
Homework-I
Temple

Math 280 Shock Waves W2013

1. Show that if µ = λ = 0, so in the limit of vanishing viscos-
ity, when k 6= 0 then our initial energy equation

Et + div((E + p)u) = div(σ · u) + k∆T,

is equivalent to

ρ
De

Dt
= −p div(u) + k∆T,

where σ = λ(divu)I + 2µD, and D is the 3× 3 symmetric
part of ∇u.

2. Verify the identity:

Div(ρu) = ∇ρ · u + ρDiv(u).

3. Derive a sharp estimate for the blowup time for ux, (as we
did in class for Burgers Equation) for the general scalar
conservation law ut + f(u)x = 0, assuming f ′′(u) > δ > 0,
i.e., f is convex.

4. Show:
D(fg)

Dt
=
Df

Dt
g + f

Dg

Dt

5. Assume the continuity equation (MA) ρt + div(ρu) = 0.
Derive the identity

(ρf)t + div(ρfu) = ρ
Df

Dt
.



6. Show that σij symmetric and Aij antisymmetric implies
σijAij = 0.

7. Let σ denote a 3 × 3 symmetric stress tensor and assume
(MA). Show that the momentum equation can be rewritten
as

ρ
Du

Dt
= div(σ).

(Divergence taken on each row of σ.)

8. Show:

1

2

Du2

Dt
= ρu

Du

Dt
= u · div(σ) = div(σu)− tr(σ ·D)

9. For Euler, show that ρDuDt = −∇p.

10. Show that the compressible Euler equations are reversible
in the sense that if p(x, t),u(x, t), e(x, t) solve the compress-
ible Euler equations

ρt + div(ρu) = 0 (1)

(ρu)t + div(ρu⊗ u + p) (2)

Et + div((E + p)u) = 0, (3)

then so does p(x,−t),−u(x,−t), e(x,−t). Explain why
this really expresses “reversibility”.



11. The sound speed for compressible Euler is σ =
√
∂p(ρ,s)
∂ρ . Use

the formulas for a polytropic (γ-law) gas to show

σ2 = γ(γ − 1)cvT.

That is: The sound speed is proportional to the temperature.

12. Show that the second law of thermodynamics, namely, de =
Tds− p dv is an exact differential, implies that

ds =
de

T
+
pdv

T

defines a function s(e, v) such that

∂s

∂e
(e, v) =

1

T
and

∂s

∂v
(e, v) =

p

T
.

13. Show that the second law of thermodynamics (de = Tds−
pdv is exact) implies the following formulation in terms of
the material derivative:

De

Dt
= T

Ds

Dt
− pDv

Dt
.

14. Show that a strictly hyperbolic matrix (a matrix with n
real and distinct eigenvalues) has a basis of eigenvectors.
Prove that the left eigenvalues (corresponding to the left
eigenvectors) are equal to the right eigenvalues.



15. Verify the following tensor relations:

(a) Show that div(fI) = ∇f .

(b) Show that div(D) = 1
2∆u + 1

2∇(div(u)

(c) Show tr(D) = div(u).

(d) Show < σ,D >=
∑
ij σ

ijDij = tr(σ ·D)

(e) Show tr ((divu)D) = (divu)2.

(f) Show u · div(σ) = div(σ · u)− < ∇u, σ > where ∇u =
D + A and < A, σ >= 0.

(g) If conservation of mass holds, then

d

dt

∫
Ω(t)

ρfdV =
∫

Ω(t)
ρ
Df

Dt
dV.

16. Let (λ,R) be a genuinely nonlinear characteristic field for
a conservation law, and let u(λ) parameterize the integral
curve of R between λL = λ(uL) > λ(uR) = λR. Show that
the simple wave that starts from initial data u0(x) shocks
at time t0,

u0(x) =


uL x < −λLt0
u(−x/t0) −λLt0 ≤ x ≤ −λRt0
uR x ≥ −λRt0

17. The eigenpairs of Euler’s equations for the Lagrangian form

vt − ux = 0

ut + px = 0

st = 0



are

(λ1 = −
√
−pv, R1 = (1,

√
−pv, 0),

(λ2 = 0, R2 = (ps, 0,−pv),
(λ3 = +

√
−pv, R1 = (1,−

√
−pv, 0).

Find the eigenpairs for the Lagrangian formulation in which
the energy equation Et+(pu)x = 0 is taken in place of st = 0.

18. For compressible Euler, we proved that the eigenfamilies
are 1- and 3-eigenfamilies genuinely nonlinear so long as
pvv(v, s) 6= 0. Verify this in the case of a polytropic equation
of state.


