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1 Introduction

In the standard model of cosmology, the expanding universe of galaxies is described
by a Friedmann-Robertson-Walker (FRW) metric, which in spherical coordinates
has a line element given by [3, 47],

ds2 = −dt2 +R2(t)

{
dr2

1 − kr2
+ r2[dθ2 + sin2θ dφ2]

}
. (1.1)

In this model, which accounts for things on the largest length scale, the universe is
approximated by a space of uniform density and pressure at each fixed time, and
the expansion rate is determined by the cosmological scale factor R(t) that evolves
according to the Einstein equations. Astronomical observations show that the
galaxies are uniform on a scale of about one billion lightyears, and the expansion
is critical—that is, k = 0 in (1.1)—and so, according to (1.1), on the largest scale,
the universe is infinite flat Euclidian space R3 at each fixed time. Matching the
Hubble constant to its observed values, and invoking the Einstein equations, the
FRW model implies that the entire infinite universe R3 emerged all at once from
a singularity, (R=0), some 14 billion years ago, and this event is referred to as the
Big Bang.

In this paper, which summarizes the work of the authors in [33, 40], we describe
a two parameter family of exact solutions of the Einstein equations that refine
the FRW metric by a spherical shock wave cut-off. In these exact solutions the
expanding FRW metric is reduced to a region of finite extent and finite total mass

1Department of Mathematics, University of Michigan, Ann Arbor, MI 48109; Supported
in part by NSF Applied Mathematics Grant Number DMS-010-3998, and by the Institute
of Theoretical Dynamics, UC-Davis.

2Department of Mathematics, University of California, Davis, Davis CA 95616; Sup-
ported in part by NSF Applied Mathematics Grant Number DMS-010-2493, and by the
Institute of Theoretical Dynamics, UC-Davis.

1



at each fixed time, and this FRW region is bounded by an entropy satisfying shock
wave that emerges from the origin, (the center of the explosion), at the instant of
the Big Bang t = 0. The shock wave, which marks the leading edge of the FRW
expansion, propagates outward into a larger ambient spacetime from time t = 0
onward. Thus, in this refinement of the FRW metric, the Big Bang that set the
galaxies in motion is an explosion of finite mass that looks more like a classical
shock wave explosion than does the Big Bang of the Standard Model3.

In order to construct a mathematically simple family of shock wave refinements
of the FRW metric that meet the Einstein equations exactly, we assume k = 0,
(critical expansion), and we restrict to the case that the sound speed in the fluid
on the FRW side of the shock wave is constant. That is, we assume an FRW
equation of state p = σρ, where σ, the square of the sound speed

√
∂p
∂ρ , is constant,

0 < σ ≤ c2.At σ = c2/3, this catches the important equation of state p = c2

3 ρ which
is correct at the earliest stage of Big Bang physics, [47]. Also, as σ ranges from 0
to c2, we obtain qualitatively correct approximations to general equations of state.
Taking c = 1, (we use the convention that c = 1, and Newton’s constant G = 1
when convenient), the family of solutions is then determined by two parameters,
0 < σ ≤ 1 and r∗ ≥ 0. The second parameter r∗ is the FRW radial coordinate r
of the shock in the limit t → 0, the instant of the Big Bang4. The FRW radial
coordinate r is singular with respect to radial arclength r̄ = rR at the Big Bang
R = 0, so setting r∗ > 0 does not place the shock wave away from the origin at time
t = 0. The distance from the FRW center to the shock wave tends to zero in the
limit t → 0 even when r∗ > 0. In the limit r∗ → ∞ we recover from the family of
solutions the usual (infinite) FRW metric with equation of state p = σρ. That is, we
recover the standard FRW metric in the limit that the shock wave is infinitely far
out. In this sense our family of exact solutions of the Einstein equations represents
a two parameter refinement of the standard Friedmann-Robertson-Walker metric.

The exact solutions for the case r∗ = 0 were first constructed in [33], and are

3The fact that the entire infinite space R3 emerges at the instant of the Big Bang, is,
loosely speaking, a consequence of the Copernican Principle, the principle that the earth
is not in a special place in the universe on the largest scale of things. With a shock wave
present, the Copernican Principle is violated in the sense that the earth then has a special
position relative to the shock wave. But of course, in these shock wave refinements of the
FRW metric, there is a spacetime on the other side of the shock wave, beyond the galaxies,
and so the scale of uniformity of the FRW metric, the scale on which the density of the
galaxies is uniform, is no longer the largest length scale.

