
FINAL EXAM
Math 25

Temple-F06

Write solutions on the paper provided. Put your name
on this exam sheet, and staple it to the front of your
finished exam. Do Not Write On This Exam Sheet.

Problem 1. (Short Answer: 32pts) Let sn denote a sequence of real
numbers. Give the precise mathematical definitions for the following:

(a) limn→∞ sn = −2.

∀ε > 0 ∃ N ∈ N st n > N implies |sn − (−2)| < ε.

(b) limn→∞ sn = −∞

∀M > 0 ∃ N ∈ N st n > N implies sn < −M.

(c) Define what it means for sn to be Cauchy.

∀ε > 0 ∃ N ∈ N st n,m > N implies |sn − sm| < ε.

(d) Give the negation of the statement “sn is Cauchy”.

∃ε > 0 ∀ N ∈ N ∃ n,m > N st |sn − sm| ≥ ε.

(e) Define sN and s̄N , the approximate lim inf and approximate lim sup of
sn, and use these to define s = lim inf sn and s̄ = lim sup sn, respectively.

sN = inf{sn : n > N}; s̄N = sup{sn : n > N}. (inf = GLB, sup = LUB)

s = limN→∞ sN ; s̄ = limN→∞ s̄N

(f) Use ≤ to give the correct inequalities that order the set {sN , s̄N , s, s̄} .

sN ≤ s ≤ s̄ ≤ s̄N



(g) Define what it means for a sequence to converge in a metric space (S, d).

Definition: sn → s0 in (S, d) if

∀ε > 0 ∃ N ∈ N st n > N implies D(sn, s) < ε.

(h) Define the subsequential limit set S of sn, and identify Inf {S} and
Sup {S} .
Definition: The subsequential limit set of a set S of a sequence sn is the set
of all limits of convergent subsequences of sn. In this case we have:

Inf {S} = s, Sup {S} = s̄.



Problem 2. (20pts) Use the fact that every natural number can be written
uniquely as a product of prime factors to prove that

√
3 is not a positive

rational number.

Proof by contradiction: Assume for contradiction that a3 = 3 for some
rational number a = p/q in lowest terms. Assume p = p1 · · · pn and q =
q1 · · · qn are the prime factorizations of p and q, containing no common factors
by our assumption that p/q is in lowest terms. Then a2 = 3 says

p21 · · · p2n
q21 · · · q2n

= 3

or
p21 · · · p2n = 3q21 · · · q2n.

But since the LHS involves prime factors, it must be that 3 is among the
primes p1, ..., pn. But that means 32 is on the LHS, so 3 must be one of
the factors q1, ..., qm on the RHS. Then a factor of 3 cancels out in p/q,
contradicting our assumption that p/q is in lowest terms.



Problem 3. (20pts) Use the field axioms for the real numbers to prove
that if a ∈ R, then a · 0 = 0. (Give a field axiom reason for every step. Prove
any lemma you use.)

Proof:

0 = (0 + 0), (defn additive inverse)

a · 0 = a · (0 + 0), (substitution)

a · 0 = a · 0 + a · 0, (distributive property)

a · 0 + (−a · 0) = a · 0 + a · 0 + (−a · 0), (exist of add inverse/add prop of equality)

0 = a · 0, defn additive property of equality)



Problem 4. (24pts) Assume sn and s0 are nonzero. Use the definition of
convergence to give a direct proof that if sn → s0, then 1/sn → 1/s0.

Proof: Assume sn → s0 6= 0, and sn 6= 0. We prove 1/sn → 1/s0. Fix ε > 0.
We find N ∈ N such that, if n > N , then

|1/sn − 1/s0| =
|s0 − sn|
|sns0|

< ε.

Since s0 6= 0, and sn → s0, we know that there exists N1 such that n > N1

implies |sn| > |s0| − |s0|/2 = |s0|/2. Now since sn → s0, we can choose N2 so

that n > N2 implies |sn − s0| < ε |s0|
2

2
. Then letting N = MaxN1, N2 implies

|s0 − sn|
|sns0|

<
ε |s0|

2

2
|s0|2
2
s

= ε,

as claimed.



Problem 5. (20pts) Let sn =
∑n

k=1 ak be the sequence of partial sums for
infinite series

∑∞
k=1 ak, and let tn =

∑n
k=1 |ak|.

