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Abstract. We prove that the essential smoothness of the gravitational
metric at shock waves in GR, a PDE regularity issue for weak solutions
of the Einstein equations, is equivalent to a geometrical condition which
we call the Riemann flat condition. This provides a geometric context
for the open problem as to whether regularity singularities (where the
essential smoothness of the gravitational metric is Lipschitz continuous)
can be created by shock wave interaction in GR, or whether metrics Lip-
schitz at shocks can always be smoothed one level to C1,1 by coordinate
transformation. As a corollary of the ideas we give a proof that locally
inertial frames always exist in a natural sense for shock wave metrics
in spherically symmetric spacetimes, independent of whether the metric
itself can be smoothed to C1,1 locally. This final result yields an ex-
plicit procedure (analogous to Riemann Normal Coordinates in smooth
spacetimes) for constructing inertial coordinates for Lipschitz metrics,
and is a new regularity result for GR solutions constructed by the Glimm
scheme.

1. Introduction

We introduce the Riemann flat condition on a spacetime connection Γ
and prove that this condition is necessary and sufficient for determining the
essential smoothness of weak solutions of the Einstein equations at appar-
ent singularities where the gravitational metric tensor g is only Lipschitz
continuous C0,1. The condition applies in the general setting of connections
Γ ∈ L∞, under the assumption that the curvature tensor Riem(Γ) has the
same regularity as the connection, Riem(Γ) ∈ L∞, a natural framework for
shock wave solutions in GR. The Riemann flat condition is the condition
that there exists a Lipschitz tensor Γ̃ such that the associated connection
Γ − Γ̃ is Riemann flat, and we prove that there exists a coordinate trans-
formation within the C1,1 atlas which smooths the metric components from
C0,1 to C1,1 if and only if Γ is Riemann flat.1 The theory applies at points

1The space C0,1 denotes the space of Lipschitz continuous functions, and C1,1 the space
of functions with Lipschitz continuous derivatives. A function is bounded in C0,1 if and
only if the function and its weak derivatives are bounded in L∞, c.f. [7], Chapter 5.8.
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2 M. REINTJES AND B. TEMPLE

of arbitrarily complex shock wave interactions, in n-dimensions, without as-
suming any spacetime symmetries. The space of of L∞ connections with L∞

Riemann curvature tensor is closed under C1,1 coordinate transformations,
so in light of the above equivalence, this space is a natural framework for
shock wave theory in GR.

One could interpret Theorem 3.2 in the spirit of the Nash embedding
theorems [13]. Namely, since the addition of a Lipschitz tensor would not
alter the discontinuous jumps across shocks which form the singular set of
Γ, Theorem 3.2 states that one can smooth the connection if and only if
there exists a Riemann flat L∞ connection Γ̂ = Γ + Γ̃ which has the same
jump discontinuities as the original connection Γ on the same singular set,
because Γ̃ is a continuous function. Thus since Γ̂ is flat, it can be interpreted
as an extension of the singular part of Γ into flat space, so the open question
of regularity singularities can be thought of as whether one can embed the
singular part of Γ into ambient flat space without changing the jumps.

To prove that a connection Γ that meets the Riemann flat condition can
always be smoothed to C1,1 by a C1,1 coordinate transformation, the main
step is to prove that if the Riemann curvature tensor is zero in the weak
sense, then there exists a C1,1 coordinate transformation that maps the
connection to zero, even if the connection is only in L∞. That is, the main
step in proving the equivalence of the Riemann flat condition for connections
of nonzero curvature, is to fully resolve the problem of metric smoothing in
the special case when the curvature of the connection is zero. The Riemann
flat condition is the starting point for our further developments, [17, 18].
As a corollary of the ideas we exhibit an explicit construction procedure
and proof that locally inertial frames exist in a natural sense at points of
arbitrary shock wave interaction in spherically symmetric spacetimes when
the gravitational metric is only Lipschitz continuous. This establishes that
the C0,1 shock wave metrics generated by the Glimm scheme in [8], are
locally inertial at every point, independent of whether the metric can be
smoothed locally to C1,1. These new results are stated below in Theorems
1 and 2 of Section 3.

2. Motivation and Background

It is well known that shock waves form in solutions of the Einstein-Euler
equations, the equations that couple the spacetime geometry to perfect fluid
sources, whenever the flow is sufficiently compressive [12, 19, 5]. But it is
an open question as to the essential level of smoothness of the gravitational
metric for general shock wave solutions admitting points of shock wave in-
teraction. The existence theory [8] for shock waves in GR based on the
Glimm scheme, (see also [2]), only yields Lipschitz continuity of the space-
time metric, a metric regularity too low to guarantee the existence of locally
inertial coordinates within the atlas of smooth (C2) coordinate transforma-
tions [15]. That spacetime is locally inertial at each point p, (i.e., there exist
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coordinate systems in which the metric is Minkowski at p, and all coordinate
derivatives of the metric vanish at p), was Einstein’s starting assumption for
General Relativity, [6]. The requisite smoothness of the metric sufficient to
guarantee the existence of locally inertial frames within the smooth atlas,
is the metric regularity C1,1, one degree smoother than the C0,1 metrics
constructed in [8]. In the smooth case, the Riemann normal coordinate con-
struction generates a smooth transformation to locally inertial coordinates.
In [15], the authors proposed the possibility that shock wave interaction
might create a new kind of spacetime singularity which we named regularity
singularities, a point in spacetime where the gravitational metric tensor is
Lipschitz continuous, but essentially less regular than C1,1.

Like other singularities in GR, such as the event horizon of the Schwarzschild
spacetime, a singularity requires a singular coordinate transformation to reg-
ularize it. Thus the possibility remains that the spacetime metric at shock
waves might be smoothed from C0,1 to C1,1 within the larger atlas of less
regular C1,1 coordinate transformations, because these transformations in-
troduce jumps in the derivatives of the Jacobian which hold the potential to
eliminate the jumps in metric derivatives. It remains an outstanding open
problem as to whether such transformations exist to smooth the metric to
C1,1 at points of shock wave interaction in GR. If such smoothing transfor-
mations do not exist, then regularity singularities can be created by shock
wave interaction alone. In particular, this would imply new scattering effects
in gravitational radiation, [16].

The starting point for addressing this basic regularity question for GR
shock waves is Israel’s celebrated 1966 paper [10], which proves that, for
any smooth co-dimension one shock surface in n-dimensions, the gravita-
tional metric can always be smoothed from C0,1 to C1,1 by transformation
to Gaussian normal coordinates adjusted to the shock surface. This trans-
formation was identified as an element of the C1,1 atlas in [20]. However,
these coordinates are only defined for single, non-interacting shock surfaces
and do not exist for the more complicated C0,1 metrics constructed in the
Groah-Temple framework [8]. The only result going beyond Israel’s result
was accomplished in [14], where first author proved that the gravitational
metric can always be smoothed from C0,1 to C1,1 at a point of regular shock
wave interaction between shocks from different characteristic families, in
spherically symmetric spacetimes. The proof is based on a surprisingly com-
plicated new constructive method based on analyzing non-local PDE’s tai-
lored to the structure of the shock-wave interaction. It is not clear whether
or how this proof could be extended to more complicated interactions. For
more complicated shock wave interactions in spherically symmetric space-
times, and general asymmetric shock interactions in (3+ 1)-dimensions, the
question as to the locally flat nature of space-time, or whether regularity
singularities can be created by shock wave interactions, remains an open
problem.
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The atlas of C1,1 coordinate transformations was introduced in [20] as the
natural atlas for shock wave metrics with C0,1 regularity in GR, because C1,1

coordinate transformations preserve the Lipschitz continuity of the metric,
and map bounded discontinuous curvature tensors to bounded discontinuous
curvature tensors. For perfect fluids, shock waves are weak solutions of the
Einstein-Euler equations, G = κT coupled with Div T = 0, where G is the
Einstein tensor, T is the energy-momentum tensor for a perfect fluid, and
κ is the coupling constant, c.f. [3, 22]. At shock waves, T is discontinuous
and contains no delta function sources, the latter distinguishing shock waves
from surface layers. The Einstein equations then imply that the curvature
tensor G must also be free of delta function sources at shock waves, [10].
Since G contains second derivatives of the gravitational metric g, it follows
that all delta function sources in the second derivatives of g must cancel out
to make G bounded and discontinuous at the shocks. The results in [20]
prove that this cancellation of delta function sources is a covariant property
within the C1,1 atlas. To rule out delta function sources in G, it is sufficient
to assume the Riemann curvature tensor is bounded in L∞.2

The authors’ work in [16] indicated that the problem of the existence
of locally inertial frames might be independent from the problem of the
essential C0,1 regularity of a general connection.3 To make this distinction
precise, we defined in [16] a regularity singularity to be a point p where
the connection is essentially less smooth than C0,1 in the sense that there
does not exist a C1,1 coordinate transformation in a neighborhood of p that
smooths the connection to C0,1 in that neighborhood. Independently, we say
the L∞ connection is locally inertial at p, if there exists a coordinate system
within the C1,1 atlas in which the connection vanishes at p, and is Lipschitz
continuous just at p. Thus, locally inertial coordinates could exist at p even
though the essential smoothness of the metric is less than C0,1. Based on
this, we say a regularity singularity at a point p is weak if there exists a
locally inertial coordinate system at p, and strong if the connection does not
admit locally inertial coordinates at p. For example, at a weak regularity
singularity in GR, locally inertial coordinates would exist at p, but the metric
smoothness remains below C1,1, too low for many desirable properties to
hold, (e.g. the Penrose-Hawking-Ellis Singularity theorems [9]).4 From this
point of view, Theorem 3 below establishes that GR solutions generated by

2Note that there is no loss of generality in assuming the entire Riemann curvature
tensor, not just the Einstein tensor G, is bounded in L∞, because the existence of delta
function sources in the curvature tensor automatically prevents Lipschitz regularity of the
connection.

3For metric connections, the Christoffel formulas give the connection in terms of first
derivatives of the metric, so C0,1 regularity of the connection is equivalent to C1,1 regu-
larity of the metric, [22].

