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The 1999 observations of redshift vs luminosity 
for type 1A supernovae in nearby galaxies won 
the Nobel Prize because they discovered the 	

!

Anomalous Acceleration:	

!

The universe is expanding faster than the 
Standard Model of Cosmology (SM), 	

based on Einstein's original theory of 	


General Relativity, allows. 



The only way to preserve the 
Cosmological Principle- 	


that on the largest length scale the 
universe is described by a 	


Friedmann Space-Time 	

which holds no special place- 	


is to add the 	

Cosmological Constant 	


to Einstein's equations as a source term. 
Its interpretation is 

Dark Energy. 



A best fit among 	

Friedmann Space-Times	


 with 	

Dark Energy 	


leads to the conclusion that	

 the universe is a critical 	


k=0 Friedmann Space-Time 	

with 	


Seventy Percent Dark Energy 

⌦⇤ ⇡ .7



Our Wave Model:
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H0d` = z + .425 z2 � .1804 z3 + O(z4)

H0d` = z + .25 z2 � .125 z3 + O(z4)Standard 	

Model

Dark 	

Energy

H0d` = z + .425z2 + .3591z3 Wave	

Model

The Anomalous Acceleration



We proposed the idea that a 	

Simple Wave 	


from the 	

Radiation Epoch of the Big Bang 	


might account for the Anomalous 
Acceleration of the Galaxies 	


Without Dark Energy

2007 PI talk in Relativity Session at	

AMS National Meeting 	


in New Orleans:



The Radiation Epoch: 	

After Inflation 	


until about 	

30,000 years after the Big Bang	


is evolution by  	

Relativistic Compressible Euler Equations

The p-system with p = c2

3 ⇢

Our Motivation



PURE RADIATION

Every characteristic field contributes to 
Decay in the sense of Glimm and Lax

Stefan-Bolzman Law:

p = c2

3 ⇢

⇢ = aT 4
(No Contact

Discontinuities)

The p-system with:

Enormous sound speed � ⇡ .57c

Enormous modulus of Genuine Nonlinearity



It is reasonable to expect 	

fluctuations 	


would decay to 	

simple wave patterns 	


by the 	

End of Radiation

This is our Starting Assumption



Pure Radiation
10�30 to 3� 105 yrs

p = c2

3 �

Big	

!

!

 Bang

Uncoupling of
Matter and Radiation

t ⇥ 3� 105

p � 0

(Neglect
Radiation
Pressure)

Stages of the Standard Model:

Time of CMB	

379,000 yr

Inflation

10�35s

10�30s

to

(Relativistic p-system)



It is reasonable to expect 	

near the center of a time asymptotic 
perturbation the simple wave should 

solve an ODE 	

by the 	


End of Radiation

This is our Starting Assumption



…we discovered that there is only 	

ONE WAY 	


the Einstein equations can both 	

perturb the Friedmann spacetimes	


 and also 	

reduce to ODE’s…

Pursuing this Idea…



…we identified a 	

1-parameter family of Self-Similar Waves 	


that perturb the Standard Model 	

during the Radiation Epoch- 	


And proposed that these might induce an 	

Anomalous Acceleration at a later time.

We set out our ideas in 	

PNAS in 2009	


and 	

 Memoirs of the AMS in 2011

Pursuing this Idea…



Our interest is in the possible 
connection  between	

 these waves and the 	


Anomalous Acceleration.

  Commun Math Phys., 21, 1-40 (1971)
Cahill and Taub:

  Physical Review D,  62, 044023-1-25 (1999)

Extended by others,  esp.  Carr and Coley,  Survey:

In Fact:    This family of self-similar solutions was 
already known to exist



Around 2007:	

 Other research groups began exploring 

the possibility that the anomalous 
acceleration might be due to the earth 

lying near the center of a large region of 
Under-Density

We first saw publication in 2009



  	

!

No one before us 	

proposed this family of waves 	


as a	

mechanism 	


that could account for the 	

Anomalous Acceleration 	


without Dark Energy

The record is clear on one thing: 



We have now accomplished our goal 
of bringing the effects of these waves 
up to present time to compare with 

Dark Energy.   

There are several surprises…	

in this talk I present what we 

have found…



We identify an instability in the SM based on a new 
(closed) asymptotic ansatz for local perturbations of 
the critical k=0 Friedmann Spacetime when p=0.  

The region is one order of magnitude larger in 
extent than expected.

The instability naturally creates a region of 
accelerated uniform expansion on the scale of the 
supernova data within Einstein's original theory, 
without Dark Energy.

Bullet Points to Discuss:



p =
c2

3
⇢

The instability is triggered by our time asymptotic 
perturbations of SM from the

Surprisingly—The perturbations at the end of 
radiation do not directly cause the Anomalous 
Acceleration as we originally conjectured in PNAS.

Rather—It is the non-trivial phase portrait of the 
instability they trigger when p=0 that that creates 
the later accelerations. 

Radiation Epoch when:

Bullet Points to Discuss:



A phase portrait of the instability places the SM 
at a classic… Unstable Saddle Rest Point
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The region of accelerated uniform expansion 
introduces precisely the same range of quadratic 
corrections to red-shift vs luminosity as does the 
cosmological constant in the theory of DE.  	


H0d` = z +Qz2 +O(z3)

.25  Q  .425  .5

Bullet Points to Discuss:



The results  lead naturally to a testable alternative to 
Dark Energy within Einstein's original theory…

Our Proposal:  The AA is due to a local under-dense 
perturbation of the SM on the scale of the supernova 
data,  arising from time-asymptotic perturbations of 
SM from the Radiation Epoch that trigger an 
instability in the SM when the pressure drops to zero.	


Without the Cosmological Constant. 

Bullet Points to Discuss:



A calculation shows the cubic correction is of the 
same order, but of a different sign, than the cubic 
correction in DE theory…

Wave
Theory

H0d` = z + .425 z2 � .1804 z3 + O(z4)Dark
Energy

H0d` = z + .425z2 + .3591z3

Bullet Points to Discuss:



We address ONLY the anomalous acceleration…	

further assumptions regarding space-time far from 
the center would be required to connect the theory 
with other measurements…

Bullet Points to Discuss:



INTRODUCTION	

TO	


COSMOLOGY



Edwin Hubble (1889-1953)

Hubble’s Law (1929):

``The galaxies are receding from us at a velocity 
proportional to distance’’

Universe is Expanding

Based on Redshift vs Luminosity







Conclude:  The universe 	

appears (and is assumed) 	


uniform on a scale of about 	

1/20th 	


the distance across the visible 
universe

⇠ =

r

ct
⇡ .5 billion yr

13 billion yr

⇡ .4  .5



Milky Way

Cosmic 
Length 
Scales

10 billion light-years≈ Visible Universe

500 million light-years≈ Uniform Density

50 million light-years ≈ Separation between	

clusters of galaxies

10 million light-years≈ diameter of 	

a cluster

1 million light-years separation between	

galaxies in a cluster

≈

100 thousand light-years distance across	

Milky Way

≈

28 thousand light-years ≈ distance to	

galactic center



Standard Model of Cosmology

Derived FRW solutions of the Einstein equations: 	