4Since when k = 0, the FRW metric is invariant under the rescaling r → αr and
R → α−1R, we fix the radial coordinate r by fixing the scale factor α with the condition
that R(t0) = 1 for some time t0, say present time.
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qualitatively different from the solutions when r∗ > 0, which were constructed
later in [40]. The difference is that when r∗ = 0, the shock wave lies closer than
one Hubble length from the center of the FRW spacetime throughout its motion,
but when r∗ > 0, the shock wave emerges at the Big Bang at a distance beyond one
Hubble length. (The Hubble length depends on time, and tends to zero as t → 0.)
We show in [40] that one Hubble length, equal to c

H where H = Ṙ
R , is a critical

length scale in a k = 0 FRW metric because the total mass inside one Hubble
length has a Schwarzschild radius equal exactly to one Hubble length5. That is,
one Hubble length marks precisely the distance at which the Schwarzschild radius
r̄s ≡ 2M of the mass M inside a radial shock wave at distance r̄ from the FRW
center, crosses from inside (r̄s < r̄) to outside (r̄s > r̄) the shock wave. If the
shock wave is at a distance closer than one Hubble length from the FRW center,
then 2M < r̄ and we say that the solution lies outside the Black Hole, but if the
shock wave is at a distance greater than one Hubble length, then 2M > r̄ at the
shock, and we say the solution lies inside the Black Hole. Since M increases like
r̄3, it follows that 2M < r̄ for r̄ sufficiently small, and 2M > r̄ for r̄ sufficiently
large, so there must be a critical radius at which 2M = r̄, and in Section 2, (taken
from [40]), we show that when k = 0, this critical radius is exactly the Hubble
length. When the parameter r∗ = 0, the family of solutions for 0 < σ ≤ 1 starts
at the Big Bang, and evolves thereafter outside the Black Hole, satisfying 2M

r̄ < 1
everywhere from t = 0 onward. But when r∗ > 0, the shock wave is further out
than one Hubble length at the instant of the Big Bang, and the solution begins
with 2M

r̄ > 1 at the shock wave. From this time onward, the spacetime expands
until eventually the Hubble length catches up to the shock wave at 2M

r̄ = 1, and
then passes the shock wave, making 2M

r̄ < 1 thereafter. Thus when r∗ > 0, the
whole spacetime begins inside the Black Hole, (with 2M

r̄ > 1 for sufficiently large
r̄), but eventually evolves to a solution outside the Black Hole. The time when
r̄ = 2M actually marks the event horizon of a White Hole, (the time reversal of
a Black Hole), in the ambient spacetime beyond the shock wave. We show that
when r∗ > 0, the time when the Hubble length catches up to the shock wave comes
after the time when the shock wave comes into view at the FRW center, and when
2M = r̄, (assuming t is so large that we can neglect the pressure from this time
onward), the whole solution emerges from the White Hole as a finite ball of mass
expanding into empty space, satisfying 2M

r̄ < 1 everywhere thereafter. In fact,
when r∗ > 0, the zero pressure Oppenheimer-Snyder solution outside the Black

5Since c/H is a good estimate for the age of the universe, it follows that the Hubble
length c/H is approximately the distance of light travel starting at the Big Bang up until
present time. In this sense, the Hubble length is a rough estimate for the distance to the
further most objects visible in the universe.
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Hole gives the large time asymptotics of the solution, (c.f. [27, 41, 35] and the
comments after Theorems 6-8 below).

The exact solutions in the case r∗ = 0 give a general relativistic version of
an explosion into a static, singular, isothermal sphere of gas, qualitatively similar
to the corresponding classical explosion outside the Black Hole, [33]. The main
difference physically between the cases r∗ > 0 and r∗ = 0 is that when r∗ > 0, (the
case when the shock wave emerges from the Big Bang at a distance beyond one
Hubble length), a large region of uniform expansion is created behind the shock
wave at the instant of the Big Bang. Thus, when r∗ > 0, lightlike information
about the shock wave propagates inward from the wave, rather than outward from
the center, as is the case when r∗ = 0 and the shock lies inside one Hubble length6.
It follows that when r∗ > 0, an observer positioned in the FRW spacetime inside

the shock wave, will see exactly what the standard model of cosmology predicts,
up until the time when the shock wave comes into view in the far field. In this
sense, the case r∗ > 0 gives a Black Hole cosmology that refines the standard FRW
model of cosmology to the case of finite mass. One of the surprising differences
between the case r∗ = 0 and the case r∗ > 0 is that, when r∗ > 0, the important
equation of state p = 1

3ρ comes out of the analysis as special at the Big Bang.
When r∗ > 0, the shock wave emerges at the instant of the Big Bang at a finite
non-zero speed, (the speed of light), only for the special value σ = 1/3. In this
case, the equation of state on both sides of the shock wave tends to the correct
relation p = 1

3ρ as t → 0, and the shock wave decelerates to subliminous speed for
all positive times thereafter, (see [40] and Theorem 8 below).