4See [1, 4, 11] for results on lower regularity solutions of the vacuum Einstein equations,
a setting that rules out shock-waves.
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the Glimm scheme cannot produce strong regularity singularities, but leaves
open the possibility that weak regularity singularities still exist.

3. Statement of Results

Let M be an n-dimensional manifold endowed with a symmetric connec-
tion Γ such that the compoentents of Γ and its curvature tensor Riem(Γ)
are bounded in L∞ in coordinate system x. The space of L∞ connections
with L∞ curvature tensors is invariant under C1,1 coordinate transforma-
tions, [20], and provides a general covariant framework in which to address
essential metric regularity at shock waves in GR. Since we are interested
in a local theory, assume Γ is given in a fixed coordinate system xi defined
in a neighborhood U of a point p, and assume that in x-coordinates the
connection components Γk

ij satisfy

‖Γ‖∞ ≡ max
k,i,j

‖Γk
ij‖L∞(U) ≤M0, (3.1)

for some constant M0 > 0. When y coordinates are distinguished from
x, we use the standard convention that components in x-coordinates use
indices i, j, k, ... while components in y-coordinates use α, β, γ, .... Our main
theorem states that there exists a C1,1 coordinate transformation that lifts
the regularity of Γ from L∞ to C0,1 if and only if the connection meets the
Riemann flat condition, which we state first:

Definition 3.1. A symmetric connection Γ ∈ L∞ is said to meet the Rie-
mann flat condition at a point p if there exists a symmetric Lipschitz con-
tinuous (1, 2)-tensor Γ̃k

ij defined in a neighborhood of p, such the connection

Γ̂k
ij ≡ Γk

ij − Γ̃k
ij (3.2)

satisfies Riem(Γ̂) = 0 weakly in L∞, (c.f. (4.3) below).

Theorem 3.2. Assume Γk
ij is a symmetric L∞ connection satisfying (3.1)

in x-coordinates defined in neighborhood U of a point p ∈ M, and assume
Riem(Γ) ∈ L∞. Then there exists a C1,1 transformation y◦x−1 such that in
y-coordinates Γα

βγ ∈ C0,1 if and only if Γ meets the Riemann flat condition.

Moreover, the smoothing transformation y ◦ x−1 is given in terms of (3.2)
by

∂2yα

∂xi∂xj
=
∂yα

∂xk
Γ̂k
ij . (3.3)

Because the addition of a Lipschitz tensor cannot cancel a delta function
in the curvature, Theorem 3.2 immediately gives a sufficient condition for
a shock wave solution of the Einstein equations to have a strong regularity
singularity at p.

The main step in proving Theorem 3.2 is to establish the following propo-
sition which asserts that Riemann flat connections are Euclidean, even when
the connections are only assumed in L∞.
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Proposition 3.3. Assume Γ̂k
ij are the components of an L∞ symmetric

connection Γ̂ in x-coordinates defined in a neighborhood of p ∈ M. Then
Riem(Γ̂) = 0 in the L∞ weak sense in a neighborhood of p if and only
if there exists a C1,1 transformation y ◦ x−1 such that, in y-coordinates,
Γ̂α
βγ = 0 a.e. in a neighborhood of p.

Our second theorem uses ideas in the proof of Theorem 3.3 to give a con-
structive proof that locally inertial frames always exist in a natural sense for
the C0,1 shock wave metrics generated by the Glimm scheme in spherically
symmetric spacetimes in [8], independent of whether the metric itself can
be smoothed to C1,1.

Theorem 3.4. Let M be a spherically symmetric Lorentz manifold with
an L∞ metric connection Γ and Riemann curvature tensor bounded in L∞.
Then, for any point p ∈ M, there exists locally inertial coordinates y at p,
that can be reached within the atlas of C1,1 coordinate transformations, in
the sense that a representation of the L∞ equivalence class of the connection
Γα
βγ in y-coordinates vanishes at p and is Lipschitz continuous at p.

In particular, the Lipschitz continuity of Γα
βγ at p is necessary and suf-

ficient to remove the Coriolis terms introduced in [16]. Theorem 3.4 thus
proves that Coriolis terms are removable and that no strong regularity singu-
larities exist in spherically symmetric spacetimes, but it remains open as to
whether the metric can always be smoothed to C1,1 at points of shock wave
interaction. Thus, the problem of whether (weak) regularity singularities
can be created by the Glimm scheme is still an open question.

4. Preliminaries

We establish that the class of L∞ connections with L∞ curvature tensors is
preserved by the atlas of C1,1 coordinate transformations y ◦ x−1. To start,
assume the components Γk

ij are given L∞ functions in x-coordinates, and

introduce the components Rk
lij of the Riemann curvature tensor Riem(Γ)

as distributions on the space C∞
0 of smooth test functions with compact

support. For a smooth connection Γ, the coefficients of Riem(Γ) are

Rk
lij ≡ Curl(Γ)klij + [Γi,Γj ]

k
l , (4.1)

where Γi denotes the matrix Γi ≡
(

Γk
ij

)

k,j=1,...,n
and

Curl(Γ)klij ≡ Γk
l[j,i] ≡ Γk

lj,i−Γk
li,j and [Γi,Γj ]

k
l ≡ Γk

iσΓ
σ
jl−Γk

jσΓ
σ
il (4.2)

give the “curl” and “commutator” terms, respectively, where a comma de-
notes differentiation with respect to x. For an L∞ connection Γk

ij , the com-

ponents of Riem(Γ) are linear functionals defined as

Rk
lij [ψ] ≡ −Curl(Γ)klij[ψ] +

∫

[Γi,Γj]
k
l ψ dx
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≡ −

∫

(

Γk
ljψ,i − Γk

liψ,j

)

dx+

∫

[Γi,Γj ]
k
l ψ dx, (4.3)

where ψ ∈ C∞
0 (U) are test functions on some open set U ⊂ R

n and dx is
standard Lebesgue measure. Riem(Γ) is bounded in L∞ if there exists L∞

functions Rk
lij such that

Rk
lij[ψ] =

∫

Rk
lijψdx,

and in this case Rk
lij denotes the L∞ function as well as the distribution.

Thus Riem(Γ) = 0 if Rk
lij = 0 as an L∞ function. The starting point for

this paper is the transformation law for connections

Γk
ij = Jk

α Γα
βγJ

β
i J

γ
j + Jk

α

∂2yα

∂xi∂xj
, (4.4)

where Jα
i ≡ ∂yα

∂xi is the Jacobian of a C1,1 coordinate transformations y◦x−1,

and J i
α denotes its inverse.

5. Proof of Theorem 3.2:

We first give the proof of Theorem 3.2 assuming Proposition 3.3, and
postpone the proof of Proposition 3.3 until the next section. Note first that
the splitting of Γk

ij into a connection and a (1, 2)-tensor is consistent with

the covariant transformation law (4.4), because the difference between two

connections is always a tensor, c.f. [9]. That is, assuming Γ̂ transforms
under a coordinate transformation yα ◦ x−1 by the transformation rule of a
connection,

Γ̂α
βγ =

{

Γ̂i
jkJ

j
βJ

k
γ J

α
i + Jα

i

∂2xi

∂yβyγ

}

, (5.1)

and Γ̃ transforms by the transformation law of a tensor,

Γ̃α
βγ = Γ̃i

jkJ
j
βJ

k
γJ

α
i ,

where Jα
k ≡ ∂yα

∂xk is the Jacobian and Jk
α ≡ ∂xk

∂yα
its inverse. It follows that

Γ ≡ Γ̃ + Γ̂ transforms as a connection,

Γα
βγ ≡ Γ̃α

βγ + Γ̂α
βγ = Γ̃i

jkJ
j
βJ

k
γ J

α
i +

{

Γ̂i
jkJ

j
βJ

k
γ J

α
i + Jα

i

∂2xi

∂yβyγ

}

. (5.2)

To prove the backward implication, assume there exists a splitting Γk
ij =

Γ̃k
ij + Γ̂k

ij in a neighborhood of p with Γ̃k
ij ∈ C0,1 a (1, 2)-tensor and with

Γ̂k
ij ∈ L∞ a connection such that Riem(Γ̂) = 0. Thus assuming Theorem 3.3,

Riem(Γ̂) = 0 implies that there exists a coordinate transformation y ◦ x−1

within the atlas of C1,1 transformations such that in y-coordinates

Γ̂α
βγ = 0
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in an L∞ almost everywhere sense in a neighborhood of p, and hence can
be assumed to vanish everywhere. Thus, by (5.1) and (5.2), we have in
y-coordinates that

Γα
βγ = Γ̃i

jkJ
j
βJ

k
γJ

α
i ∈ C0,1

which proves the reverse implication.
For the forward implication, assume there exists a transformation y◦x−1 ∈

C1,1 such that Γα
βγ ∈ C0,1 in y-coordinates in some neighborhood of p. In

this case, considering

Γk
ij = Γα

βγJ
β
i J

γ
j J

k
α + Jk

α

∂2yα

∂xi∂xj
, (5.3)

we define
Γ̃k
ij ≡ Γα

βγJ
β
j J

γ
i J

k
α ∈ C0,1

as the Lipschitz continuous tensor part of Γk
ij and

Γ̂k
ij ≡ Jk

α

∂2yα

∂xi∂xj
(5.4)

as the L∞ connection part. We now claim the right hand side of (5.4) is flat,

satisfying Riem(Γ̂) = 0 in a neighborhood of p, because it is the y-coordinate
representation of the zero connection in x-coordinates. This follows from
Lemma 8 of [20], because weak L∞ curvature tensors transform as tensors.
To see this explicitly, take the curl of (5.4) in the weak sense (4.3) and
observe that the third order (weak) derivatives cancel because

Curl(Γ̂)klij [ψ] = −

∫

Jk
α

(

yα,ljψ,i − yα,liψ,j

)

dx

=

∫

(

Jk
α,iy

α
,lj − Jk

α,jy
α
,li

)

ψ dx,

due to the symmetry in i and j. Thus, the components of the Riemann
curvature tensor of (5.4) are in fact given by the L∞ functions

Rk
lij = Jk

α,iy
α
,lj − Jk

α,jy
α
,li + Γk

imΓm
jl − Γk

jmΓm
il .

