, though he did not live to see its vindication by Heinrich Hertz in
1888. Maxwell's quantitative explanation of  light as an electromagnetic wave is considered one of  the
great triumphs of  19th-century physics. (Actually, Michael Faraday had postulated a similar picture of
light in 1846, but had not been able to give a quantitative description or predict the velocity.) 
Moreover, it laid the foundation for many future developments in physics, such as special relativity and
its unification of  electric and magnetic fields as a single tensor quantity, and Kaluza and Klein's
unification of  electromagnetism with gravity and general relativity.
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Historical developments of Maxwell's equations and
relativity

Maxwell's 1865 formulation was in terms of  20 equations in 20 variables, which included several
equations now considered to be auxiliary to what are now called "Maxwell's equations" — the
corrected Ampere's law (three component equations), Gauss's law for charge (one equation), the
relationship between total and displacement current densities (three component equations), the
relationship between magnetic field and the vector potential (three component equations, which imply
the absence of  magnetic charge), the relationship between electric field and the scalar and vector
potentials (three component equations, which imply Faraday's law), the relationship between the
electric and displacement fields (three component equations), Ohm's law relating current density and
electric field (three component equations), and the continuity equation relating current density and
charge density (one equation).

The modern mathematical formulation of  Maxwell's equations is due to Oliver Heaviside and Willard
Gibbs, who in 1884 reformulated Maxwell's original system of  equations to a far simpler
representation using vector calculus. (In 1873 Maxwell also published a quaternion-based notation that
ultimately proved unpopular.) The change to the vector notation produced a symmetric mathematical
representation that reinforced the perception of  physical symmetries between the various fields. This
highly symmetrical formulation would directly inspire later developments in fundamental physics.

In the late 19th century, because of  the appearance of  a velocity,