In all cases 0 < σ ≤ 1, r∗ ≥ 0, the spacetime metric that lies beyond the shock
wave is taken to be a metric of Tolmann-Oppenheimer-Volkoff (TOV) form,

ds2 = −B(r̄)dt̄2 +A−1(r̄)dr̄2 + r̄2[dθ2 + sin2θ dφ2]. (1.2)

The metric (1.3) is in standard Schwarzschild coordinates, (diagonal with radial
coordinate equal to the area of the spheres of symmetry), and the metric com-
ponents depend only on the radial coordinate r̄. Barred coordinates are used to
distinguish TOV coordinates from unbarred FRW coordinates for shock matching.
The mass function M(r̄) enters as a metric component through the relation,

6One can imagine that when r∗ > 0, the shock wave can get out through a great deal of
matter early on when everything is dense and compressed, and still not violate the speed
of light bound. Thus when r∗ > 0, the shock wave “thermalizes”, or more accurately
“makes uniform”, a large region at the center, early on in the explosion.
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A = 1 − 2M(r̄)
r̄

. (1.3)

The TOV metric (1.3) has a very different character depending on whether A > 0
or A < 0; that is, depending on whether the solution lies outside the Black Hole
or inside the Black Hole. In the case A > 0, r̄ is a spacelike coordinate, and the
TOV metric describes a static fluid sphere in general relativity.7 When A < 0, r̄ is
the timelike coordinate, and (1.3) is a dynamical metric that evolves in time. The
exact shock wave solutions are obtained by taking r̄ = R(t)r to match the spheres
of symmetry, and then matching the metrics (1.1) and (1.3) at an interface r̄ = r̄(t)
across which the metrics are Lipschitz continuous. This can be done in general. In
order for the interface to be a physically meaningful shock surface, we use the result
in Theorem 4 below, (see [32]), that a single additional conservation constraint is
sufficient to rule out delta function sources at the shock, (the Einstein equations
G = κT are second order in the metric, and so delta function sources will in
general be present at a Lipschitz continuous matching of metrics), and guarantee
that the matched metric solves the Einstein equations in the weak sense. The
Lipschitz matching of the metrics, together with the conservation constraint, leads
to a system of ordinary differential equations (ODE’s) that determine the shock
position, together with the TOV density and pressure at the shock. Since the
TOV metric depends only on r̄, the equations thus determine the TOV spacetime
beyond the shock wave. To obtain a physically meaningful outgoing shock wave,
we impose the constriant p̄ ≤ ρ̄ to ensure that the equation of state on the TOV
side of the shock is qualitatively reasonable, and as the entropy condition we
impose the condition that the shock be compressive. For an outgoing shock wave,
this is the condition ρ > ρ̄, p > p̄, that the pressure and density be larger on
the side of the shock the receives the mass flux—the FRW side when the shock
wave is propagating away from the FRW center. This condition breaks the time
reversal symmetry of the equations, and is sufficient to rule out rarefaction shocks
in classical gas dynamics, [30, 40]. The ODE’s, together with the equation of state
bound and the conservation and entropy constraints, determine a unique solution
of the ODE’s for every 0 < σ ≤ 1 and r̄∗ ≥ 0, and this provides the two parameter
family of solutions discussed here, [33, 40]. The Lipschitz matching of the metrics
implies that the total mass M is continuous across the interface, and so when
r∗ > 0, the total mass of the entire solution, inside and outside the shock wave,
is finite at each time t > 0, and both the FRW and TOV spacetimes emerge at

7The metric (1.3) is, for example, the starting point for the stability limits of Buchdahl
and Chandresekhar for stars, [47, 36, 37].
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the Big Bang. The total mass M on the FRW side of the shock has the meaning
of total mass inside radius r̄ at fixed time, but on the TOV side of the shock, M
does not evolve according to equations that give it the interpretation as a total
mass because the metric is inside the Black Hole. Nevertheless, after the spacetime
emerges from the Black Hole, the total mass takes on its usual meaning outside
the Black Hole, and time asymptotically the Big Bang ends with an expansion of
finite total mass in the usual sense. Thus, when r∗ > 0, our shock wave refinement
of the FRW metric leads to a Big Bang of finite total mass.