Using now that Jγ
k J

k
α,i = −Jγ

k,iJ
k
α = −yγ,kiJ

k
α, it follows that

J
γ
kR

k
lij = −yγ,kiJ

k
αy

α
,lj + y

γ
,kjJ

k
αy

α
,li + J

γ
kΓ

k
iσΓ

σ
jl − J

γ
k Γ

k
jσΓ

σ
il,

and substituting (5.4) for the remaining Γ’s, the above terms mutually cancel
to give Jγ

kR
k
lij = 0. This completes the proof of Theorem 3.2. �

6. Proof of Proposition 3.3:

Assume Γ̂k
ij are the components of an L∞ connection defined in a neigh-

borhood of p ∈ M in x-coordinates satifying the L∞ bound (3.1). For the
backward implication of Proposition 3.3, assume there exists a C1,1 trans-
formation y ◦ x−1 such that Γ̂α

βγ = 0, almost everywhere in y-coordinates.

It follows that Riem(Γ̂) = 0 in y-coordinates in the L∞ weak sense of (4.3).
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But by Lemma 8 of [20] the curvature transforms as a tensor under C1,1

coordinate transformations. Thus we must have Riem(Γ̂) = 0 in L∞ in all
coordinates, thereby proving the backward implication.

We now prove the forward implication of Proposition 3.3. For this, assume
Γ̂k
ij(x) is an L

∞ connection given on some neighborhood U in x-coordinates,

such that Riem(Γ̂) = 0 in L∞. For the proof we establish a framework in
which the classical argument in [21] can be extended to the weaker setting of
connections in L∞. The argument can be summarized as follows: The zero
curvature condition is used to construct four independent 1-forms ωα =
ωα
j dx

j , (α = 1, ..., n), which are parallel in every direction in x(U), i.e.,

∇jω
α = 0, j = 1, ..., n, where now ∇j denotes the covariant derivative for Γ̂.

The parallel condition is then used to construct coordinates yα◦x−1 in which
Γ vanishes. The problem in applying this argument to low regularity L∞

connections is that such connections do not have meaningful restrictions
to low dimensional curves and surfaces along which the parallel 1-forms
can be solved for. Thus the main point is that derivatives of mollified L∞

connections do not have a meaningful zero mollification limit in general, but
can be controlled in the presence of an L∞ bound on the Riemann curvature
tensor.

The main step in the proof of the forward implication of Proposition 3.3
is stated in Proposition 6.1 below. Without loss of generality, we assume
from here on that the coordinate neighborhood x(U) is an n-cube, i.e. the
direct product of n intervals, x(U) = I1 × · · · × In, where Ik = (ak, bk) for
ak < 0 < bk.

Proposition 6.1. Assume Γ̂ is a symmetric connection with Riem(Γ̂) = 0

with x-components Γ̂k
ij(x), x ∈ x(U), satisfying (3.1). Then there exists

n linearly independent 1-forms ωα = ωα
i dx

i, α = 1, ..., n, with components
ωα
i (x) Lipschitz continuous in x, such that the 1-forms are parallel in the L1

sense

‖∇jω
α‖

L1(x(U)) = 0, ∀j = 1, ..., n, (6.1)

for ∇j the covariant derivative of Γ̂.

We complete the proof of the forward implication of Proposition 3.3 as-
suming Proposition 6.1. We then give the proof of Proposition 6.1 in Section
7. It suffices to construct coordinates yα in which the connection coefficients
Γ̂ vanish. For this, define

yα(x1, ..., xn) ≡
n
∑

i=1

∫ xi

0
ωα
i (x

1, ..., xi−1, t, 0, ..., 0)dt, (6.2)

where ωα are the 1-forms whose existence is guaranteed by Proposition 6.1.
Proposition 6.1 implies that (6.2) defines a C1,1 coordinate transformation.

Moreover, equation (6.1) tells us that ∂jω
α
i − Γ̂k

ijw
α
k vanishes in L1(x(U)),
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so that the symmetry of the connection Γ̂k
ij = Γ̂k

ji implies
∥

∥∂jω
α
i − ∂iω

α
j

∥

∥

L1(x(U))
= 0. (6.3)

Fubini’s theorem now implies that there exists a point x0, (which we take
without loss of generality to be the origin x0 = 0 in (6.2)), such that (6.3)
implies5

∫

Ωl

∣

∣∂iω
α
j − ∂jω

α
i

∣

∣(x1, ..., xl, 0, ..., 0)dx1 · · · dxl = 0, ∀i, j ≤ l, (6.4)

for each l = 1, ..., n, where Ωl ≡ I1 × · · · × Il. Differentiating (6.2), and
integrating over x(U), we can apply (6.4), and thereby commute indices and
derivatives on lower dimensional sets in the iterated integrals based at the
origin, to obtain, (details are omitted)

∂yα

∂xj
= ωα

j , j, α = 1, ..., n. (6.5)

Now transforming to y-coordinates (6.2), the components of Γ̂ are given
by

Γ̂k
ij =

∂2yσ

∂xi∂xj
∂xk

∂yσ
+ Γ̂γ

αβ

∂yα

∂xi
∂yβ

∂xj
∂xk

∂yγ
a.e. in x(U). (6.6)

But by (6.5) we have ∂yα

∂xj = ωα
j , so (6.1) implies that

∂2yσ

∂xi∂xj
=

∂

∂xi
ωσ
j = Γ̂l

ijω
σ
l = Γ̂l

ij

∂yσ

∂xl
a.e. in x(U). (6.7)

Substituting (6.7) into (6.6) gives

Γ̂k
ij = Γ̂k

ij + Γ̂γ
αβ

∂yα

∂xi
∂yβ

∂xj
∂xk

∂yγ
, a.e. in x(U), (6.8)

and this together with the fact that the Jacobian ∂yα

∂xi is non-singular, implies

Γ̂γ
αβ = 0 a.e. in x(U). This completes the proof of Proposition 3.3 once we

prove Proposition 6.1. �

7. Proof of Proposition 6.1:

Assume Γ̂k
ij(x) is an L∞ connection given on some neighborhood U in

x-coordinates, such that Riem(Γ̂) = 0 in the L∞ weak sense. We construct
n linearly independent 1-forms ωα = ωα

i dx
i which are Lipschitz continuous

and parallel in the sense of (6.1). Our strategy is to mollify the connection,
and modify the standard argument for constructing parallel 1-forms when
the curvature is zero and the connection is smooth. The mollified connec-
tion, however, has nonzero curvature, so we must keep track of errors in ǫ
sufficiently to prove the curvatures tend to zero in L1 when taking the zero

5Note that if such points x0 did not exist, then one could use this, together with
positivity, to integrate up to get a nonzero L1-norm, thereby obtaining a contradiction.
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mollification limit at the end. The basic L1 estimates for this are established
in Lemmas 7.1 and 7.2 below. The main technicality is that the construction
requires integrating on lower dimensional surfaces, and the boundary terms
arising on these surfaces must also cancel due to zero curvature in the zero
mollification limit. In order to achieve this, we need a peeling property to
ensure that the curvature actually vanishes in the zero mollification limit on
these lower dimensional sets, c.f. Lemma 7.3 below. The mollification pro-
cedure is also required to apply uniqueness theorems for the ODE’s arising
from parallel transport.

To start, consider a standard mollification of Γ̂k
ij(x),

(Γ̂ǫ)
k
ij(x) =

∫

x(U)
Γ̂k
ij(x̃)φǫ(x− x̃)dx̃, (7.1)

with a mollifier φ ∈ C∞
0

(

x(U)
)

, again assuming fixed coordinates xi on x(U).

Then Γ̂ǫ ∈ C∞ and ‖Γ̂ǫ − Γ̂‖L1(x(U)) converges to zero as ǫ→ 0. Moreover,

‖Γ̂ǫ‖L∞ ≤ ‖Γ̂‖L∞

∫

|φǫ(x− x̃)| dx̃ = ‖Γ̂‖L∞ , (7.2)

so that ‖Γ̂ǫ‖L∞ is bounded independent of ǫ, c.f. (3.1). To construct 1-forms

ωα = ωα
i dx

i, we establish three lemmas regarding the curvature Riem(Γ̂ǫ).

Lemma 7.1. Assume Riem(Γ̂) is bounded in L∞. Then the mollified cur-
vature satisfies the ǫ-independent bound

∥

∥Riem(Γ̂ǫ)
∥

∥

L∞(x(U))
≤ c

∥

∥Γ̂
∥

∥

2

L∞(x(U))
+

∥

∥Riem(Γ̂)
∥

∥

L∞(x(U))
, (7.3)

where c is a combinatorial constant depending only on n.

