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Derivation of the Navier–
Stokes equations
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  (Redirected from Navier-Stokes equations/Derivation)

The intent of this article is to highlight the important
points of the derivation of the Navier–Stokes
equations as well as the application and formulation for
different families of fluids.
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Basic assumptions
The Navier–Stokes equations are based on the
assumption that the fluid, at the scale of interest, is a
continuum, in other words is not made up of discrete
particles but rather a continuous substance. Another
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necessary assumption is that all the fields of interest like
pressure, velocity, density, temperature and so on are
differentiable, weakly at least.

The equations are derived from the basic principles of
conservation of mass, momentum, and energy. For that
matter, sometimes it is necessary to consider a finite
arbitrary volume, called a control volume, over which
these principles can be applied. This finite volume is
denoted by  and its bounding surface . The control
volume can remain fixed in space or can move with the
fluid.

The material derivative
Main article: material derivative

Changes in properties of a moving fluid can be measured
in two different ways. One can measure a given property
by either carrying out the measurement on a fixed point
in space as particles of the fluid pass by, or by following
a parcel of fluid along its streamline. The derivative of a
field with respect to a fixed position in space is called the
Eulerian derivative while the derivative following a moving
parcel is called the convective or material derivative.

The material derivative is defined as the operator:

where  is the velocity of the fluid. The first term on the
right-hand side of the equation is the ordinary Eulerian
derivative (i.e. the derivative on a fixed reference frame,
representing changes at a point with respect to time)
whereas the second term represents changes of a
quantity with respect to position (see advection). This
"special" derivative is in fact the ordinary derivative of a
function of many variables along a path following the fluid
motion; it may be derived through application of the chain
rule.
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For example, the measurement of changes in wind
velocity in the atmosphere can be obtained with the help
of an anemometer in a weather station or by mounting it
on a weather balloon. The anemometer in the first case
is measuring the velocity of all the moving particles
passing through a fixed point in space, whereas in the
second case the instrument is measuring changes in
velocity as it moves with the fluid.

Conservation laws
The Navier–Stokes equation is a special case of the
(general) continuity equation. It, and associated
equations such as mass continuity, may be derived from
conservation principles of:

Mass
Momentum
Energy.

This is done via the Reynolds transport theorem, an
integral relation stating that the sum of the changes of
some extensive property (call it ) defined over a control
volume  must be equal to what is lost (or gained)
through the boundaries of the volume plus what is
created/consumed by sources and sinks inside the
control volume. This is expressed by the following
integral equation:

where v is the velocity of the fluid and  represents the
sources and sinks in the fluid. Recall that  represents
the control volume and  its bounding surface.

The divergence theorem may be applied to the surface
integral, changing it into a volume integral:

Applying Leibniz's rule to the integral on the left and then
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combining all of the integrals:

The integral must be zero for any control volume; this
can only be true if the integrand itself is zero, so that:

From this valuable relation (a very generic continuity
equation), three important concepts may be concisely
written: conservation of mass, conservation of
momentum, and conservation of energy. Validity is
retained if  is a vector, in which case the vector-vector
product in the second term will be a dyad.

Conservation of momentum

The most elemental form of the Navier–Stokes equations
is obtained when the conservation relation is applied to
momentum. Writing momentum as  gives:

where  is a dyad, a special case of tensor product,
which results in a second rank tensor; the divergence of
a second rank tensor is again a vector (a first rank
tensor)[1]. Noting that a body force (notated ) is a source
or sink of momentum (per volume) and expanding the
derivatives completely:

Note that the gradient of a vector is a special case of the
covariant derivative, the operation results in second rank
tensors[1]; except in Cartesian coordinates, it's important
to understand that this isn't simply an element by element
gradient. Rearranging and recognizing that 

:
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The leftmost expression enclosed in parentheses is, by
mass continuity (shown in a moment), equal to zero.
Noting that what remains on the left side of the equation
is the convective derivative:

This appears to simply be an expression of Newton's
second law (F = ma) in terms of body forces instead of
point forces. Each term in any case of the Navier–Stokes
equations is a body force. A shorter though less rigorous
way to arrive at this result would be the application of the
chain rule to acceleration:

where . The reason why this is "less rigorous"
is that we haven't shown that picking  is
correct; however it does make sense since with that
choice of path the derivative is "following" a fluid
"particle", and in order for Newton's second law to work,
forces must be summed following a particle. For this
reason the convective derivative is also known as the
particle derivative.

Conservation of mass

Mass may be considered also. Taking  (no sources
or sinks of mass) and putting in density:
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where  is the mass density (mass per unit volume), and 
 is the velocity of the fluid. This equation is called the

mass continuity equation, or simply "the" continuity
equation. This equation generally accompanies the
Navier–Stokes equation.