(a) Define what it means for the infinite series sn to converge.

Definition: The series
∑∞

k=1 ak, converges if the sequence of partial sums sn
converges.

(b) State the Cauchy criterion for convergence of the series sn.

Cauchy Criterion Theorem: The series
∑∞

k=1 ak, converges if and only if
∀ε > 0 ∃N ∈ N st n ≥ m > N implies |∑n

k=m ak| < ε.

(c) Prove that if a series converges absolutely, then the series converges.

Absolute Convergence Implies Convergence: Since
∑n

k=m ak ≤
∑n

k=m |ak|,
it follows that the Cauchys criterion for the absolute series gives |∑n

k=m |ak|| <
ε, and this implies |∑n

k=m ak| < ε



Problem 6. (20pts) Prove that
∑∞

n=1
n!
nn converges.

By the ratio test,

|an+1|

|an|
=

(n+ 1)!

(n+ 1)n+1

nn

n!
=

(n+ 1)

(n+ 1)

(
n

n+ 1

)n

=
1(

1 + 1
n

)n = 1/e < 1.

(One could also estimate

n!

nn
=
n · (n− 1) · (n− 2) · · · (1)

n · n · n · · ·n
≤ (1/2)n/3

by replacing k by n in the numerator for k > n/2, and by n/2 for k < n, say,
to make it larger, so it can be compared to a geometric series for convergence.)



Problem 7. (20pts) Let r be a real number such that |r| < 1, and let sn
denote the sequence of partial sums

sn =
n∑

k=m

rk = rm + rm+1 + rm+2 + rm+3 + · · ·+ rn.

(a) Derive a formula for sn that does not involve a summation, and use it to
evaluate limn→∞ sn.

Solution on the first Midterm!

(b) Prove that the repeating decimal .123123123... is a rational number.

.123123123... =
123

1000
+

123

10002
+

123

10003
+· · · = 123

∞∑
k=1

(
1

1000

)k

=
123

1000

1

1− 1
1000

,

which is a rational number.



Problem 8. (24pts) Assume that xn → 0 and yn → 0 are convergent

sequences of real numbers. Prove directly that
√
x2n + y2n → 0 converges.

We prove: ∀ε > 0∃ N ∈ N st n > N implies
√
x2n + y2n < ε. So fix ε > 0.

Choose N1 so that for n > N1 we have x2n < ε2/2. Choose N2 for n > N2 we
have y2n < ε2/2. Set N = Max{N1, N2}. Then n > N implies

√
x2n + y2n <

√
ε2

2
+
ε2

2
= ε,

as claimed.



Problem 9. (20pts) Consider the sequence sn = {(−1)nn+ 1 + n} sinn of
real numbers. Prove that sn has a convergent subsequence. (You may use
any theorem in the book.)

Proof: First note that if n is odd, then the sequence s2n = sin(2n). This
subsequence of even terms is a bounded sequence of real numbers. Therefore
the Bolzano-Weierstrass Theorem implies it has a convergent subsequence.
Since a subsequence of a subsequence is also a subsequence of the original
sequence, we have proven that the original sequence has a convergent subse-
quence.



Problem 10. (20pts) (Extra Credit) Let an ≥ 0 be a sequence of positive
real numbers, n = 1, 2, 3..., and let pn =

∑2n−1
k=n ak. Assume that pn → 0. Does

it follow that
∑∞

k=1 ak converges? That is, does it follow that limn→∞
∑n

k=1 ak
converges to a real number? Prove your assertion, or else give a counterex-
ample.

Counter-example: Consider the series
∑∞

k=1 an with an = 1
n lnn

. This series
diverges by the integral test: Namely, by the integral test, the series diverges
or converges with the integral

∫∞
e

dx
x ln(x)

, and letting u = ln(x), du = dx/x,
we have

lim
N→∞

∫ N

e

dx

x ln(x)
= lim

N→∞

∫ N

ln e

du

u
= ln(N)→∞.

However,
∑2n−1

k=n ak ≥
∫ 2n
n

dx
x ln(x)

≥ 1
lnn

∫ 2n
n

dx
x

= 1
lnn

(ln 2n− lnn) = ln 2
lnn
→ 0,

verifying the counterexample.