Proof. Recall that the Riemann curvature tensor can be written as a curl
plus a commutator,

Riem(Γ̂) ≡ Curl(Γ̂) + [Γ̂, Γ̂], (7.4)

c.f. (4.1) - (4.2). For the mollified “curl-part” of the curvature, observe that

Curlx(Γ̂ǫ)
k
lij =

∂

∂xj
(Γ̂ǫ)

k
li(x)−

∂

∂xi
(Γ̂ǫ)

k
lj(x)

=

∫

(

Γ̂k
li(x̃)

∂

∂xj
φǫ(x− x̃)− Γ̂k

lj(x̃)
∂

∂xi
φǫ(x− x̃)

)

dx̃

= −

∫

(

Γ̂k
li(x̃)

∂

∂x̃j
φǫ(x− x̃)− Γ̂k

lj(x̃)
∂

∂x̃i
φǫ(x− x̃)

)

dx̃

which is the weak curl of Γ̂. Because Riem(Γ̂) is assumed to be in L∞, we

conclude that there exists L∞ functions that represent the curl of Γ̂, since
the commutator part in (4.1) contains no derivatives of Γ̂. Denoting this

L∞ function by Curl(Γ̂) ∈ L∞, the previous equations imply

Curlx(Γ̂ǫ) =

∫

Curlx̃(Γ̂)φǫ(x− x̃) dx̃. (7.5)
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Using now the splitting (7.4) we write (7.5) as

Curlx(Γ̂ǫ)(x) = −

∫

(

[Γ̂, Γ̂]− Riem(Γ̂)
)

(x̃) φǫ(x− x̃)dx̃

from which we conclude that
∥

∥Curl(Γ̂ǫ)
∥

∥

L∞
≤

∥

∥[Γ̂, Γ̂]
∥

∥

L∞
+

∥

∥Riem(Γ̂)
∥

∥

L∞
≤ c

∥

∥Γ̂
∥

∥

2

L∞
+

∥

∥Riem(Γ̂)
∥

∥

L∞
,

for some constant c. Thus, using the splitting (7.4) for Γ̂ǫ, we have
∥

∥Riem(Γ̂ǫ)
∥

∥

L∞
≤

∥

∥Curl(Γ̂ǫ)
∥

∥

L∞
+

∥

∥[Γ̂, Γ̂]
∥

∥

L∞
≤ c

∥

∥Γ̂
∥

∥

2

L∞
+

∥

∥Riem(Γ̂)
∥

∥

L∞
,

which gives the ǫ independent bound (7.3) and proves Lemma 7.1. �

Lemma 7.2. Assume Riem(Γ̂) is bounded in L∞. Then Riem(Γ̂ǫ) converges

to Riem(Γ̂) in L1(x(U)) as ǫ→ 0.

Proof. Multiplying each component of Riem(Γ̂ǫ), (Rǫ)
k
lij , by a test-function

ψ ∈ C∞
0

(

x(U)
)

and integrating over x(U), we find
∫

x(U)

(Rǫ)
k
lijψdx =

∫

(Γ̂ǫ)
k
l[j,i]ψdx+

∫

x(U)

[(Γ̂ǫ)i, (Γ̂ǫ)j ]
k
l ψ dx

= −

∫

x(U)

(

(Γ̂ǫ)
k
ljψ,i − (Γ̂ǫ)

k
liψ,j

)

dx+

∫

x(U)

[(Γ̂ǫ)i, (Γ̂ǫ)j ]
k
l ψ dx.

Now, as ǫ approaches zero, (Γ̂ǫ)
k
ij → Γ̂k

ij in L1, so taking this limit in the
last line of the previous equation and using that the test functions and their
derivatives are bounded, we conclude

lim
ǫ→0

∫

(Rǫ)
k
lijψdx = −

∫

(

Γ̂k
ljψ,i − Γ̂k

liψ,j

)

dx+

∫

[Γ̂i, Γ̂j ]
k
l ψ dx = Rk

lij [ψ],

where we used the weak form of the Riemann curvature (4.3) in the last
line. This proves Lemma 7.2. �

The following lemma establishes the L1-peeling property crucial for as-
signing initial data consistently in the construction of parallel one-forms
(6.1).

Lemma 7.3. Assume Riem(Γ̂) = 0. For every sequence ǫ → 0 there exists
a subsequence ǫk (with ǫk → 0 as k → ∞) and some point (x̄1, ..., x̄n) ∈
I1×...×In such that the mollified curvature satisfies the L1 peeling property
at x̄ ≡ (x̄1, ..., x̄n), by which we mean that for each m = 1, ..., n,

lim
ǫk→0

∫

I1

...

∫

Im

(Rǫk)
k
lij(x

1, ..., xm, x̄m+1, ..., x̄n)dx1 · · · dxm = 0, (7.6)

that is,
∥

∥(Rǫk)
k
lij(·, ..., ·, x̄

m+1 , ..., x̄n)
∥

∥

L1(I1×...×Im)
−→ 0 as ǫk → 0.
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Proof. Define x̃ ≡ (x1, ..., xm) ∈ I1 × ... × Im and x̄ ≡ (xm+1, ..., xn) ∈
Im+1 × ...× In. Fubini’s Theorem implies that

(R̄ǫ)
k
lij(x̄) ≡

∫

I1×...×Im

(Rǫ)
k
lij(x̃, x̄)dx̃

is an integrable function over Im+1 × ...× In. Since, Riem(Γ̂ǫ) converges to
zero in L1(x(U)) by Lemma 7.2, it follows that (R̄ǫ)

k
lij converges to zero in

L1(Im+1 × ...× In), namely
∫

Im+1×...×In

(R̄ǫ)
k
lij(x̄)dx̄ =

∫

U

(Rǫ)
k
lij dx −→ 0, as ǫ→ 0.

Therefore, there exists a subsequence ǫmk (with ǫmk → 0 as k → ∞) and

some point x̄ ∈ Im+1 × ... × In at which (R̄ǫm
k
)klij(·) converges to zero as

k → ∞. For this point x̄, it follows that (Rǫm
k
)klij(·, x̄) converges to 0 in

L1(I1 × ...× Im × {x̄}) as k → ∞.
Now, applying this construction with respect to I1× ...×In, we first find

a point x̄n ∈ In together with a subsequence ǫn−1
k of ǫ such that

(Rǫn−1

k
)klij( · , x̄

n) −→ 0, in L1(I1 × ...× In−1), as k → ∞.

Given this convergence on the n − 1 sub-cube I1 × ... × In−1 × {x̄n}, we
again apply the above construction (but now with respect to the sub-cube)
to obtain a point x̄n−1 ∈ In−1 and a subsequence ǫn−2

k of ǫn−1
k such that

(R
ǫn−2

k
)klij( · , x̄

n−1, x̄n) −→ 0, in L1(I1 × ...× In−2), as k → ∞.

Continuing, we successively find a subsequence ǫk of ǫ and a point (x̄1, ..., x̄n) ∈
x(U) at which the peeling property (7.6) holds. This proves Lemma 7.3. �

Our goal now is to construct n linearly independent 1-forms ωα
ǫ = (ωα

ǫ )i dx
i,

α = 1, ..., n, of the mollified connections Γ̂ǫ by parallel translating in x-
coordinate directions e1, ..., en, one direction at a time, starting with ini-
tial data given at a point x̄ where the peeling property holds to control
the L1-norms of the curvature on the initial data. The resulting 1-forms
ωα
ǫ = (ωα

ǫ )i dx
i, will not be parallel in every direction because the curvature

of the mollified connections is in general nonzero. However, since the Rie-
mann curvature converges to zero in L1 as ǫ→ 0, one can prove that the ωα

ǫ

tend to parallel 1-forms in the limit ǫ → 0, once their convergence in C0,1

has been established. Concerning this convergence, the uniform L∞ bound
on the curvature alone will imply that the resulting 1-forms are Lipschitz
continuous uniformly in ǫ, so that the Arzela-Ascoli Theorem yields a con-
vergent subsequence of the 1-forms ωα

ǫ that converge to Lipschitz continuous
1-forms ω1

i dx
i, ..., ωn

i dx
i as ǫ→ 0.

To begin the construction of the parallel 1-forms, assume a sequence ǫ→ 0
such that the curvature satisfies the peeling property (7.6) at the point
x̄ = (x̄1, ..., x̄n). Assume without loss of generality that x̄ = (0, ..., 0), and
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Ik = (−1, 1) ≡ I for each k = 1, ..., n. We begin with the construction of
1-forms on the two-surface I1 × I2 × {x̄3} × ...× {x̄n} which are parallel in
the x2-direction, and then extend to (x1, ..., xn) ∈ x(U) by induction, in the
following four steps:

Step (i): First solve for 1-forms ωα
ǫ = (ωα

ǫ )jdx
j , for α = 1, ..., n, parallel

along the x1-axis by solving the ODE initial value problem

∇ǫ
1 (ω

α
ǫ )j (x

1, 0) ≡
∂ (ωα

ǫ )j
∂x1

(x1, 0) −
(

Γ̂ǫ

)k

1j
(ωα

ǫ )k (x
1, 0) = 0, (7.7)

(ωα
ǫ ) (0, 0) = eα, (7.8)

where we suppress the dependence on (x̄3, ..., x̄n) = (0, ..., 0), which are fixed.
To insure linearly independent 1-forms locally, we choose the initial data for
the 1-forms at the point (0, 0) to be the n-independent coordinate co-vectors
eα ≡ dxα. For the construction we keep α fixed and, for ease of notation in
Steps (i)-(iv), we write ωǫ ≡ ωǫ

idx
i instead of ωα

ǫ ≡ (ωα
ǫ )idx

i.
Taking t = x1, (7.7)-(7.8) is an initial value problem for an ODE of the

form

u̇+Aǫu = 0,

where u(t) = (ωǫ
1(t, 0), ..., ω

ǫ
n(t, 0)) ∈ R

n, and (Aǫ)
k
j (t) = (Γ̂ǫ)

k
1j(t, 0) is an

n × n matrix which is smooth and bounded in the L∞ norm, uniformly in
ǫ, by (7.2). Thus the Picard-Lindelöff existence theorem for ODE’s implies
there exists a unique local smooth solution u(t) = ωǫ(t, 0). Moreover, the
Grönwall inequality together with the L∞ bound on Aǫ imply the resulting 1-
forms ωǫ(x1, 0) ≡ ωǫ(x1, x̄2, ..., x̄n) = ωǫ(x1, 0, ..., 0) are bounded, uniformly
in ǫ, which then yields Lipschitz continuity in the x1-direction, uniformly in
ǫ.