In the case of an incompressible fluid,  is a constant and
the equation reduces to:

which is in fact a statement of the conservation of
volume.

General form of the equations of
motion
The generic body force  seen previously is made
specific first by breaking it up into two new terms, one to
describe forces resulting from stresses and one for
"other" forces such as gravity. By examining the forces
acting on a small cube in a fluid, it may be shown that

where  is the stress tensor, and  accounts for other
body forces present. This equation is called the Cauchy
momentum equation and describes the non-relativistic
momentum conservation of any continuum that
conserves mass.  is a rank two symmetric tensor given
by its covariant components:

where the  are normal stresses and  shear stresses.
This tensor is split up into two terms:
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where  is the 3 x 3 identity matrix and  is the deviatoric
stress tensor. Note that the pressure p is equal to minus
the mean normal stress:[2]

The motivation for doing this is that pressure is typically a
variable of interest, and also this simplifies application to
specific fluid families later on since the rightmost tensor 
in the equation above must be zero for a fluid at rest.
Note that  is traceless. The Navier–Stokes equation
may now be written in the most general form:

This equation is still incomplete. For completion, one
must make hypotheses on the form of , that is, one
needs a constitutive law for the stress tensor which can
be obtained for specific fluid families; additionally, if the
flow is assumed compressible an equation of state will be
required, which will likely further require a conservation of
energy formulation.

Application to different fluids
The general form of the equations of motion is not "ready
for use", the stress tensor is still unknown so that more
information is needed; this information is normally some
knowledge of the viscous behavior of the fluid. For
different types of fluid flow this results in specific forms of
the Navier–Stokes equations.

Newtonian fluid

Main article: Newtonian fluid

Compressible Newtonian fluid

The formulation for Newtonian fluids stems from an
observation made by Newton that, for most fluids,
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In order to apply this to the Navier–Stokes equations,
three assumptions were made by Stokes:

The stress tensor is a linear function of the strain
rates.
The fluid is isotropic.
For a fluid at rest,  must be zero (so that
hydrostatic pressure results).

Applying these assumptions will lead to:

 is the Kronecker delta. μ and λ are proportionality
constants associated with the assumption that stress
depends on strain linearly; μ is called the first coefficient
of viscosity (usually just called "viscosity") and λ is the
second coefficient of viscosity (related to bulk viscosity).
The value of λ, which produces a viscous effect
associated with volume change, is very difficult to
determine, not even its sign is known with absolute
certainty. Even in compressible flows, the term involving
λ is often negligible; however it can occasionally be
important even in nearly incompressible flows and is a
matter of controversy. When taken nonzero, the most
common approximation is λ ≈ - ⅔ μ.[3]

A straightforward substitution of  into the momentum
conservation equation will yield the Navier–Stokes
equations for a compressible Newtonian fluid:
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or, more compactly in vector form,

where the transpose has been used. Gravity has been
accounted for as "the" body force, ie . The
associated mass continuity equation is:

In addition to this equation, an equation of state and an
equation for the conservation of energy is needed. The
equation of state to use depends on context (often the
ideal gas law), the conservation of energy will read:

Here,  is the enthalpy,  is the temperature, and  is a
function representing the dissipation of energy due to
viscous effects:

With a good equation of state and good functions for the
dependence of parameters (such as viscosity) on the
variables, this system of equations seems to properly
model the dynamics of all known gases and most liquids.

Incompressible Newtonian fluid

For the special (but very common) case of
incompressible flow, the momentum equations simplify
significantly. Taking into account the following
assumptions:

Viscosity  will now be a constant
The second viscosity effect 
The simplified mass continuity equation 

then looking at the viscous terms of the  momentum
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equation for example we have:

Similarly for the  and  momentum directions we have 
 and . o

Non-Newtonian fluids

Main article: Non-Newtonian fluid

A non-Newtonian fluid is a fluid whose flow properties
differ in any way from those of Newtonian fluids. Most
commonly the viscosity of non-Newtonian fluids is not
independent of shear rate or shear rate history. However,
there are some non-Newtonian fluids with shear-
independent viscosity, that nonetheless exhibit normal
stress-differences or other non-Newtonian behaviour.
Many salt solutions and molten polymers are non-
Newtonian fluids, as are many commonly found
substances such as ketchup, custard, toothpaste, starch
suspensions, paint, blood, and shampoo. In a Newtonian
fluid, the relation between the shear stress and the shear
rate is linear, passing through the origin, the constant of
proportionality being the coefficient of viscosity. In a non-
Newtonian fluid, the relation between the shear stress
and the shear rate is different, and can even be time-
dependent. The study of the non-Newtonian fluids is
usually called rheology. A few examples are given here.

Bingham fluid
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