A final comment is in order regarding our overall philosophy. The family of
exact shock wave solutions described here are rough models in the sense that the
equation of state on the FRW side satisfies σ = const., and the equation of state
on the TOV side is determined by the equations, and therefore cannot be imposed.
Nevertheless, the bounds on the equations of state imply that the equations of state
are qualitatively reasonable, and we expect that this family of solutions will capture
the gross dynamics of solutions when more general equations of state are imposed.
For more general equations of state, other waves, such as rarefaction waves and
entropy waves, would need to be present to meet the conservation constraint, and
thereby mediate the transition across the shock wave. Such transitional waves
would be pretty much impossible to model in an exact solution. But the fact
that we can find global solutions that meet our physical bounds, and that are
qualitatively the same for all values of σ ∈ (0, 1] and all initial shock positions,
strongly suggests that such a shock wave would be the dominant wave in a large
class of problems.

In Section 2 we derive the FRW solution when σ = const., and discuss the
Hubble length as a critical length scale. In Section 3 we state the general theorems
in [32] for matching gravitational metrics across shock waves. In Section 4 we
discuss the construction of the family of solutions in the case r∗ = 0, and in
Section 5 we discuss the case r∗ > 0. (See [33, 40, 41] for details.)

2 The FRW Metric

According to Einstein’s Theory of General Relativity, all properties of the gravita-
tional field are determined by a Lorentzian spacetime metric tensor g, whose line
element in a given coordinate system x = (x0, ..., x3) is given by

ds2 = gijdx
idxj . (2.1)

(We use the Einstein summation convention whereby repeated up-down indices
are assumed summed from 0 to 3.) The components gij of the gravitational metric
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g satisfy the Einstein equations,

Gij = κT ij , T ij = (ρc2 + p)wiwj + pgij , (2.2)

where we assume the stress-energy tensor T of a perfect fluid. Here G is the
Einstein curvature tensor,

κ =
8πG
c4

(2.3)

is the coupling constant, G is Newton’s gravitational constant, c is the speed of
light, ρc2 is the energy density, p is the pressure, and w = (w0, ..., w3) are the
components of the 4-velocity of the fluid, c.f. [47], and again we use the convention
that c = 1 and G = 1 when convenient.

Putting the metric ansatz (1.1) into the Einstein equations (2.2) gives the
equations for the FRW metric, [47],

H2 =

(
Ṙ

R

)2

=
κ

3
ρ− k

R2
, (2.4)

and

ρ̇ = −3(p+ ρ)H. (2.5)

The unknowns R, ρ and p are assumed to be functions of the FRW coordinate
time t alone, and “dot” denotes differentiation with respect to t.

To verify that the Hubble length r̄crit = 1/H is the limit for FRW-TOV
shock matching outside a Black Hole, write the FRW metric (1.1) in standard
Schwarzschild coordinates x̄ = (r̄, t̄) where the metric takes the form

ds2 = −B(r̄, t̄)dt̄2 +A(r̄, t̄)−1dr̄2 + r̄2dΩ2, (2.6)

and the mass function M(r̄, t̄) is defined through the relation

A = 1 − 2M
r̄
. (2.7)

It is well known that a general spherically symmetric metric can be transformed
to the form (2.6) by coordinate transformation, [47, 12]. Substituting r̄ = Rr into
(1.1) and diagonalizing the resulting metric we obtain, (see [41] for details),

ds2 = − 1
ψ2

{
1 − kr2

1 − kr2 −H2r̄2

}
dt̄2 +

{
1

1 − kr2 −H2r̄2

}
dr̄2 + r̄2dΩ2, (2.8)
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where ψ is an integrating factor that solves the equation

∂

∂r̄

(
ψ

1 − kr2 −H2r̄2

1 − kr2

)
− ∂

∂t

(
ψ

Hr̄

1 − kr2

)
= 0, (2.9)

and the time coordinate t̄ = t̄(t, r̄) is defined by the exact differential

dt̄ =

(
ψ

1 − kr2 −H2r̄2

1 − kr2

)
dt+

(
ψ

Hr̄

1 − kr2

)
dr̄. (2.10)