Step (ii): Given the ωǫ(x1, 0) from Step (i), assume for simplicity ωǫ(x1, 0)
exists for all x1 ∈ (−1, 1), use ωǫ(x1, 0) as initial data to solve for the parallel
transport in the x2-direction starting from x2 = 0, by solving the ODE initial
value problem

∇ǫ
2ω

ǫ
j(x

1, x2) ≡
∂ωǫ

j

∂x2
(x1, x2)−

(

Γ̂ǫ

)k

2j
ωǫ
k(x

1, x2) = 0, (7.9)

ωǫ(x1, x2) = ωǫ(x1, 0) at x2 = 0. (7.10)

For fixed x1 ∈ (−1, 1), taking t = x2, (7.9)-(7.10) is an initial value problem
for

u̇+Aǫu = 0, (7.11)

with u(t) = ωǫ(x1, t) ∈ R
n and (Aǫ)

k
j (t) = (Γ̂ǫ)

k
2j(x

1, t) an n × n matrix
which is smooth and bounded in the supnorm uniformly in ǫ, according
to (7.2). The Picard-Lindelöff theorem implies that there exists a unique
smooth solution ωǫ(x1, t), and for ease we again assume ωǫ(x1, t) to be de-
fined throughout the interval −1 < t < 1 for each x1 ∈ (−1, 1). The
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ǫ-independent supnorm bound ‖Aǫ‖L∞ ≤ ‖Γ̂‖∞ on I1 × I2, together with
the Grönwall inequality for (7.11), imply the supnorm bound

‖ωǫ‖L∞(I1×I2) ≤ K0, (7.12)

where we use K0 to denote a universal constant depending only on Γ̂,
independent of ǫ. Moreover, ‖Aǫ‖L∞ ≤ ‖Γ̂‖∞ implies the ωǫ(x1, x2) ≡
ωǫ(x1, x2, 0, ..., 0) satisfies a Lipschitz bound in the x2-direction,

∥

∥

∥

∥

∂ωǫ

∂x2

∥

∥

∥

∥

L∞(I1×I2)

≤ K0, (7.13)

where K0 again depends on Γ̂, independent of ǫ. Controlling the Lipschitz
bound (7.13) in the x1-direction is accomplished in Step (iii).

Step (iii): To obtain Lipschitz continuity of ωǫ(x1, x2) in the x1-direction,
uniformly in ǫ and x2, we estimate the change of u ≡ ∇ǫ

1ω
ǫ in x2-direction,

starting from x2 = 0 where u ≡ ∇ǫ
1ω

ǫ(x1, 0) = 0 by construction. By the
definition of curvature, we can write

∇ǫ
2

[

ωǫ
k;1

]

= ∇ǫ
1∇

ǫ
2ω

ǫ
k + (Rǫ)

σ
k21 ω

ǫ
σ, (7.14)

so the definition of covariant derivative gives

∇ǫ
1∇

ǫ
2ω

ǫ
k =

∂

∂x1

[

ωǫ
k;2

]

− (Γ̂ǫ)
σ
1kωσ;2 − (Γ̂ǫ)

σ
12ω

ǫ
k;σ .

Substituting this into (7.14), using ωσ;2 = 0, we find that (7.14) is equivalent
to

∇ǫ
2

[

ωǫ
k;1

]

+ (Γ̂ǫ)
σ
12ω

ǫ
k;σ − (Rǫ)

σ
k21 ω

ǫ
σ = 0. (7.15)

On the other hand, the definition of ∇ǫ
2 gives

∇ǫ
2

[

ωǫ
k;1

]

=
∂

∂x2

[

ωǫ
k;1

]

− (Γ̂ǫ)
σ
2kω

ǫ
σ;1 − (Γ̂ǫ)

σ
21ω

ǫ
k;σ . (7.16)

Substituting (7.16) into (7.15), a cancellation gives the ODE for u ≡ ωǫ
k;1,

∂

∂x2

[

ωǫ
k;1

]

− (Γ̂ǫ)
σ
2kω

ǫ
σ;1 − (Rǫ)

σ
k21 ω

ǫ
σ = 0. (7.17)

Thus, for fixed x1, letting t = x2 and uk(t) ≡ ωǫ
k;1(x

1, t), k = 1, ..., n, the

x2-directional change of u is determined by the system of ODE’s

u̇+Aǫu+Bǫ = 0, (7.18)

where u = (u1, ..., un), and the n × n-matrix Aǫ as well as the n-vector Bǫ

are

(Aǫ)
σ
k = −(Γ̂ǫ)

σ
2k and (Bǫ)k = − (Rǫ)

σ
k21 ω

ǫ
σ.

In addition, we have by Lemma 7.1 and (7.12) that

‖Bǫ‖L∞ ≤ ‖Rǫ‖L∞ ‖ωǫ
σ‖L∞ ≤ K0, (7.19)
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for some constant K0 independent of ǫ, and the L∞-norm is taken on I1×I2.
Applying the Grönwall inequality in (7.18), using the bound on Aǫ, we obtain

|ωǫ
k;1|(t) ≤ K0

∫ t

0
|Bǫ|dt, (7.20)

for K0 > 0 independent of ǫ. Estimate (7.20) and (7.19) together with the

definition of the covariant derivative, ωǫ
i;1 = ωǫ

i,1 −
(

Γ̂ǫ

)σ

i1
ωǫ
σ, implies the

supnorm of the derivative ∂
∂x1ω

ǫ is bounded uniformly in ǫ by

∣

∣

∣

∂ωǫ
k

∂x1

∣

∣

∣
(t) ≤ K

∫ t

0
|Bǫ|dt+

∣

∣(Γ̂ǫ)
σ
k1w

ǫ
σ

∣

∣ ≤ K0. (7.21)

for some generic constant K0 independent of ǫ. We conclude that the com-
ponents ωǫ

i (x
1, x2, 0, ..., 0) are Lipschitz continuous in (x1, x2), uniformly in

ǫ.

Step (iv): In the final step, we use induction to extend the construc-
tion of ωǫ , and obtain the Lipschitz estimate corresponding to (7.21) in
n-dimensions. To implement the induction step m − 1 to m, with m ≤ n,
requires controlling m − 1 commutators of covariant derivative. The step
m = 3 is essentially different from m = 2 because it is at this step that,
for example, ∇1ω does not vanish on the initial data surface I1 × I2. This
is the obstacle to constructing locally inertial frames for n ≥ 3 in the next
section.

For the induction assumption, let ωǫ(x1, ..., xm−1, 0, ..., 0) be the 1-form
in C∞(I1 × ...× Im−1) which generalizes the construction in Steps (i) - (ii)
as follows: We assume the parallel transport condition,

∇ǫ
kω

ǫ(x1, ..., xk, 0, ..., 0) = 0, ∀k ≤ m− 1, (7.22)

and we assume the Lipschitz norm of ωǫ to be bounded uniformly in ǫ

analogously to (7.20). That is, for each l ≤ m− 1 we assume
∥

∥ωǫ
∥

∥

L∞(Ωl)
≤ K0,

where again K0 denotes a constant K0 depending on Γ̂, independent of ǫ,
and we assume that

|ωǫ
k;j |(x

1, ..., xm−1, 0, ..., 0) ≤ K0

m−1
∑

l=1

∣

∣

∣

∣

∣

∫ xl

0

∣

∣ (Rǫ)
σ

klj ω
ǫ
σ

∣

∣(x1, ..., xl−1, t, 0, ..., 0) dt

∣

∣

∣

∣

∣

.

(7.23)

Note that (7.23) together with the curvature bound from Lemma 7.1 imply
the ǫ-independent bound

‖ωǫ‖C0,1(Ωm−1) ≤ K0,

where Ωl ≡ I1 × ...× Il × {0} × ...× {0} for l = 1, ..., n and

‖ωǫ‖C0,1(Ωl) ≡
∥

∥ωǫ
∥

∥

L∞(Ωl)
+

m−1
∑

l=1

∥

∥∂lω
ǫ
∥

∥

L∞(Ωl)
.
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The induction step now is to prove that there exists a 1-form ωǫ ∈
C∞(Ωm) which agrees with ωǫ when xm = 0 and satisfies the Lipschitz
bound (7.23) on Ωm for some constant K0 > 0 independent of ǫ, such that
for each k ≤ m the parallel transport condition (7.22) holds. (For ease, we
assume that Il = (−1, 1) for each l = 1, ..., n.) As in Step (ii), we extend ωǫ

from Ωm−1 to Ωm by solving the ODE for parallel transport in xm-direction,

∇ǫ
mω̂

ǫ(x1..., xm, 0, ..., 0) = 0 (7.24)

for fixed x1, ..., xm−1 and with initial data

ω̂ǫ(x1, ..., xm−1, 0, ..., 0) = ωǫ(x1, ..., xm−1, 0, ..., 0).

We denote the solution of (7.24) again by ωǫ ≡ ω̂ǫ. Analogous to Step (ii),
ωǫ ∈ C∞(Ωm) and the parallel condition (7.22) is satisfied by construction
for each k ≤ m. Moreover, the Grönwall inequality implies that ωǫ is sup-
norm bounded over Ωm and by (7.2) this bound is independent of ǫ. The
ǫ-independent bound on ‖∂mω

ǫ‖L∞(Ωm) now follows from (7.24).
It remains to prove ǫ-independent bounds on ‖∂jω

ǫ‖L∞(Ωm) for each j < m

to prove the Lipschitz bound analogous to (7.23) on Ωm. For this we prove
the following Lemma.

Lemma 7.4. The 1-forms solving (7.24) satisfy

|ωǫ
k;j|(x

1, ..., xm, 0, ..., 0) ≤ K0

m
∑

l=1

∣

∣

∣

∣

∣

∫ xl

0

∣

∣(Rǫ)
σ
klj ω

ǫ
σ

∣

∣(x1, ..., xl−1, t, 0, ..., 0) dt

∣

∣

∣

∣

∣

,

(7.25)

for some constant K0 > 0 depending only on Γ̂, independent of ǫ.

Proof. We proceed similarly to Step (iii) and use the definition of the cur-
vature tensor to write for each j < m

∇ǫ
m∇ǫ

jω
ǫ
k = ∇ǫ

j∇
ǫ
mω

ǫ
k + (Rǫ)

σ
kmjω

ǫ
σ. (7.26)

Computing the components of the covariant derivatives in (7.26) in terms of
their connection coefficients, using that ωǫ

j;m = 0 for all j = 1, .., n, we find
that

∇ǫ
j∇

ǫ
mω

ǫ
k = ∂j [ω

ǫ
k;m]− (Γ̂ǫ)

σ
jk[ω

ǫ
σ;m]− (Γ̂ǫ)

σ
jm[ωǫ

k;σ] = −(Γ̂ǫ)
σ
jm[ωǫ

k;σ]

and

∇ǫ
m∇ǫ

jω
ǫ
k = ∂m[ωǫ

k;j]− (Γ̂ǫ)
σ
mk[ω

ǫ
σ;j ]− (Γ̂ǫ)

σ
mj [ω

ǫ
k;σ].