 3-space of constant curvature expanding in time: 

ds2 = �dt2 + R(t)2
�

dr2

1�kr2 + r2d�2
⇥

Hubble’s Constant � H � Ṙ
R

The Big Bang theory based on the FRW metric was 
worked out by                          in the late 1920’s 
leading to Hubble’s comfirmation of redshift vs 
luminoscity consistent with an FRW spacetime

George Lemaître

Alexander Friedmann   1922                                   :                              



r = 0

In 1935:   Howard Robertson and Arthur Walker 
derived Friedmann spacetime from the

Any point can be taken as

Homogeneous and Isotropic about every point

Copernican Principle: 	

  “Earth is not in a special place in the Universe”

Each t=const surface is a 3-space 
of constant scalar curvature

R-W: Friedmann uniquely determined by condition



Standard Model of Cosmology

Observations of the 	

micro-wave background	


IMPLY
k = 0

“Critical expansion to within 
about 2-percent”



The Friedmann metric 	

when k=0:

ds
2 = −dt

2 + R(t)2
{

dr
2 + r

2
dΩ2

}

The universe is infinite flat space   
at each fixed time:R3

(Assumed to Apply on the Largest Length Scale)



Standard Model of Cosmology

ds
2 = −dt

2 + R(t)2
{

dr
2 + r

2
dΩ2

}

Measures distance between galaxies 
at each fixed  t

galaxy galaxy

Conclude: Ḋ = Ṙr =
Ṙ

R
Rr = HD

Hubble’s 
Law

FRW metric,   k=0:

Ḋ = HD

D = Rr

D = R(t)r

Hubble’s Constant � H � Ṙ
R



Standard Model of Cosmology

Hubble’s Law:

Conclude--

``The universe is expanding like a balloon’’

Ḋ = HD

ds
2 = −dt

2 + R(t)2
{

dr
2 + r

2
dΩ2

}

R = 0Big Bang



The Hubble “Constant’’ at present time

The inverse Hubble Constant estimates 
the Age of the Universe

c

H0
= Hubble Length ⇡ 1010 lightyears

c

H0
is the distance of light travel since the Big Bang,	


 a measure of the size of the visible universe

1

H0
⇡ 10

10
years ⇡ age of universe



Measuring the Hubble Constant

Measures distance from Earth to distant 
galaxy at present time  

D

t0

t0
EARTH galaxy

D

Hubble’s 
LawH0D = Ḋ

t < t0

D ⇡ d` ⌘ luminosity distance

˙D ⇡ z ⌘ redshift factor =

�0 � �e

�e

H0d` = z +
1

4
z2 � 1

8
z3 +O(z4)

k = 0

Friedmann



H0d` = z +
1

4
z2 � 1

8
z3 +O(z4)

k = 0

Friedmann

Up until 1999, we could only measure	

 the leading linear term:

z << 1 H0 ⇡ h0 100
km

smpc
h0 ⇡ .68

``A galaxy at a distance of one mega-parsec is 
receding at about 68 kilometers per second…’’

mpc ⇡ 3.2 million light years



The 1999 supernova data tested the 
dependence of the Hubble constant on 

time, and the results don’t fit  	

standard model...

Dark energy is non-classical	

Negative pressure        Anti-gravity effect

“Anomalous Acceleration of Galaxies”

Introduction of 	

“Cosmological Const”  and  “Dark Energy”



H0d` = z +
1

4
z2 � 1

8
z3 +O(z4)

k = 0

Friedmann

Recent supernova data have tested the 
dependence of the Hubble constant on 

time, and the results don’t fit  	

standard model...

This is measured at	

 about .425 not .25



Recent supernova data have tested the 
dependence of the Hubble constant on 

time, and the results don’t fit  	

standard model...

This  is usually interpreted in terms 
of a Best Fit to Friedmann Universes 

with the 	

Cosmological Constant

(k,⌦⇤) k = 0, ⌦⇤ ⇡ .7



Thanks to Philip Hughs 	

UM-Astronomy

Standard Model	

k=0 FRW

Supernova Data

“Not a Good Fit”



That is:  To preserve the 	

Copernican Principle,	


that the Universe	

 on the Largest Length Scale	

 is evolving according to a 	


Uniform Friedmann Spacetime 	

with p=0, k=0 	


A Cosmological Constant 	

must be added 	


To Einstein’s Equations	

!

The Physical Interpretation is Dark Energy



Thanks to Philip Hughs 	

UM-Astronomy

Best Fit:  	

70% Dark Energy	


30% Classical Energy



Einstein Equations for Friedmann:

Einstein Equations (1915):     

Einstein Equations for k=0 Friedmann metric:     

�̇ = �3(� + p)H

Solutions determined by equation of state:     p = p(�)

Tij = (� + p)uiuj + pgij=Stress Energy Tensor (perfect fluid)

Gij = �Tij

Gij=Einstein Curvature Tensor

H2 =
�

3
⇥



Incorporating Dark Energy into Friedmann

Leads to:

Assume k = 0 FRW:

Gij = 8πTij + Λgij

Assume Einstein equations with a cosmological constant:

ds
2 = −dt

2 + R(t)2
{

dr
2 + r

2
dΩ2

}

H2 = κ

3
ρ + κ

3
Λ

1 = ΩM + ΩΛ

Implies:  The universe is 70 percent dark energy

Divide by H2 = �
3 �crit

Best data fit leads to ⌦⇤ ⇡ .7 and ⌦M ⇡ .3



More slowly…

Incorporating Dark Energy into Friedmann



Incorporating Dark Energy into Friedmann

H2 = κ

3
ρ + κ

3
Λ



Incorporating Dark Energy into Friedmann

H2 = κ

3
ρ + κ

3
Λ

Constant 	

in	


time



Incorporating Dark Energy into Friedmann

H2 = κ

3
ρ + κ

3
Λ

Decreases	

to zero as
t ! 1



H2 = 
3⇢+


3⇤

H2

Incorporating Dark Energy into Friedmann



Incorporating Dark Energy into Friedmann

1 =

3⇢

H2
+


3⇤

H2



Incorporating Dark Energy into Friedmann

1 =

3⇢

H2
+


3⇤

H2

⌦⇤



Incorporating Dark Energy into Friedmann

1 =

3⇢

H2
+


3⇤

H2

⌦M



Incorporating Dark Energy into Friedmann

1 =

3⇢

H2
+


3⇤

H2

+ ⌦⇤⌦M1=



Incorporating Dark Energy into Friedmann

1 =

3⇢

H2
+


3⇤

H2

+ ⌦⇤⌦M1=

Conclude…



Incorporating Dark Energy into Friedmann

1 =

3⇢

H2
+


3⇤

H2

⌦⇤ ⇡ 0 ! 1 as t ⇡ trad ! 1

+ ⌦⇤⌦M1=



Incorporating Dark Energy into Friedmann

1 =

3⇢

H2
+


3⇤

H2

+ ⌦⇤⌦M1=

Best Fit… ⌦⇤ ⇡ .7



m - M =  "Distance Modulus"!
!
M=absolute Magnitude!
!
m=apparent magnitude!
!
d=distance in parsecs:!
!
  m - M = 5 log(d) - 5!
!
z=redshift factor!
!
1+z =!
!

