Homework-I

Temple

Math 280 Shock Waves W2013

1. Show that if $\mu=\lambda=0$, so in the limit of vanishing viscosity, when $k \neq 0$ then our initial energy equation

$$
E_{t}+\operatorname{div}((E+p) \mathbf{u})=\operatorname{div}(\sigma \cdot \mathbf{u})+k \Delta T
$$

is equivalent to

$$
\rho \frac{D e}{D t}=-p \operatorname{div}(\mathbf{u})+k \Delta T
$$

where $\sigma=\lambda(\operatorname{div} \mathbf{u}) I+2 \mu D$, and D is the 3×3 symmetric part of $\nabla \mathbf{u}$.
2. Verify the identity:

$$
\operatorname{Div}(\rho \mathbf{u})=\nabla \rho \cdot \mathbf{u}+\rho \operatorname{Div}(\mathbf{u})
$$

3. Derive a sharp estimate for the blowup time for u_{x}, (as we did in class for Burgers Equation) for the general scalar conservation law $u_{t}+f(u)_{x}=0$, assuming $f^{\prime \prime}(u)>\delta>0$, i.e., f is convex.
4. Show:

$$
\frac{D(f g)}{D t}=\frac{D f}{D t} g+f \frac{D g}{D t}
$$

5. Assume the continuity equation (MA) $\rho_{t}+\operatorname{div}(\rho \mathbf{u})=0$. Derive the identity

$$
(\rho f)_{t}+\operatorname{div}(\rho f \mathbf{u})=\rho \frac{D f}{D t}
$$

6. Show that $\sigma^{i j}$ symmetric and $A_{i j}$ antisymmetric implies $\sigma^{i j} A_{i j}=0$.
7. Let σ denote a 3×3 symmetric stress tensor and assume (MA). Show that the momentum equation can be rewritten as

$$
\rho \frac{D u}{D t}=\operatorname{div}(\sigma) .
$$

(Divergence taken on each row of σ.)
8. Show:

$$
\frac{1}{2} \frac{D \mathbf{u}^{2}}{D t}=\rho \mathbf{u} \frac{D \mathbf{u}}{D t}=\mathbf{u} \cdot \operatorname{div}(\sigma)=\operatorname{div}(\sigma \mathbf{u})-\operatorname{tr}(\sigma \cdot D)
$$

9. For Euler, show that $\rho \frac{D u}{D t}=-\nabla p$.
10. Show that the compressible Euler equations are reversible in the sense that if $p(\mathbf{x}, t), \mathbf{u}(\mathbf{x}, t), e(\mathbf{x}, t)$ solve the compressible Euler equations

$$
\begin{gather*}
\rho_{t}+\operatorname{div}(\rho \mathbf{u})=0 \tag{1}\\
(\rho \mathbf{u})_{t}+\operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}+p) \tag{2}\\
E_{t}+\operatorname{div}((E+p) \mathbf{u})=0, \tag{3}
\end{gather*}
$$

then so does $p(\mathbf{x},-t),-\mathbf{u}(\mathbf{x},-t), e(\mathbf{x},-t)$. Explain why this really expresses "reversibility".
11. The sound speed for compressible Euler is $\sigma=\sqrt{\frac{\partial p(\rho, s)}{\partial \rho}}$. Use the formulas for a polytropic (γ-law) gas to show

$$
\sigma^{2}=\gamma(\gamma-1) c_{v} T
$$

That is: The sound speed is proportional to the temperature.
12. Show that the second law of thermodynamics, namely, $d e=$ $T d s-p d v$ is an exact differential, implies that

$$
d s=\frac{d e}{T}+\frac{p d v}{T}
$$

defines a function $s(e, v)$ such that

$$
\frac{\partial s}{\partial e}(e, v)=\frac{1}{T} \quad \text { and } \frac{\partial s}{\partial v}(e, v)=\frac{p}{T} .
$$

13. Show that the second law of thermodynamics ($d e=T d s-$ $p d v$ is exact) implies the following formulation in terms of the material derivative:

$$
\frac{D e}{D t}=T \frac{D s}{D t}-p \frac{D v}{D t}
$$

14. Show that a strictly hyperbolic matrix (a matrix with n real and distinct eigenvalues) has a basis of eigenvectors. Prove that the left eigenvalues (corresponding to the left eigenvectors) are equal to the right eigenvalues.
15. Verify the following tensor relations:
(a) Show that $\operatorname{div}(f I)=\nabla f$.
(b) Show that $\operatorname{div}(D)=\frac{1}{2} \Delta \mathbf{u}+\frac{1}{2} \nabla(\operatorname{div}(\mathbf{u})$
(c) Show $\operatorname{tr}(D)=\operatorname{div}(\mathbf{u})$.
(d) Show $\langle\sigma, D\rangle=\sum_{i j} \sigma^{i j} D^{i j}=\operatorname{tr}(\sigma \cdot D)$
(e) Show $\operatorname{tr}((\operatorname{divu}) D)=(\operatorname{div} \mathbf{u})^{2}$.
(f) $\operatorname{Show} \mathbf{u} \cdot \operatorname{div}(\sigma)=\operatorname{div}(\sigma \cdot \mathbf{u})-<\nabla \mathbf{u}, \sigma>$ where $\nabla \mathbf{u}=$ $D+A$ and $<A, \sigma>=0$.
(g) If conservation of mass holds, then

$$
\frac{d}{d t} \int_{\Omega(t)} \rho f d V=\int_{\Omega(t)} \rho \frac{D f}{D t} d V
$$

16. Let (λ, R) be a genuinely nonlinear characteristic field for a conservation law, and let $u(\lambda)$ parameterize the integral curve of R between $\lambda_{L}=\lambda\left(u_{L}\right)>\lambda\left(u_{R}\right)=\lambda_{R}$. Show that the simple wave that starts from initial data $u_{0}(x)$ shocks at time t_{0},

$$
u_{0}(x)= \begin{cases}u_{L} & x<-\lambda_{L} t_{0} \\ u\left(-x / t_{0}\right) & -\lambda_{L} t_{0} \leq x \leq-\lambda_{R} t_{0} \\ u_{R} & x \geq-\lambda_{R} t_{0}\end{cases}
$$

17. The eigenpairs of Euler's equations for the Lagrangian form

$$
\begin{aligned}
& \quad v_{t}-u_{x}=0 \\
& u_{t}+p_{x}=0 \\
& s_{t}=0
\end{aligned}
$$

are

$$
\begin{gathered}
\left(\lambda_{1}=-\sqrt{-p_{v}}, R_{1}=\left(1, \sqrt{-p_{v}}, 0\right)\right. \\
\left(\lambda_{2}=0, R_{2}=\left(p_{s}, 0,-p_{v}\right)\right. \\
\left(\lambda_{3}=+\sqrt{-p_{v}}, R_{1}=\left(1,-\sqrt{-p_{v}}, 0\right)\right.
\end{gathered}
$$

Find the eigenpairs for the Lagrangian formulation in which the energy equation $\mathcal{E}_{t}+(p u)_{x}=0$ is taken in place of $s_{t}=0$.
18. For compressible Euler, we proved that the eigenfamilies are 1- and 3 -eigenfamilies genuinely nonlinear so long as $p_{v v}(v, s) \neq 0$. Verify this in the case of a polytropic equation of state.