Substituting the previous two identities into (7.26), we find that (7.26) is
equivalent to the system of ODE’s

∂m[ωǫ
k;j]− (Γ̂ǫ)

σ
mk[ω

ǫ
σ;j ]− (Rǫ)

σ
kmjω

ǫ
σ = 0. (7.27)

Applying the Grönwall inequality to the ODE (7.27) leads to the estimate

|ωǫ
k;j|(x

1, ..., xm, 0, ..., 0) ≤ K0

∫ xm

0
|(Rǫ)

σ
kmjω

ǫ
σ|(x

1, ..., xm−1, t, 0, ..., 0)dt

+|ωǫ
k;j|(x

1, ..., xm−1, 0, ..., 0), (7.28)
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where K0 > 0 is independent of ǫ because of (7.2).6 Using the induction
assumption (7.23) to replace the initial data term |ωǫ

k;j|(x
1, ..., xm−1, 0, ..., 0)

on the right hand side of (7.28) gives us the sought after estimate (7.25). �

The ǫ-independent Lipschitz bound for ωǫ on x(U) = I1 × ... × In now

follows directly from (7.25). Namely, ‖(Rǫ)
σ
kmjω

ǫ
σ‖L∞ ≤ K0‖Γ̂‖

2
L∞ according

to Lemma 7.1 and the boundedness of ‖ωǫ
σ‖L∞ derived above. We conclude

∥

∥wǫ
∥

∥

C0,1(x(U))
≡

∥

∥wǫ
∥

∥

L∞(x(U))
+

n
∑

j=1

∥

∥

∥

∥

∂wǫ

∂xj

∥

∥

∥

∥

L∞(x(U))

≤ K0, (7.29)

for some positive constant K0 depending only on Γ̂, independent of ǫ. This
completes the induction step and proves that the 1-forms ωǫ(x1, ..., xn) are
Lipschitz continuous, uniformly in ǫ. This completes Step (iv).

To summarize, in Steps (i) - (iv) we constructed n families of smooth
1-forms (wǫ)

α
i dx

i, (with α = 1, ..., n), such that each component satisfies
the uniform Lipschitz bound (7.29). Thus, for each α = 1, ..., n, the Arzela-
Ascoli Theorem yields a subsequence of the 1-forms (wǫ)

α
i dx

i that converges
uniformly to a Lipschitz continuous 1-form (wǫ)

α
i −→ ωα

i as ǫ → 0. Since
for each α = 1, ..., n the initial data in Step (i) was chosen such that each
1-form (wǫ)

α
i dx

i agrees with the unit co-vector eαkdx
k = dxα at the point

(x̄1, ..., x̄n) = (0, ..., 0) for any ǫ > 0, the limit 1-form ωα
i dx

i is identical
to dxα at (x̄1, ..., x̄n) as well. Thus, the 1-forms (wǫ)

α
i dx

i are linearly in-
dependent and linear independence throughout x(U) now follows from the
uniqueness of solutions of ODE’s, c.f. (7.8).

To complete the proof of Proposition 6.1, it remains to prove that the
limit 1-forms are parallel in every direction with respect to Γ̂ in the L1

sense of (6.1). For this, integrate the ODE estimate (7.25) for m = n over
x(U) = I1 × ...× In ≡ Ωn, to get

‖ωǫ
k;j‖L1(x(U)) ≤ K0

n
∑

l=1

∥

∥(Rǫ)
σ
klj‖L1(Ωl)‖ω

ǫ
σ

∥

∥

L∞(Ωn)
(7.30)

where Ωl ≡ I1 × ... × Il × {0} × ... × {0} ⊂ x(U) for l = 1, ..., n and
K0 > 0 a universal constant independent of ǫ. Since ωǫ is bounded in
L∞(Ωn) independent of ǫ, the L1-peeling property of the curvature (7.6)
now implies that the right hand side of (7.30) converges to zero for some
subsequence ǫk → 0. Thus each of the 1-forms ωα is parallel in L1(x(U)) in
every direction, as claimed in (6.1). This completes the proof of Proposition
6.1. �

6The difference between the Grönwall estimate in (7.28) and the one in Step (iii) is
the presence of the second term on the right hand side which is due to the initial data ωǫ

being not parallel for ǫ > 0 and j ≥ 2.
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8. A Construction of Locally Inertial Frames

We begin by giving the definition of locally inertial coordinates for L∞

connections in n-dimensions:

Definition 8.1. Let Γ be an L∞ connection. We say a coordinate system
y is locally inertial for Γ at p if the components satisfy

∣

∣

∣
Γα
βγ(y)

∣

∣

∣
≤ K|y − y(p)| a.e., (8.1)

for some constant K independent of y. We say Γ is locally inertial at p if
there exists a locally inertial coordinate system at p.

Condition (8.1) is equivalent to the existence of an L∞ representation of
the components Γα

βγ(y) such that (8.1) holds in the pointwise everywhere

sense, and Γα
βγ(y(p)) = 0. In this section we use the coordinate construc-

tion of Section 7 to prove that locally inertial coordinates exist for L∞

connections in 2-dimensional manifolds when the Riemann curvature tensor
of the connection is assumed bounded in L∞. Building on this construc-
tion in 2-dimensions, we prove that locally inertial frames always exist in
4-dimensional spherically symmetric spacetimes with Lipschitz continuous
metric. Thus in particular, it is sufficient to apply to the GR shock wave
solutions generated by the Glimm method, [8]. Interestingly, this argument
does not extend to three or more dimensions essentially because the induc-
tion step in (iv) of the proof of Proposition 6.1 at n > 2 differs from the
n = 2 step by boundary terms arising from the Gronwall estimate (7.28),
and these terms would not vanish in the zero mollification limit when the
analogue of the peeling property was used for nonzero curvature. To con-
struct locally inertial coordinates in 2-dimensional spacetimes, we construct
1-forms as in Steps (i) and (ii) of Proposition 6.1, (the case Riem(Γ) = 0),
and define coordinates yα by integrating over these 1-forms. These 1-forms
are not in general parallel, but as a consequence of the L∞ curvature bound,
we prove the 1-forms are parallel within error of order O(|x|) when curva-
ture is non-zero. This then implies that the connection is order O(|y|) in
coordinates yα, the condition that yα be locally inertial. Theorem 3.4 of the
introduction follows from Proposition 8.2 and 3.4 of this section.

8.1. Locally Inertial Frames in 2-Dimensions. The goal of this section
is to prove the following theorem:

Proposition 8.2. Assume M is a two dimensional manifold endowed with
a symmetric L∞-connection with Riemann curvature tensor bounded in L∞,
and let p ∈ M. Then there exists locally inertial coordinates at p within the
C1,1 atlas.

To prove Proposition 8.2, assume n = 2 in the constructions of Steps (i)
and (iii) of Proposition 6.1. Then for each α = 1, 2, we have a subsequence
of the family of 1-forms (ωǫ)

α which converges to a Lipschitz continuous
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1-form ωα as ǫ → 0. By (7.9), each ωα is parallel in x2-direction in the L1

sense

‖∇2w
α‖L1 = 0. (8.2)

However, in contrast to Section 7, we cannot expect ωα to be parallel in
x1-direction when Riem(Γ) 6= 0. However, as a result of the L∞ curvature
bound, the ωα are approximately parallel in the sense of the following lemma.

Lemma 8.3. The 1-forms ωα, obtained from the zero-mollification limit of
(7.9), satisfy

∣

∣

∣

∂ωα
j

∂xi
− Γk

ijω
α
k

∣

∣

∣
(x1, x2) ≤ K0

(

|x1|+ |x2|
)

≡ O(x) (8.3)

almost everywhere, where K0 > 0 is some constant depending only on ‖Γ‖L∞

and ‖Riem(Γ)‖L∞ .

Proof. Equation (8.2) immediately implies (8.3) for i = 2 because the right
hand side of(8.2) vanishes when i = 2. It remains only to verify (8.3)
for i = 1. For the case i = 1, observe that the computation (7.14) - (7.17)
of Step (iii) in Section 7, again gives that the ODE (7.9) implies

∂uk

∂x2
= (Γǫ)

σ
2kuσ + (Rǫ)

σ
k12(ωǫ)

α
σ (8.4)

for uk ≡ ∇1(ωǫ)
α
k and where (Rǫ)

σ
kij denotes the components of Riem(Γǫ).

Applying the Grönwall inequality to (8.4) and the fact that ∇1ω
α
k (x

1, 0) = 0
by (7.7), we obtain

|∇1(ωǫ)
α
k |(x

1, x2) ≤ K0

∫ x2

0
|(Rǫ)

σ
k12(ωǫ)

α
σ |(x

1, t)dt, (8.5)

where here K0 > 0 always denotes a generic constant depending on ‖Γ‖L∞

and ‖Riem(Γ)‖L∞ , but independent of ǫ. Using that (7.9) implies ‖ωα
σ‖L∞ <

K0‖Γ‖L∞ together with the curvature bound (7.3), we obtain from (8.5) the
further estimate

|∇1(ωǫ)
α
k |(x

1, x2) ≤ K0‖Γ‖L∞ max
σ=1,2

∥

∥Rσ
k12

∥

∥

L∞

∣

∣x2
∣

∣ ≡ K0

∣

∣x2
∣

∣. (8.6)

Now Γǫ converges in L1(x(U)) as ǫ → 0, so there exists a subsequence
converging pointwise almost everywhere. From this pointwise convergence
and the fact that ∂

∂x1 (ωǫ)
α converges in L∞(x(U)), we conclude that

|∇1ω
α
k |(x

1, x2) ≤ K0

∣

∣x2
∣

∣ a.e., (8.7)

which is the sought after error estimate (8.3) for i = 1. �

To prove Proposition 8.2, we define for each α = 1, 2 the coordinates yα

on x(U) by

yα(x1, x2) ≡

∫ x1

0
ωα
1 (s, x

2)ds+

∫ x2

0
ωα
2 (0, s)ds, (8.8)
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and complete the proof by showing yα are locally inertial at p. By the
definition of yα we have

∂yα

∂x1
= ωα

1 and
∂

∂xj
∂yα

∂x1
=
∂ωα

1

∂xj
, (8.9)

which, for i = 1, is the identity that leads to the cancellation in (6.8).
However, we cannot obtain these identities for the x2-derivative because the
1-forms ωα are no longer parallel in the x1-direction. The following approx-
imate identities are sufficient for the existence of locally inertial frames.