�emit
�obs

Best Fit:  	

70% Dark Energy	


30% Classical Energy

�m + �� = 1 for a
flat (k = 0) universe.



Heavy Elements:	

0.03%

Neutrinos:	

0.3%

Stars:	

0.5%

Free Hydrogen	

and Helium:	


4%

Dark Matter:	

25%

Dark Energy:	

70%

Courtesy 
of NASA

Standard Model
Composition of Universe



“Could the Anomalous Acceleration of 
the galaxies be due to the fact that we 
are looking outward into an expansion 
wave that formed during the Radiation 
Epoch of the Big Bang?”

The Question we Explore:



The Einstein equations have been confirmed	

 without the cosmological constant in	


 every setting except cosmology...

“Could the Anomalous Acceleration of 
the galaxies be due to the fact that we 
are looking outward into an expansion 
wave that formed during the Radiation 
Epoch of the Big Bang?”

The Question we Explore:



The Einstein equations have been confirmed	

 without the cosmological constant in	


 every setting except cosmology...

“Could the Anomalous Acceleration of 
the galaxies be due to the fact that we 
are looking outward into an expansion 
wave that formed during the Radiation 
Epoch of the Big Bang?”

Note:  A general expansion wave has a center of expansion...	


The Question we Explore:



 Summary	

 of our results	


for the 	

Wave Theory



   Hubbles Law :    

Hubble’s	

Constant    

   Luminosity 	

Distance    

Redshift	

Factor    

H0 = h0
100km
s mpc

h0 ⇡ .68

(1929)

Measured value:

H0 d` = z



The 1999 Supernova data was refined 
enough to measure the quadratic 

correction to 	

Hubble’s Relation:

z2??H0d` = z+

Q



Einstein’s Equations: G = T + ⇤g

Anomalous	

Acceleration

⌦⇤ = .7
Friedmann

⌦⇤ = 0
Friedmann

Cosmological

Constant 1999
⌦M + ⌦⇤ = 1

H0d` = z + .25z2 + O(z3)

H0d` = z + .425z2 + O(z3)



WE PROVE:   The Friedmann Universe is UNSTABLE

A small wave perturbation at the end of 
radiation will expand to create a large 

region of accelerated 	

uniform expansion 	


at the 	

Center of the Wave



WE PROVE:   The Friedmann Universe is UNSTABLE

This induces exactly the same range of quadratic	

 corrections to redshift vs luminosity as does 	


Dark Energy

A small wave perturbation at the end of 
radiation will expand to create a large 

region of accelerated 	

uniform expansion 	


at the 	

Center of the Wave



WE PROVE:   The Friedmann Universe is UNSTABLE

This induces exactly the same range of quadratic	

 corrections to redshift vs luminosity as does 	


Dark Energy

The self-similar perturbations we identified 
at the end of the radiation epoch	


TRIGGER	

this instability when p=0



WE PROVE:   The Friedmann Universe is UNSTABLE

This induces exactly the same range of     as 
does Dark Energy:

H0d` = z +Qz2 +O(z3)

Q

The self-similar perturbations we identified 
at the end of the radiation epoch	


TRIGGER	

this instability when p=0



In the case ⌦M = .3, ⌦⇤ = .7 this gives

H0d` = z + .425 z2 � .1804 z3 + O(z4)

H0d` = z + .25 (1 + ⌦⇤) z2 � .125
✓

1 +
2
3
⌦⇤ � ⌦2

⇤

◆
z3 + O(z4)

Dark Energy

⌦M + ⌦⇤ = 1
.25  Q  .5

0  ⌦⇤  1

as



Our Wave Theory

.25  Q  .5

as

H0d` = z + Q(z2, w0)z2 + C(z2, w0, w2)z3 + O(z4)

w0
0 = �

�
1
6z2 + 1

3w0 + w2
0

�
z0
2 = �3w0

�
4
3 + z2

�

Orbit evolves to a NEW STABLE REST POINT

H0d` = z + .425z2 + .3591z3 + O(z4)

A Wave with Underdensity:
⇢SM � ⇢ssw

⇢SM
= 7.45⇥ 10�6



Conclusion:  The cubic correction is of the same 
order, but of a different sign, from Dark Energy…	

…A Testable Prediction!

Wave
Theory

H0d` = z + .425 z2 � .1804 z3 + O(z4)Dark
Energy

H0d` = z + .425z2 + .3591z3



“Fractional Distance to Hubble Length00

“Dimensionless Density

00

“Dimensionless V elocity

00v

⇠
= w(⇠)

⇢r2 = z(⇠)

⇠ =
r

ct

ds2 = �B(⇠)dt2 +
1

A(⇠)
dr2 + r2d⌦2

Self-Similar Solutions

The k = 0 Friedmann spacetimes admit

self-similar expressions when p = �2⇢



� = 0
p = 0

wF ⌘
v

⇠
=

2
3

+
2
9
⇠2 + O(⇠4)

zF (⇠) =
4
3
⇠2 +

40
27

⇠4 + O(⇠6)

ds2 = �BF (⇠)dt̄2 +
1

AF (⇠)
dr̄2 + r̄2d⌦2

The p=0 Friedmann Universe in Self-Similar Coordinates

p = 0
� = 0

DF (⇠) ⌘
p

AF BF = 1� 1
9
⇠2 + O(⇠4).

AF (⇠) = 1� 4
9⇠2 � 8

27⇠4 + O(⇠6)



p =
c2

3
⇢

� =
1p
3

       Self-similar coordinates for Friedmann	

 with 	


Pure Radiation ⇠̄ 6= ⇠

z1/3 = 3
4 ⇠̄

2 + 9
16 ⇠̄

4 +O(⇠̄6)

v1/3 = 1
2 ⇠̄ +

1
8 ⇠̄

3 +O(⇠̄5)

A1/3 = 1� 1
4 ⇠̄

2 � 1
8 ⇠̄

4 +O(⇠̄6)

D1/3 = 1 +O(⇠̄4)



The             Friedmann Universe extends to  	

1-parameter family of Self-Similar spacetimes 
that perturb the Standard Model during the 	


Radiation Epoch: 

p =
c2

3
⇢

The           Friedmann Universe DOES NOT 	

admit Self-Similar perturbations! 

p = 0

       (The topic of our PNAS and MEMOIR) 

(Something has to give when    drops to zero!)p



       A 1-parameter family of solutions depending on 
the  Acceleration Parameter 0 < a <1

za
1/3 = 3a2

4 ⇠̄2 + 3a2(2+a2)
16 ⇠̄4 + O(⇠̄6)

va
1/3 = 1

2 ⇠̄ + 2�a2

8 ⇠̄3 + O(⇠̄5)

Aa
1/3 = 1� a2

4 ⇠̄2 + a2(1�3a2)
16 ⇠̄4 + O(⇠̄6)

Da
1/3 = 1 + O(⇠̄4)



THEOREM:
The p = 0 waves take the asymptotic form

THEOREM: The p = 0 waves take the asymptotic form

z(t, ⇠) =
✓

4
3

+ z2(t)
◆

⇠2 +
⇢

40
27

+ z4(t)
�

⇠4 + O(⇠6),

w(t, ⇠) =
✓

2
3

+ w0(t)
◆

+
⇢

2
9

+ w2(t)
�

⇠2 + O(⇠4),

where z2(t), z4(t), w0(t), w2(t) evolve according to the equations

�tż2 = 3w0

✓
4
3

+ z2

◆
, (1)

�tż4 = �5
⇢

2
27

z2 +
4
3
w2 �

1
18

z2
2 + z2w2

�
(2)

�5w0

⇢
4
3
� 2

9
z2 + z4 �

1
12

z2
2

�
,

�tẇ0 =
1
6
z2 +

1
3
w0 + w2

0, (3)

�tẇ2 =
1
10

z4 +
4
9
w0 �

1
3
w2 +

1
24

z2
2 �

1
3
z2w0 (4)

�1
3
w2

0 + 4w0w2 �
1
4
w2

0z2.