Now using (2.7) in (2.4), it follows that

M(t, r̄) =
κ

2

∫ r̄

0
ρ(t)s2ds =

1
3
κ

2
ρr̄3. (2.11)

Since in the FRW metric r̄ = Rr measures arclength along radial geodesics at
fixed time, we see from (2.11) that M(t, r̄) has the physical interpretation as the
total mass inside radius r̄ at time t in the FRW metric. Restricting to the case
of critical expansion k = 0, we see from (2.4), (2.11) and (2.10) that r̄ = H−1 is
equivalent to 2M

r̄ = 1, and so at fixed time t, the following equivalences are valid:

r̄ = H−1 iff
2M
r̄

= 1 iff A = 0. (2.12)

We conclude that r̄ = H−1 is the critical length scale for the FRW metric at fixed
time t in the sense that A = 1− 2M

r̄ changes sign at r̄ = H−1, and so the universe
lies inside a Black Hole beyond r̄ = H−1, as claimed above. Now we proved in [36]
that the standard TOV metric outside the Black Hole cannot be continued into
A = 0 except in the very special case ρ = 0. (It takes an infinite pressure to hold
up a static configuration at the event horizon of a Black Hole.) Thus to do shock
matching beyond one Hubble length requires a metric of a different character, and
for this purpose, in [41] we introduce the TOV metric inside the Black Hole—a
metric of TOV form, with A < 0, whose fluid is co-moving with the timelike radial
coordinate r̄.

The Hubble length r̄crit = c
H is also the critical distance at which the outward

expansion of the FRW metric exactly cancels the inward advance of a radial light
ray impinging on an observer positioned at the origin of a k = 0 FRW metric.
Indeed, by (1.1), a light ray traveling radially inward toward the center of an
FRW coordinate system satisfies,

c2dt2 = R2dr2, (2.13)
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so that

dr̄

dt
= Ṙr +Rṙ = Hr̄ − c = H(r̄ − c

H
) > 0, (2.14)

if and only if

r̄ >
c

H
.

Thus the arclength distance from the origin to an inward moving light ray at fixed
time t in a k = 0 FRW metric will actually increase as long as the light ray lies
beyond the Hubble length. An inward moving light ray will, however, eventually
cross the Hubble length and reach the origin in finite proper time, due to the
increase in the Hubble length with time.

We now calculate the infinite redshift limit in terms of the Hubble length. It
is well known that light emitted at (te, re) at wavelength λe in an FRW spacetime
will be observed at (t0, r0) at wavelength λ0 if

R0

Re
=

λ0

λe
.

Moreover, the redshift factor z is defined by

z =
λ0

λe
− 1.

Thus, infinite redshifting occurs in the limit Re → 0, where R = 0, t = 0 is
the Big Bang. Consider now a light ray emitted at the instant of the Big Bang,
and observed at the FRW origin at present time t = t0. Let r∞ denote the FRW
coordinate at time t → 0 of the furthestmost objects that can be observed at the
FRW origin before time t = t0. Then r∞ marks the position of objects at time
t = 0 whose radiation would be observed as infinitly redshifted, (assuming no
scattering). Note then that a shock wave emanating from r̄ = 0 at the instant of
the Big Bang, will be observed at the FRW origin before present time t = t0 only
if its position r at the instant of the Big Bang satisfies r < r∞. To estimate r∞,
note first that from (2.13) it follows that an incoming radial light ray in an FRW
metric follows a lightlike trajectory r = r(t) if

r − re = −
∫ t

te

dτ

R(τ)
,

and thus
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r∞ =
∫ t0

0

dτ

R(τ)
. (2.15)

Using this, the following theorem is proved in [41].

Theorem 1 If the pressure p satisfies the bounds

0 ≤ p ≤ 1
3
ρ, (2.16)

then for any equation of state, the age of the universe t0 and the infinite red shift
limit r∞ are bounded in terms of the Hubble length by

1
2H0

≤ t0 ≤ 2
3H0

, (2.17)

1
H0

≤ r∞ ≤ 2
H0

. (2.18)

(We have assumed that R = 0 when t = 0 and R = 1 when t = t0, H = H0.)