Lemma 8.4. The coordinates yα defined in (8.8) satisfy for i, j = 1, 2
∣

∣

∣

∣

∂yα

∂xi
− wα

i

∣

∣

∣

∣

(x1, x2) ≤ K0

(

|x1|+ |x2|
)

, (8.10)

∣

∣

∣

∣

∂2yα

∂xj∂xi
−
∂ωα

i

∂xj

∣

∣

∣

∣

(x1, x2) ≤ K0

(

|x1|+ |x2|
)

a.e., (8.11)

where K0 > 0 is some constant depending only on ‖Γ‖L∞ and ‖Riem(Γ)‖L∞ .

Proof. The case i = 1 follows directly from (8.9). For the case i = 2,
differentiate (8.8) in the x2 direction to get

∂yα

∂x2
(x1, x2) =

∫ x1

0

∂ωα
1

∂x2
(s, x2)ds+ ωα

2 (0, x
2).

Using that
∂(ωǫ)α1
∂x2 converges to

∂ωα
1

∂x2 in L1(x(U)) as ǫ → 0, the dominated
convergence theorem implies that

∂yα

∂x2
(x1, x2) = lim

ǫ→0

∫ x1

0

∂(ωǫ)
α
1

∂x2
(s, x2)ds + ωα

2 (0, x
2), (8.12)

with ǫ convergence in L1(x(U)). Substituting

∂(ωǫ)
α
1

∂x2
=
∂(ωǫ)

α
2

∂x1
+

(

∂(ωǫ)
α
1

∂x2
−
∂(ωǫ)

α
2

∂x1

)

into (8.12) gives
(

∂yα

∂x2
− ωα

2

)

(x1, x2) = lim
ǫ→0

∫ x1

0

(

∂(ωǫ)
α
1

∂x2
−
∂(ωǫ)

α
2

∂x1

)

(s, x2)ds

with convergence pointwise almost everywhere. Now, using that (ωǫ)
α is

parallel in the x2-direction,
∂(ωǫ)α1
∂x2 = Γσ

12(ωǫ)
α
σ , we have

(

∂(ωǫ)
α
1

∂x2
−
∂(ωǫ)

α
2

∂x1

)

= −∇1(ωǫ)
α
2 ,

which leads to
(

∂yα

∂x2
− ωα

2

)

(x1, x2) = − lim
ǫ→0

∫ x1

0
∇1(ωǫ)

α
2 (s, x

2) ds. (8.13)
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The Grönwall estimate (8.6) now implies
∣

∣

∣

∣

∂yα

∂x2
− ωα

2

∣

∣

∣

∣

(x1, x2) ≤ K0

∫ x1

0
|x2|ds a.e.

which implies the sought after Lipschitz estimate (8.10).
We now prove (8.11). By the dominated convergence theorem, we con-

clude that (8.13) implies
(

∂yα

∂x2
− ωα

2

)

(x1, x2) = −

∫ x1

0
∇1ω

α
2 (s, x

2) ds. (8.14)

Differentiating (8.14) in x1-direction gives us
(

∂2yα

∂x1∂x2
−
∂ωα

2

∂x1

)

(x1, x2) = −∇1ω
α
2 (x

1, x2), (8.15)

and taking the absolute value, the Grönwall estimate (8.7) gives
∣

∣

∣

∣

∂2yα

∂x1∂x2
−
∂ωα

2

∂x1

∣

∣

∣

∣

(x1, x2) ≤ K0

∣

∣x2
∣

∣ = O(|x|),

which is the sought after almost everywhere estimate (8.11) for j = 1 and
i = 2.

It remains to prove (8.11) for i = j = 2. For this, differentiate (8.13) in
the x2 direction to obtain

(

∂2yα

∂x2∂x2
−
∂ωα

2

∂x2

)

(x1, x2) = −
∂

∂x2
lim
ǫ→0

∫ x1

0
∇1(ωǫ)

α
2 (s, x

2) ds.

Note that taking ∂
∂x2 as a derivative in the weak sense, we can exchange

limǫ→0 and ∂
∂x2 by the L1 convergence of the integrand. Thus by (8.4),

∫ x1

0

∂

∂x2
∇1(ωǫ)

α
2 (s, x

2) ds =

∫ x1

0

(

(Γǫ)
σ
2k∇1(ωǫ)

α
σ + (Rǫ)

σ
k12(ωǫ)

α
σ

)

(s, x2) ds,

(8.16)
which converges uniformly in x2 as ǫ → 0, because the right hand side is
continuous in x2 and bounded in light of the Grönwall estimate (8.6). In
light of the Groenwall estimate (8.6), the integrand on the right hand side
of (8.16) is in L∞, we conclude that

∣

∣

∣

∣

∂2yα

∂x2∂x2
−
∂ωα

2

∂x2

∣

∣

∣

∣

(x1, x2) ≤ K0 |x1|, (8.17)

which implies the sought after bound (8.11) for i = j = 2. �

Proof of Proposition 8.2: We show that yα defined in (8.8) are locally inertial
at p. For this, consider the transformation law for connections

Γk
ij

∂yα

∂xk
=

∂2yα

∂xi∂xj
+ Γα

βγ

∂yβ

∂xi
∂yγ

∂xj
. (8.18)
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Combining (8.3) and (8.11), we obtain

∂2yα

∂xi∂xj
= Γk

ijω
α
k +O(|x|).

Substituting the previous equation into (8.18) and using that wα
k = ∂yα

∂xk +

O(|x|) by (8.10), the Christoffel symbols Γk
ij cancel on both sides and we get

Γα
βγ

∂yβ

∂xi
∂yγ

∂xj
= O(|x|).

We then conclude with the sought after estimate (8.2), using that O(|x|) =

O(|y|) and that the Jacobians ∂yβ

∂xi are invertible. This completes the proof
of Proposition 8.2. �

Finally, it is interesting to point out what goes wrong in the pursuit of
the above construction for locally inertial frames in 3-dimensions. Essen-
tially, the analog of (8.11) does not hold in 3-dimensions. That is, defining
coordinates in analogy to (8.8) leads to

yα(x1, x2, x3) ≡

∫ x1

0
ωα
1 (s, x

2, x3)ds+

∫ x2

0
ωα
2 (0, s, x

3)ds+

∫ x3

0
ωα
3 (0, 0, s)ds,

(8.19)
and the analog of (8.9) again holds. However, since ∇2(ωǫ)

α
1 (x

1, x2, x3) is
not zero when x3 6= 0, we get in (8.13) an additional error function bounded
in L∞ which is O(x3), but whose derivative is not O(x). That is, we obtain

(

∂yα

∂x2
− ωα

2

)

(x1, x2) = − lim
ǫ→0

∫ x1

0
∇1(ωǫ)

α
2 (s, x

2) ds +

∫ x1

0
O(x3) ds.

(8.20)
Thus, differentiating (8.20) in x2 direction in order to mimic the step leading

to equation (8.16) above, the derivative falls on the term
∫ x1

0 O(x3)ds, the
derivative of an L∞ function, which does not in general produce an error
O(x).

8.2. Proof of Theorem 3.4. AssumeM is a spherically symmetric Lorentz
manifold, by which we mean that coordinates exist in which the metric ten-
sor takes the form

ds2 = −A(x1, x2)
(

dx1
)2
+2E(x1, x2)dx1dx2+B(x1, x2)

(

dx2
)2
+C(x1, x2)dΩ2,

(8.21)
where the components A,B,C and E are assumed to be Lipschitz continu-
ous functions, −(AB + E2) < 0 and C > 0. Here dΩ2 ≡ dφ2 + sin(φ)2dθ2

is the line element on the unit sphere, x3 = φ ∈ (0, π), x4 = θ ∈ (−π, π),
and we assume without loss of generality that (x1, x2) are centered at (0, 0),
with (x1, x2) ∈ (−1, 1) × (−1, 1) ≡ Ω2. (General spherically symmetric
Lorentz metrics can generically be transformed to coordinates where the
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metric takes the form (8.21), [22].) Assume further that the metric con-
nection Γk

ij and Riemann curvature tensor Rk
lij are bounded in L∞ in co-

ordinates (x1, x2, φ, θ). To prove Theorem 3.4, it suffices to prove that the
metric (8.21) admits locally inertial coordinates at each point p ∈ Ω2 within
the atlas of C1,1 coordinate transformations, in the sense of Definition 8.1.
To this end, we now extend the constructions in Section 8.1 to spherically
symmetric spacetimes. We start with the following lemma:

Lemma 8.5. Assume the metric (8.21) is Lipschitz continuous. If the
Einstein tensor of the metric (8.21) is bounded in L∞, then C(x1, x2) ∈
C1,1(Ω2).