The ANSATZ that triggers the instability when p=0:

⇠ =
r

ct

z(t, ⇠) = ⇢r2

w(t, ⇠) =
v

⇠

“Fractional Distance to Hubble Length00

“Dimensionless Density

00

“Dimensionless V elocity

00



THEOREM:
The p = 0 waves take the asymptotic form

THEOREM: The p = 0 waves take the asymptotic form

z(t, ⇠) =
✓

4
3

+ z2(t)
◆

⇠2 +
⇢

40
27

+ z4(t)
�

⇠4 + O(⇠6),

w(t, ⇠) =
✓

2
3

+ w0(t)
◆

+
⇢

2
9

+ w2(t)
�

⇠2 + O(⇠4),

where z2(t), z4(t), w0(t), w2(t) evolve according to the equations

�tż2 = 3w0

✓
4
3

+ z2

◆
, (1)

�tż4 = �5
⇢

2
27

z2 +
4
3
w2 �

1
18

z2
2 + z2w2

�
(2)

�5w0

⇢
4
3
� 2

9
z2 + z4 �

1
12

z2
2

�
,

�tẇ0 =
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�tż4 = �5
⇢

2
27

z2 +
4
3
w2 �

1
18

z2
2 + z2w2

�
(2)

�5w0

⇢
4
3
� 2

9
z2 + z4 �

1
12

z2
2

�
,

�tẇ0 =
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�tẇ0 =
1
6
z2 +

1
3
w0 + w2

0, (3)

�tẇ2 =
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Our Wave Theory

.25  Q  .5

as

H0d` = z + Q(z2, w0)z2 + C(z2, w0, w2)z3 + O(z4)
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Orbit evolves to a NEW STABLE REST POINT

⇢SM � ⇢ssw

⇢SM
= 7.45⇥ 10�6

H0d` = z + .425z2 + .3591z3 + O(z4)

A Wave with Under-density:
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Strategy:  Use our equations to evolve 
the initial data for a-waves at the end 
of radiation to determine 
that gives the correct anomalous 
acceleration.

I.e.,            that give the observed 	

quadratic correction to redshift vs 

luminosity at present time

(a, T⇤)

(a, T⇤)



Our simulation turns out to be entirely 
insensitive to the initial     ,      

 I.e.,  we need only compute the value of the 
acceleration parameter that gives the correct 

anomalous acceleration.

In the Standard Model p=0 at about

T⇤ ⇡ 90000K

(Depending on theories of Dark Matter)  

t⇤ ⇡
!

    10,000-30,000 yrs

t⇤ T⇤



THE ANSWER:   The value of the acceleration for the 
wave perturbation of SM that produces a quadradic 

correction of .425 at the present value of       is:  H0

H0d` = z + .425z2 + .3591z3

= 1�
�
4.3⇥ 10�7

�
a = 0.99999957

THE ANSWER:   The value of the acceleration for the 
wave perturbation of SM that produces a quadradic 

correction of .425 at the present value of       is:  H0

This corresponds to a relative under-density of 

H0d` = z + .425z2 + .3591z3

= 1�
�
4.3⇥ 10�7

�
a= 0.99999957
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= 7.45⇥ 10�6
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The relative underdensity at the end of radiation: 

The relative underdensity at present time:

⇢ssw(t0)
⇢SM (t0)

= .1438 ⇡ 1
7
.

⇢SM � ⇢ssw

⇢SM
= 7.45⇥ 10�6



An under-density of 	

one part in         	


at the end of radiation 	

produces a 	


seven-fold under-density	


 at present time…  

106

Conclude:   



  The Standard Model is Unstable 
to Perturbation by this 	


1-parameter family of Waves

CONCLUDE: 



Comparison with Dark Energy:  

Wave
Theory

z ⇠ d`

H0
⇠ r

ct
⇠ ⇠

Measures Fractional	

Distance to 	


Hubble Length

A prediction:	

The wave contributes 	


MORE to the Anomalous 
Acceleration	


far from the center

H0d` = z + .425 z2 � .1804 z3 + O(z4)Dark
Energy

H0d` = z + .425z2 + .3591z3

z << 1



Neglecting         errors:	

The spacetime near the center evolves 

toward the Stable Rest Point

O(⇠4)

is CENTER-INDEPENDENT
(like Friedmann Spacetimes)

BUT: The evolution creates a uniformly

expanding density near the center,

which, neglecting relativistic corrections,

The metric tends to Flat Minkowski Spacetime

which is not co-moving with the fluid, BUT:



region near the center of the wave

The wave creates a	


UNIFORMLY EXPANDING SPACETIME	


with an	


ANOMALOUS ACCELERATION	


in a

LARGE, FLAT, CENTER-INDEPENDENT

CONCLUDE:



z ⇠ density
w ⇠ velocity
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Neglecting errors         : O(⇠4)



where w̄(t) and k0(t) change exponentially slowly.

THEOREM: Neglecting O(⇠4) errors, as the orbit
tends to the Stable Rest Point:

The Density drops FASTER than SM:

ds2 = �dt2 + dr2 + r2d⌦2

The metric tends to FLAT MINKOWSKI:

⇢WAV E (t) =
k0

t3(1 + w̄)
⇢SM (t) =

4

3t2



such that:

Theorem: There exists a unique value

a = 0.99999956 ⇡ 1� 4.3⇥ 10�7
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The p = 0 evolution starting from this initial data

evolves to H = H0, Q = .425 at t = t0,
in agreement with Dark Energy at t = tDE .
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Theorem: There exists a unique value

The cubic correction is C = 0.3591 at t = t0,
while Dark Energy is C = �0.1804 at t = tDE .

a = 0.99999956 ⇡ 1� 4.3⇥ 10�7
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such that:

Theorem: There exists a unique value

The cubic correction is C = 0.3591 at t = t0,
while Dark Energy is C = �0.1804 at t = tDE .

a = 0.99999956 ⇡ 1� 4.3⇥ 10�7

The p = 0 evolution starting from this initial data

evolves to H �H0, Q = .425 at t = t0,
in agreement with Dark Energy at t = tDE .

The ages of the universe are related by:

t0 ⇡ (.95)tDE ⇡ 1.38⇥ tSM = 1.38⇥ (9.8⇥ 109yr)



Around 2007:	

 Other research groups began exploring 

the possibility that the anomalous 
acceleration might be due to the earth 

lying near the center of a large region of 
Under-Density

We first saw publication in 2009





This proposal is still 
taken seriously in 

Astrophysics



Prokopek...2013 (Astrophysicist, Utrecht University)



Details	

 of our 	

Analysis



Main Steps:

(1)  Derivation of the p=0 Einstein equations in a 	

new coordinate system aligned with the structure	


 of the waves. 

(2)  A new ansatz for the Corrections to SM 	

such that the asymptotic equations close.      

(3)  Putting the Initial Data from the Radiation Epoch 
into the gauge of our asymptotics.

(4)  The Redshift vs Luminosity determined by the 
Corrections.



I.   A New Formulation  
of the p=0 

Einstein Equations



The Einstein equations for 
spherically symmetric 
spacetimes take their 

Simplest Form  
in  

Standard Schwarzschild 
Coordinates 

 (SSC)



 I.e.
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metric
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The Equations 
In SSC
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Substituting into the Equations gives: 



Substituting into the Equations gives: 
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Substituting into the Equations gives: 
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Note:  Equations are Singular at        r = 0

(1)

(2)



The       singularity reflects the fact that 
waves coming into         can amplify and 
blowup.   	

!

Since we are only interested in solutions 
representing outgoing, expanding waves, 
we look for natural changes of variables 
that  regularize the equations at        .

1/r
r = 0

r = 0



First:  set          , collect        ,  and 
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LHS

Substitute (1) into (2):                  
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Obtain:



Obtain:

��

v
c

�

T 00
M

�

t
+

np
AB

�

v
c

�2
T 00

M

o

r
=

�
p

AB
2r

n

4
�

v
c

�2 + 1�A
A

⇣

1�
�

v
c

�2
⌘o

T 00
M

(2)�2
p

AB
⇣v

r

⌘2
rT 00

M + rT 00
M

⇣v

r

⌘

t

+rT 00
M

p
AB

⇣v

r

⌘ ⇣
r
⇣v

r

⌘⌘

r

=

Linearity in               Divide by  T 00
M rT 00

M
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(This is the self-similar variable in the 
waves from the radiation epoch!)



Final change of variables---              



(t, r)! (t, ⇠)

Final change of variables---              
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Substituting into (1) and (2) we obtain 
the following dimensionless eqns:              
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Take A and D instead of A and B:              
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This leads to the following 
Dimensionless Formulation 	


of the p=0 Einstein Equations:



 Einstein Equations when p=0
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ds2 = �Bdt2 +
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p
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 Einstein Equations when p=0
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w �D
n

w2 + 1�⇠2w2

2A

h

1�A
⇠2

io

,

(3)
⇠A⇠ = (A� 1)� z,
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D = (1�A)� (1�⇠2w2)
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2.  The Ansatz and 
Asymptotics 

 for the   
Corrections:



Our Ansatz for Corrections to the Standard Model

z(t, ⇠) = zF (⇠) + �z(t, ⇠) �z = z2(t)⇠2 + z4(t)⇠4

w(t, ⇠) = wF (⇠) + �w(t, ⇠) �w = w0(t) + w2(t)⇠2

A(t, ⇠) = AF (⇠) + �A(t, ⇠) �A = A2(t)⇠2 + A4(t)⇠4

D(t, ⇠) = DF (⇠) + �D(t, ⇠) �D = D2(t)⇠2



Our Ansatz for Corrections to the Standard Model

The Standard Model is Self-Similar:  

z(t, ⇠) = zF (⇠) + �z(t, ⇠) �z = z2(t)⇠2 + z4(t)⇠4

w(t, ⇠) = wF (⇠) + �w(t, ⇠) �w = w0(t) + w2(t)⇠2

A(t, ⇠) = AF (⇠) + �A(t, ⇠) �A = A2(t)⇠2 + A4(t)⇠4

D(t, ⇠) = DF (⇠) + �D(t, ⇠) �D = D2(t)⇠2

wF = 2
3 + 2

9⇠2 + O(⇠4)
AF = 1� 4

9⇠2 � 8
27⇠4 + O(⇠6)

DF = 1� 1
9⇠2 + O(⇠4)

zF = 4
3⇠2 + 40

27⇠4 + O(⇠6)



Our Ansatz for Corrections to the Standard Model

The Standard Model is Self-Similar:  

z(t, ⇠) = zF (⇠) + �z(t, ⇠) �z = z2(t)⇠2 + z4(t)⇠4

w(t, ⇠) = wF (⇠) + �w(t, ⇠) �w = w0(t) + w2(t)⇠2

A(t, ⇠) = AF (⇠) + �A(t, ⇠) �A = A2(t)⇠2 + A4(t)⇠4

D(t, ⇠) = DF (⇠) + �D(t, ⇠) �D = D2(t)⇠2

wF = 2
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9⇠2 + O(⇠4)
AF = 1� 4

9⇠2 � 8
27⇠4 + O(⇠6)

DF = 1� 1
9⇠2 + O(⇠4)

zF = 4
3⇠2 + 40

27⇠4 + O(⇠6)



⇠

Our Ansatz for Corrections to the Standard Model

Note:  Corrections only involve even powers of 
The Standard Model is Self-Similar:  

z(t, ⇠) = zF (⇠) + �z(t, ⇠) �z = z2(t)⇠2 + z4(t)⇠4

w(t, ⇠) = wF (⇠) + �w(t, ⇠) �w = w0(t) + w2(t)⇠2

A(t, ⇠) = AF (⇠) + �A(t, ⇠) �A = A2(t)⇠2 + A4(t)⇠4

D(t, ⇠) = DF (⇠) + �D(t, ⇠) �D = D2(t)⇠2

wF = 2
3 + 2

9⇠2 + O(⇠4)
AF = 1� 4

9⇠2 � 8
27⇠4 + O(⇠6)

DF = 1� 1
9⇠2 + O(⇠4)

zF = 4
3⇠2 + 40

27⇠4 + O(⇠6)



Our Ansatz for Corrections to the Standard Model

THEOREM: The p = 0 waves take the asymptotic form
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ds2 = �B(t, r)dt2 +
1

A(t, r)
dr2 + r2d⌦2

⇠ = r/t D =
p

AB

Reiterate: 

but rather write the SSC eqns in        
-coordinates.  (t, ⇠)

We don’t use co-moving coordinates,



Equations for the Corrections to SM

When we plug into the equations 	

  a remarkable simplification occurs:

A2 = �1
3
z2, A4 = �1

5
z4, D2 = � 1

12
z2 (1)



This is a coordinate gauge condition 
reflecting the serendipity of our         

-coordinate system!! (t, ⇠)

Equations for the Corrections to SM

When we plug into the equations 	

  a remarkable simplification occurs:

A2 = �1
3
z2, A4 = �1

5
z4, D2 = � 1

12
z2 (1)



Plugging Ansatz into Equations...