Proof. An explicit computation of the first three contravariant components
of the Einstein tensor G11, G12 and G22, yields

∂2C

∂x2∂x2
= κC|g|G11 + l.o.t.,

∂2C

∂x1∂x2
= −κC|g|G12 + l.o.t.,

∂2C

∂x1∂x1
= κC|g|G22 + l.o.t., (8.22)

where |g| ≡ −AB−E2 and l.o.t. denotes terms containing only zero and first
order metric derivatives, (c.f. MAPLE). From this we can read off the regu-
larity of C. Namely, when Gµν ∈ L∞ and the metric is Lipschitz continuous
metric, the right hand side of (8.22) is in L∞. Thus we conclude that second
order weak derivatives of C are in L∞, which is equivalent to C ∈ C1,1,
(c.f. [7]). �

In the proof of the theorem to follow, it is interesting to observe that our
assumption that the curvature tensor is bounded in L∞ comes in at two dif-
ferent points in the argument to imply the existence of locally inertial frames
for (8.21) when the connection is only in L∞. First, we apply Proposition
8.2 to the 2-dimensional metric

ds2 = −A(x1, x2)
(

dx1
)2

+ 2E(x1, x2)dx1dx2 +B(x1, x2)
(

dx2
)2

to obtain coordinates yα in which the connection is Lipschitz continuous at
the center point p = (0, 0), but only for indices running from 1 to 2. An ex-
plicit computation then shows that the remaining components involving the
angular indices are in fact Lipschitz continuous, one degree smoother than
L∞, because C is the only differentiated metric component in these connec-
tion components, and C is one degree more regular than A,B and E, by
Lemma 8.5. This extra degree of regularity in C is crucial because it ensures
that the connection coefficients not addressed by our 2-dimensional method,
must be Lipschitz continuous, as a second consequence of our assumption
that the curvature tensor is bounded in L∞. The resulting Lipschitz con-
tinuity of Γ at p in y-coordinates allows us to introduce a further smooth
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coordinate transformation, quadratic in y, which breaks the spherical sym-
metry, and sets the value of the connection to zero at the center point p,
while preserving the established Lipschitz continuity at p in y-coordinates.

Proof of Theorem 3.4: For α = 1, 2, we introduce the two 1-forms

ωα = ωα
1 dx

1 + ωα
2 dx

2

as solutions of ∇2ω
α = 0 with variables (x1, x2) assuming (x3, x4) = (φ0, θ0)

fixed in (0, π) × (−π, π). That is, ω1 and ω2 are solutions of

∂ωα
j

∂x2
(x1, x2)− Γk

2jω
α
k (x

1, x2) = 0, (8.23)

for initial data ωα
j (x

1, 0, φ0, θ0) at x2 = 0 with ∇1ω
α
j (x

1, 0, φ0, θ0) = 0 for

j = 1, 2, c.f. (7.9). Since the angular dependence is kept fixed in (8.23),
estimate (8.3) of Lemma 8.3 holds again for both ωα, that is,

∂ωα
j

∂xi
= Γk

ij

∣

∣

(φ0,θ0)
ωα
k +O(|x1|+ |x2|), (8.24)

for α = 1, 2, where Γk
ij

∣

∣

(φ0,θ0)
denotes Γk

ij evaluated at fixed (φ, θ) = (φ0, θ0).

Similar to (8.8), we define the function yα for α = 1, 2 as

yα(x1, x2, φ, θ) ≡

∫ x1

0
ωα
1 (s, x

2, φ0, θ0)ds+

∫ x2

0
ωα
2 (0, s, φ0, θ0)ds, (8.25)

(the right hand side evaluated at fixed values of the angular variables), and
set y3 = φ, y4 = θ. Thus estimates (8.10) and (8.11) hold,

∂yα

∂xk
= wα

k +O(|x1|+ |x2|),

∂2yα

∂xi∂xj
=

∂ωα
j

∂xi
+O(|x1|+ |x2|), (8.26)

for i, j, k = 1, 2 and α = 1, 2, and where the right hand side is evaluated at
the fixed angular values (φ0, θ0). Combining estimates (8.24) and (8.26), we
obtain for α = 1, 2

∂2yα

∂xi∂xj
= Γk

ij

∣

∣

(φ0,θ0)

∂yα

∂xk
+O(|x1|+ |x2|), i, j = 1, 2. (8.27)

To complete the proof, consider again the transformation

∂yα

∂xk
Γk
ij =

∂2yα

∂xi∂xj
+ Γα

βγ

∂yβ

∂xi
∂yγ

∂xj
. (8.28)

Substituting (8.27) we obtain

Γα
βγ

∂yβ

∂xi
∂yγ

∂xj
=

(

Γk
ij − Γk

ij

∣

∣

(φ0,θ0)

)∂yα

∂xk
+O(|x1|+ |x2|). (8.29)

Using now that the metric and its inverse are smooth in φ and θ, we can
Taylor expand Γk

ij around (φ0, θ0) to obtain

Γk
ij − Γk

ij

∣

∣

(φ0,θ0)
= O(|φ− φ0|+ |θ − θ0|)
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for i, j = 1, 2. Thus, since the Jacobian ∂yα

∂xk is invertible and since ∂yα

∂xk = 0
for α = 1, 2 and k = 3, 4, we can write (8.29) as

Γα
βγ = O(|x1|+ |x2|+ |φ− φ0|+ |θ − θ0|)

= O(|y1|+ |y2|+ |φ− φ0|+ |θ − θ0|), α, β, γ = 1, 2. (8.30)

Keeping in mind that y1(0, 0) = 0 = y2(0, 0) and that y3 = φ and y4 = θ,
this is the desired Lipschitz estimate for α, β, γ = 1, 2.

We now derive a Lipschitz estimate of the form (8.30) for the cases when
α, β or γ 6= 1, 2. The transformation to the coordinates yα defined in (8.25),
preserves the spherically symmetric form of the metric representation (8.21).
We denote the metric in coordinates yα by

ds2 = −A(y1, y2)(dy1)2+2E(y1, y2)dy1dy2+B(y1, y2)(dy2)2+C(y1, y2)dΩ2

(8.31)
for Lipschitz continuous metric components A,B,C,E, generally different
from the components in (8.21). Computing the Christoffel symbols of (8.31),
we find that the non-zero connection coefficient not subject to the Lipschitz
estimate (8.30) are given by

Γ1
33 =

BĊ − EC ′

2(AB + E2)
, Γ1

44 = (sinφ)2Γ1
33,

Γ2
33 =

−EĊ −AC ′

2(AB + E2)
, Γ2

44 = (sinφ)2Γ2
33,

Γ3
13 =

Ċ

2C
, Γ3

23 =
C ′

2C
, Γ3

44 = − sinφ cosφ,

Γ4
14 =

Ċ

2C
, Γ4

24 =
C ′

2C
, Γ3

44 =
cosφ

sinφ
, (8.32)

where Ċ ≡ ∂C
∂y1

and C ′ ≡ ∂C
∂y2

. Observe that we only differentiate C in the

above coefficient components but we never differentiate A, B or E. Since
C is C1,1 regular by Lemma 8.5, it follows that the components in (8.32)
are Lipschitz continuous (as long that φ 6= 0). Combining this with the
Lipschitz estimate (8.30), we conclude that Γα

βγ is Lipschitz continuous at p
in coordinate yα.

The Christoffel symbols in (8.32) are generally non-zero since Ċ and C ′

are non-zero. Since a non-singular coordinate transformation preserving the
metric form (8.21) cannot map Ċ and C ′ to zero, we need a transforma-
tion that breaks the form (8.21). To complete the proof, we now introduce
a coordinate transformation which preserves the Lipschitz continuity at p
and maps the Christoffel symbols to zero at the point p. Without loss of
generality, we assume that y(p) = (0, 0, φ0, 0) for some φ0 ∈ (0, π). Since
the Christoffel symbols in coordinates yα are Lipschitz continuous at p (and
hence defined at p), we can introduce (for µ = 1, ..., 4) the smooth coordinate
transformation

zµ(y) ≡
1

2
δµαΓ

α
βγ

∣

∣

p
yβyγ + δµα y

α + cβ y
β + c (8.33)
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where δµα denotes the Kronecker symbol and the constants cµ and the con-
stant coefficients cµβ are defined by

cµ ≡ −
1

2
δµαΓ

α
33

∣

∣

p
φ 2
0 − δ

µ
3φ0 and c

µ
β ≡ −

1

2
δµαΓ

α
β3

∣

∣

p
φ0.

By our definition of cµ and cµβ, it follows from (8.33) that

z(p) = 0 and
∂zµ

∂yα

∣

∣

∣

p
= δµα. (8.34)

Moreover, (8.33) implies that

∂2zµ

∂yβ∂yγ

∣

∣

∣

p
= δµαΓ

α
βγ

∣

∣

p
. (8.35)

From the transformation law of connections together with (8.34) and (8.35),
we find that the Christoffel symbols in coordinates zµ vanish at p. Namely,
(8.34) and (8.35) imply that the transformation law (8.28) evaluated at p is
given by

∂zσ

∂yα
Γα
βγ =

∂2zσ

∂yβ∂yγ
+ Γk

µν

∂zµ

∂yβ
∂zν

∂yγ
= δσαΓ

α
βγ + Γσ

µνδ
µ
βδ

ν
γ ,

which implies that the Christoffel symbol in coordinates zµ satisfies Γσ
µν

∣

∣

∣

p
=

0, for all σ, µ, ν ∈ {1, ..., 4}. Clearly, since the transformation is smooth, it
preserves the Lipschitz continuity of Γ at p. Denoting the coordinates zj by
yα, we proved the sought after Lipschitz estimate (8.1). This completes the
proof of Theorem 3.4. �

9. Conclusion

We prove that the question whether there exists a C1,1 coordinate trans-
formation which smooths an L∞ symmetric connection Γ to C0,1 in some
neighborhood is equivalent to the existence of a Lipschitz continuous (1, 2)-

tensor Γ̃ such that Γ− Γ̃ is Riemann-flat in that neighborhood. Somewhat
surprisingly, the coordinate construction in the proof of Proposition 3.3 can
be modified to give locally inertial frames for Lipschitz metrics, and this
applies to solutions of the Einstein-Euler equations generated by the Glimm
scheme, [8], but only in spherically symmetric spacetimes. The C1,1 regu-
larity issue regarding whether the metric can be smoothed to C1,1, remains
open, even in spherical symmetry. In summary, the space of L∞ connec-
tions with L∞ curvature tensors provides a consistent general framework for
shock wave theory in General Relativity, and the problem whether weak reg-
ularity singularities exist in spherically symmetric spacetimes, or whether
weak or strong regularity singularities exist at points of more complicated
shock wave interaction, remains an open problem for which the results here
provide a new geometric perspective.
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