Plugging 

and 

into equations:

tzt + ⇠ {(�1 + Dw)z}⇠ = �Dwz
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z(t, ⇠) = zF (⇠) + z2(t)⇠2 + z4(t)⇠4,

w(t, ⇠) = wF (⇠) + w0(t) + w2(t)⇠2,

A(t, ⇠) = AF (⇠) + A2(t)⇠2 + A4(t)⇠4,

D(t, ⇠) = DF (⇠)D2(t)⇠2,D(t, ⇠) = DF (⇠) + D2(⇠)⇠2



Gives: 



THEOREM: The p = 0 waves take the asymptotic form
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THEOREM:
The p = 0 waves take the asymptotic form



The Corrections to SM evolve according to 

Note:   RHS is Autonomous!
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We can make LHS Automomous too!
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4 = �tż4 = �5

⇢
2
27

z2 +
4
3
w2 �

1
18

z2
2 + z2w2

�

�5w0

⇢
4
3
� 2

9
z2 + z4 �

1
12

z2
2

�
,

�w0
0 = �tẇ0 =
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1
10

z4 +
4
9
w0 �

1
3
w2 +

1
24

z2
2 �

1
3
z2w0

�1
3
w2

0 + 4w0w2 �
1
4
w2

0z2.



�z0
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Autonomous Eqns for Corrections to SM

t⇤  t  1014

ln(t⇤)  ⌧  14 · ln(10)

yr Trivializes the large 
time	


 simulation problem!



�z0
2 = 3w0

✓
4
3

+ z2

◆
,

�z0
4 = �5

⇢
2
27

z2 +
4
3
w2 �

1
18

z2
2 + z2w2

�

�5w0

⇢
4
3
� 2

9
z2 + z4 �

1
12

z2
2

�
,

�w0
0 =

1
6
z2 +

1
3
w0 + w2

0,

�w0
2 =

1
10

z4 +
4
9
w0 �

1
3
w2 +

1
24

z2
2 �

1
3
z2w0

�1
3
w2

0 + 4w0w2 �
1
4
w2

0z2.

The Equations for the Corrections 

Everything is dimensionless	

 involving only pure numbers!



The Equations for the Corrections 

Note:  Leading order Eqns Uncouple!
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The Leading Order Corrections... 

...And Their Equations
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Keep in mind that      is on the order of	

fractional distance to the Hubble Length: 

⇠

⇠ = r/ct ⇡ arclength distance at fixed time

distance of light travel since Big Bang

   For example:  At 1/10 way across the visible 
universe, about 1.1 billion light-years out:    

⇠4 ⇡ 1
10,000 = .0001



   Hubbles Law:    

Hubble’s	

Constant    

   Luminosity 	

Distance    

Redshift	

Factor    

H0 d` = z

  1929:  Linear relation between 
redshift and luminosity    



   Hubbles Law:    

Hubble’s	

Constant    

   Luminosity 	

Distance    

Redshift	

Factor    

H0 d` = z

  1999:  There is an anomalous 
acceleration    

+ Qz2



This term accounts for the
corrections to the Standard Model
Observed in the Supernova Data

In Fact:      is on the order of the redshift factor,  
and              determines the quadratic correction 

to redshift vs luminosity	

=anomalous acceleration

⇠
(z2, w0)

H0d` = z+ +O(z3)z2
Q(z2, w0)

(Nobel Prize)



H0d` = z+ +O(z3)z2
Q(z2, w0)

of the so-called

“Deceleration Parameter” q

Determined by the value

In Fact:      is on the order of the redshift factor,  
and              determines the quadratic correction 

to redshift vs luminosity	

=anomalous acceleration

⇠
(z2, w0)



H0d` = z+

+O(z3)

z2
Q(z2, w0) C(z2, w0, w2)+ z3

                 The cubic correction is 	

determined by      (z2, w0, w2)

Determined by solving

for (z2, z4, w0, w4)

our system of four equations



H0d` = z+

+O(z3)

z2
Q(z2, w0) C(z2, w0, w2)+ z3

                 The cubic correction is 	

determined by      (z2, w0, w2)

Beyond experimental precision

A prediction



H0d` = z+ +O(z3)z2
Q(z2, w0)

           The quadratic correction is determined 
by our equations for (z2, w0)
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2 = �tż2 = 3w0

✓
4
3

+ z2

◆
,

�w0
0 = �tẇ0 =

1
6
z2 +

1
3
w0 + w2

0.



Thanks to:

pplane Rice University

The (z2, w0) phase portrait:

Numerical Simulation
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3.   The Initial Data 
determined by the 	

Self-Similar Waves 	


from the 	

Radiation Epoch
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k=0 Friedmann Spacetimes when	
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FRW Co-moving:

t̄ = F (⌘)t; r̄ = ⌘t,FRW Self-Similar:
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A SSC Self-Similar Formulation of the 
k=0 Friedmann Spacetimes when	
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FRW Co-moving:
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p = 0
� = 0



ds2 = �BF (⇠)dt̄2 +
1

AF (⇠)
dr̄2 + r̄2d⌦2

p = 0
� = 0



� = 0
p = 0
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� = 0
p = 0

Note: ⇠ =
r̄
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ct
+ O(⇠2)
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Where:

⇠ =
r̄

t̄
=

r̄

ct
+ O(⇠2)

⇠ = r/ct ⇡ arclength distance at fixed time

distance of light travel since Big Bang
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Conclude: ⇠ ⇡ fractional distance to Hubble Length

Note: 
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The p=0 Friedmann Universe in Self-Similar Coordinates
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Thus our equations are for the 
corrections to the Standard Model:
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p =
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       Self-similar coordinates for Friedmann	

 with 	


Pure Radiation
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The             Friedmann Universe admits a 	

1-parameter family of Self-Similar spacetimes 
that perturb the Standard Model during the 	


Radiation Epoch: 

p =
c2

3
⇢



The             Friedmann Universe admits a 	

1-parameter family of Self-Similar spacetimes 
that perturb the Standard Model during the 	


Radiation Epoch: 

p =
c2

3
⇢

The           Friedmann Universe DOES NOT 	

admit Self-Similar perturbations! 

p = 0



The             Friedmann Universe is embedded in  	

1-parameter family of Self-Similar spacetimes 
that perturb the Standard Model during the 	


Radiation Epoch: 

p =
c2

3
⇢

The           Friedmann Universe DOES NOT 	

admit Self-Similar perturbations! 

p = 0

       (The topic of our PNAS and MEMOIR) 



  Commun Math Phys., 21, 1-40 (1971)

Our interest is in the possible connection  between	

 these waves and the Anomalous Acceleration.

First Discovered by Cahill and Taub:

  Physical Review D,  62, 044023-1-25 (1999)

Extended by others,  esp.  Carr and Coley,  Survey:

We extract properties of the waves from a system 
of ODE’s we derived, that defines them:
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The perturbations are describe by ODE’s:
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    Self-Similar perturbations of Friedmann	

for Pure Radiation 

       (The topic of our PNAS and MEMOIR) 
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       A 1-parameter family of solutions depending on 
the  Acceleration Parameter 0 < a <1
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a = 1    is the Standard Model for Pure Radiation 
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self-similar waves 
at the end of the 	

Radiation Epoch  

depends on:

(1)  The temperature       at which T⇤ p = 0

(2)  The value of the acceleration parameter a

 The initial data created by



OUR GOAL NOW:   Use our equations to evolve 
the initial data at the end of radiation to determine 

that gives the correct anomalous acceleration.

I.e.,            that give the observed 	

quadratic correction to redshift vs 

luminosity at present time

(a, T⇤)

(a, T⇤)



Our simulation turns out to be entirely 
insensitive to the initial     ,      

 I.e.,  we need only compute the value of the 
acceleration parameter that gives the correct 

anomalous acceleration.

In the Standard Model p=0 at about

T⇤ ⇡ 90000K

(Depending on theories of Dark Matter)  

t⇤ ⇡
!

    10,000-30,000 yrs

t⇤ T⇤



Technical Problem:   The self-similar waves at the 
end of radiation are in the wrong gauge due to 
the fact that time since the Big Bang changes            

between          and p =
c2

3
⇢p = 0

 That is:   The initial data for the self-similar waves 
does not meet the gauge conditions for our p=0 

ansatz
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3
z2, A4 = �1

5
z4, D2 = � 1

12
z2

 (Resolving this held us back for close to a year!)



Resolution:   We post-process the initial data by 
a gauge transformation of the form---

 That is:   The initial data for the self-similar waves 
does not meet the gauge conditions for our p=0 

ansatz

A2 = �1
3
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 (Resolving this held us back for close to a year!)
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THEOREM: Let the transformation

¯t! t be defined by
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◆
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Then, on the constant temperature surface T = T⇤, the initial data

from the self-similar waves at the end of the radiation epoch meets

the gauge conditions in (

¯t, ¯⇠).



 Resolution:   To get the asymptotics correct we 
have to pull the initial data back to 

T = T⇤, ⇢ = ⇢⇤2nd Technical Problem:   The    	

surfaces are distinct from the constant time 

surfaces  t = t⇤

t = t⇤



 The initial data created by  
self-similar waves 

on a constant temperature surface 
at the end of the 
Radiation Epoch  

!
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where

THEOREM: The initial data for oiur p = 0 evolution

at time t = t⇤ is given as a function of the acceleration

parameter a and start temperature ⇢⇤ = aT 4
⇤ by



4.  Redshift vs Luminosity	

 as a function of 	

our corrections
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A (long) Calculation gives:
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3.  Comparison	

 with the	


 Standard Model



C.f. our formula:
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Cosmology now assumes a Cosmological Constant	

 with 	


Seventy Percent Dark Energy 
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In the case ⌦M = .3, ⌦⇤ = .7 this gives

H0d` = (1 + z)
Z z

0

dy

(1 + z)
p

1 + ⌦My
.

Taylor expanding gives:

⌦M + ⌦⇤ = 1

H0d` = z + .425 z2 � .1804 z3 + O(z4)



CONCLUDE:  

H0d` = z + .425 z2 � .1804 z3 + O(z4)
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IN FACT:  As the Dark Energy Parameter 	

ranges from 0 to 1, the Anomalous 
Acceleration ranges from .25 to .5
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We get the Same Conclusion	

 in the Wave Theory!
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Stable Rest Point
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5.  Determination of the value	

 of the 	


Acceleration Parameter 	

that matches the	


 Anomalous Acceleration



H0d` = z + .425 z2 � .1804 z3 + O(z4)
⌦⇤ = .7

Dark Energy
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Our Wave Model
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4 = �tż4 = �5

⇢
2
27

z2 +
4
3
w2 �

1
18

z2
2 + z2w2

�

�5w0

⇢
4
3
� 2

9
z2 + z4 �

1
12

z2
2

�
,

�w0
0 = �tẇ0 =
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We simulate our equations starting from the self-similar

wave data at the end of radiation T = T⇤, to find the

value of (a, T⇤) that gives the same Anomalous Acceler-

ation as seventy percent Dark Energy when H = H0:



THE ANSWER:   The value of the acceleration for the 
wave perturbation of SM that produces a quadradic 

correction of .425 at the present value of       is:  H0

H0d` = z + .425z2 + .3591z3

= 1�
�
4.3⇥ 10�7
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a= 0.99999957
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The relative underdensity at the end of radiation: 

Numerical Simulation gives the relative under-density 	

at present time as:

Conclude:   An under-density of one part in      at 
the end of radiation produces a seven-fold 	


under-density at present time!  

106

⇢ssw(t0)
⇢SM (t0)

= .1438 ⇡ 1
7
.

⇢SM � ⇢ssw

⇢SM
= 7.45⇥ 10�6



Conclude:  The Standard Model is 
Unstable to Perturbation 	

by this family of Waves…  



Comparison with Dark Energy:  

H0d` = z + .425z2 + .3591z3

H0d` = z + .425 z2 � .1804 z3 + O(z4)Dark
Energy

Wave
Theory

Dark

Energy



The Wave Theory predicts a	

 Larger Anomalous Acceleration 	


far from the center than 	

Dark Energy

Comparison with Dark Energy:  

H0d` = z + .425z2 + .3591z3

H0d` = z + .425 z2 � .1804 z3 + O(z4)Dark
Energy

Wave
Theory

Dark

Energy



Wave Theory takes More Time to H = H0:

tDE ⇡ 13.8 Billion years ⇡ (1.45) tSM

Comparison with Dark Energy:  

H0d` = z + .425z2 + .3591z3

H0d` = z + .425 z2 � .1804 z3 + O(z4)Dark
Energy

Wave
Theory

Dark

Energy

t0 ⇡ (.98)tDE



The Answer:

A different	

cubic correction

H0d` = z + .425z2 � 2.7555z3

ā = 1.0000006747 = 1 +
�
6.747⇥ 10�7

�
(1)

In Fact:   A slight over-density 	

will also create the	


 Anomalous Acceleration
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Conclude:  The Standard Model 	

is 	


Unstable to Perturbation 	

by this	


 Family of Waves,	

and under-densities create an	


Anomalous Acceleration  



Theorem: Let t = t0 denote present time since the

Big Bang in the wave model and t = tDE present time

since the Big Bang in the Dark Energy model. Then

there exists a unique value of the acceleration parameter

a = 0.99999959 ⇡ 1 � 4.3 ⇥ 10

�7
corresponding to an

under-density relative to the SM at the end of radiation,

such that the subsequent p = 0 evolution starting from

this initial data evolves to time t = t0 with H = H0 and

Q = .425, in agreement with the values of H and Q at

t = tDE in the Dark Energy model. The cubic correction

at t = t0 in the wave theory is then C = 0.3591, while

Dark Energy theory gives C = �0.1804 at t = tDE. The

times are related by t0 ⇡ 1.45 tDE.t0 ⇡ 9.5 tDEt0 ⇡ (.98)tDE



6.  The Flat 	

Uniformly Expanding 

Spacetime  	

at the 	


Center of the Wave

(Under-Dense Case: a < 1)



Consider the evolution 
of the spactime at the 

center obtained by 
neglecting all errors  

of order 

O(⇠4)



The spacetime near the 
center evolves toward 

the	

Stable Rest Point
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Neglecting         errors:	

The spacetime near the center evolves 

toward the Stable Rest Point

O(⇠4)

is CENTER-INDEPENDENT
(like Friedmann Spacetimes)

BUT: The evolution creates a uniformly

expanding density near the center,

which, neglecting relativistic corrections,

The metric tends to Flat Minkowski Spacetime

which is not co-moving with the fluid, BUT:



⇢SM (t) =
4

3t2
,

THEOREM: Neglecting O(⇠4
), as the orbit tends to the

Stable Rest Point, the density drops FASTER than SM,

⇢(t) =
k0

t3(1+w̄)
,

where w̄(t) and k0(t) change exponentially slowly.

in a

LARGE, FLAT, CENTER-INDEPENDENT

CONCLUDE: The wave creates a

UNIFORMLY EXPANDING SPACETIME
with an

ANOMALOUS ACCELERATION

region near in the center of the wave.
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CONCLUSIONS:
Our Proposal: The AA is due to a local under-

density on the scale of the supernova data, created

by a self-similar wave from the radiation epoch

that triggers an instability in the SM when the

pressure drops to zero.

We have made no assumptions regarding

the space-time far from the center of the perturba-

tions. The consistency of this model with other ob-

servations in astrophysics would require additional

assumptions.



CONCLUSIONS:

• This is arguably the simplest explanation for the 
anomalous acceleration within Einstein’s original theory 
of GR,  without requiring Dark Energy.

• It demonstrates that any local center of the Standard 
Model of Cosmology is unstable on the largest length 
scale, to perturbation by exact solutions from the 
Radiation Epoch.

•  These perturbations are stabilized by a nearby stable 
rest point that generates the same accelerations as 
Dark Energy. 

•  It makes testable predictions. 



• On what scale would such waves apply?	


• If these came from time-asymptotic wave 
patterns created in an earlier epoch, would 
we expect secondary transitional waves far 
from the center?	


• How does cosmology address the instability? 
Can Dark Energy help?  (NO!)	


• Implications of a preferred center?	


• Is this more fine-tuned than Dark Energy?

QUESTIONS:



There are large scale anomalies in the data indicating a 
lack of uniformity on the largest length scale

Prokopek...2013 (Astrophysicist, Utrecht University)



Prokopek...2013 (Astrophysicist, Utrecht University)



Every aspect of this work 
came from  

Applied Mathematics, 

Whatever its implications to Physics, 	

it stands on its own as a self-contained 

model in Applied Mathematics

FINAL COMMENT



Mathematics is part of physics…	

…the part of physics	


 where experiments are cheap.	

!

—Arnold,  Paris, 1997



End



When a team of cosmologists announced at a press 
conference in March that they had detected gravitational 
waves generated in the first instants after the Big Bang, the 

origins of the Universe were once again major news. The reported 
discovery created a worldwide sensation in the scientific community, 
the media and the public at large (see Nature 507, 281–283; 2014).

According to the team at the BICEP2 South Pole telescope, the 
detection is at the 5–7 sigma level, so there is less than one chance 
in two million of it being a random occurrence. The results were 
hailed as proof of the Big Bang inflationary theory and its progeny, 
the multiverse. Nobel prizes were predicted and scores of theoretical 
models spawned. The announcement also influenced decisions about  
academic appointments and the rejections of 
papers and grants. It even had a role in govern-
mental planning of large-scale projects. 

The BICEP2 team identified a twisty (B-mode) 
pattern in its maps of polarization of the cosmic 
microwave background, concluding that this was 
a detection of primordial gravitational waves. 
Now, serious flaws in the analysis have been 
revealed that transform the sure detection into 
no detection. The search for gravitational waves 
must begin anew. The problem is that other 
effects, including light scattering from dust and 
the synchrotron radiation generated by electrons 
moving around galactic magnetic fields within 
our own Galaxy, can also produce these twists. 

The BICEP2 instrument detects radiation at 
only one frequency, so cannot distinguish the cos-
mic contribution from other sources. To do so, the BICEP2 team used 
measurements of galactic dust collected by the Wilkinson Microwave 
Anisotropy Probe and Planck satellites, each of which operates over 
a range of other frequencies. When the BICEP2 team did its analysis, 
the Planck dust map had not yet been published, so the team extracted 
data from a preliminary map that had been presented several months 
earlier. Now a careful reanalysis by scientists at Princeton University and 
the Institute for Advanced Study, also in Princeton, has concluded that 
the BICEP2 B-mode pattern could be the result mostly or entirely of 
foreground effects without any contribution from gravitational waves. 
Other dust models considered by the BICEP2 team do not change this 
negative conclusion, the Princeton team showed (R. Flauger, J. C. Hill 
and D. N. Spergel, preprint at http://arxiv.org/abs/1405.7351; 2014). 

The sudden reversal should make the scientific community con-
template the implications for the future of cosmology experimentation 
and theory. The search for gravitational waves is 
not stymied. At least eight experiments, includ-
ing BICEP3, the Keck Array and Planck, are 
already aiming at the same goal. 

This time, the teams can be assured that the 

world will be paying close attention. This time, acceptance will require 
measurements over a range of frequencies to discriminate from fore-
ground effects, as well as tests to rule out other sources of confusion. And 
this time, the announcements should be made after submission to jour-
nals and vetting by expert referees. If there must be a press conference, 
hopefully the scientific community and the media will demand that it 
is accompanied by a complete set of documents, including details of the 
systematic analysis and sufficient data to enable objective verification. 

The BICEP2 incident has also revealed a truth about inflationary the-
ory. The common view is that it is a highly predictive theory. If that was 
the case and the detection of gravitational waves was the ‘smoking gun’ 
proof of inflation, one would think that non-detection means that the 

theory fails. Such is the nature of normal science. 
Yet some proponents of inflation who celebrated 
the BICEP2 announcement already insist that the 
theory is equally valid whether or not gravitational 
waves are detected. How is this possible?

The answer given by proponents is alarming: 
the inflationary paradigm is so flexible that it is 
immune to experimental and observational tests. 
First, inflation is driven by a hypothetical scalar 
field, the inflaton, which has properties that can 
be adjusted to produce effectively any outcome. 
Second, inflation does not end with a universe 
with uniform properties, but almost inevitably 
leads to a multiverse with an infinite number of 
bubbles, in which the cosmic and physical prop-
erties vary from bubble to bubble. The part of the 
multiverse that we observe corresponds to a piece 

of just one such bubble. Scanning over all possible bubbles in the multi-
verse, every thing that can physically happen does happen an infinite 
number of times. No experiment can rule out a theory that allows for 
all possible outcomes. Hence, the paradigm of inflation is unfalsifiable.

This may seem confusing given the hundreds of theoretical papers 
on the predictions of this or that inflationary model. What these papers 
typically fail to acknowledge is that they ignore the multiverse and 
that, even with this unjustified choice, there exists a spectrum of other 
models which produce all manner of diverse cosmological outcomes. 
Taking this into account, it is clear that the inflationary paradigm is 
fundamentally untestable, and hence scientifically meaningless. 

Cosmology is an extraordinary science at an extraordinary time. 
Advances, including the search for gravitational waves, will continue 
to be made and it will be exciting to see what is discovered in the com-
ing years. With these future results in hand, the challenge for theorists 
will be to identify a truly explanatory and predictive scientific para-
digm describing the origin, evolution and future of the Universe. ■

Paul Steinhardt is professor of physics at Princeton University.
e-mail: steinh@princeton.edu
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Big Bang blunder bursts 
the multiverse bubble
Premature hype over gravitational waves highlights gaping holes in models 
for the origins and evolution of the Universe, argues Paul Steinhardt.
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