The next theorem gives closed form solutions of the FRW equations (2.4), (2.5)
in the case when σ = const. As a special case we recover the bounds in (2.17) and
(2.18) from the cases σ = 0 and 1/3.

Theorem 2 Assume k = 0 and the equation of state

p = σρ, (2.19)

where σ is taken to be constant,

0 ≤ σ ≤ 1.

Then, (assuming an expanding universe Ṙ > 0), the solution of system (2.4), (2.5)
satisfying R = 0 at t = 0 and R = 1 at t = t0 is given by,

ρ = 4
3κ(1+σ)2

1
t2
, (2.20)

R =
(

t
t0

) 2
3(1+σ) , (2.21)

H
H0

= t0
t . (2.22)

Moreover, the age of the universe t0 and the infinite red shift limit r∞ are given
exactly in terms of the Hubble length by
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t0 =
2

3(1 + σ)
1
H0

, (2.23)

r∞ =
2

1 + 3σ
1
H0

. (2.24)

From (2.24) we conclude that a shock wave will be observed at the FRW origin
before present time t = t0 only if its position r at the instant of the Big Bang
satisfies r < 2

1+3σ
1

H0
. Note that r∞ ranges from one half to two Hubble lengths

as σ ranges from 1 to 0, taking the intermediate value of one Hubble length at
σ = 1/3, c.f. (2.18).

Note that using (2.20)-(2.21) in (2.11), it follows that

M =
κ

2

∫ r̄

0
ρ(t)s2ds =

2r̄3

9(1 + σ)2t
2

1+σ

0

t
−2σ
1+σ , (2.25)

so Ṁ < 0 if σ > 0. It follows that if p = σρ, σ = const. > 0, then the total mass
inside radius r = const. decreases in time.

3 The General Theory of Shock Matching

The matching of the FRW and TOV metrics in the next two sections is based on
the following theorems that were derived in [32]8 .

Theorem 3 Let Σ denote a smooth, 3-dimensional shock surface in spacetime
with spacelike normal vector n relative to the spacetime metric g, let K denote
the second fundamental form on Σ, and let G denote the Einstein curvature ten-
sor. Assume that the components gij of the gravitational metric g are smooth on
either side of Σ, (continuous up to the boundary on either side separately), and
Lipschitz continuous across Σ in some fixed coordinate system. Then the following
statements are equivalent:
(i) [K] = 0 at each point of Σ.
(ii) The curvature tensors Ri

jkl and Gij , viewed as second order operators on the
metric components gij , produce no delta function sources on Σ.

8Theorems 3 and 4 apply to non-lightlike shock surfaces. The lightlike case was done
in [29].
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(iii) For each point P ∈ Σ there exists a C1,1 coordinate transformation defined in
a neighborhood of P, such that, in the new coordinates, (which can be taken to be
the Gaussian normal coordinates for the surface), the metric components are C1,1

functions of these coordinates.
(iv) For each P ∈ Σ, there exists a coordinate frame that is locally Lorentzian at
P, and can be reached within the class of C1,1 coordinate transformations.
Moreover, if any one of these equivalencies hold, then the Rankine-Hugoniot jump
conditions, [G]σi nσ = 0, (which express the weak form of conservation of energy
and momentum across Σ when G = κT ), hold at each point on Σ.

Here [f ] denotes the jump in the quantity f across Σ, (this being determined by
the metric separately on each side of Σ because gij is only Lipschitz continuous
across Σ), and by C1,1 we mean that the first derivatives are Lipschitz continuous.

In the case of spherical symmetry, the following stronger result holds. In this
case, the jump conditions [Gij ]ni = 0, that express the weak form of conserva-
tion across a shock surface, are implied by a single condition [Gij ]ninj = 0, so
long as the shock is non–null, and the areas of the spheres of symmetry match
smoothly at the shock and change monotonically as the shock evolves. Note that
in general, assuming that the angular variables are identified across the shock,
we expect conservation to entail two condtions, one for the time and one for the
radial components. The fact that the smooth matching of the spheres of symme-
try reduces conservation to one condition can be interpreted as an instance of the
general principle that directions of smoothness in the metric imply directions of
conservation of the sources.

Theorem 4 Assume that g and ḡ are two spherically symmetric metrics that
match Lipschitz continuously across a three dimensional shock interface Σ to form
the matched metric g ∪ ḡ. That is, assume that g and ḡ are Lorentzian metrics
given by

ds2 = −a(t, r)dt2 + b(t, r)dr2 + c(t, r)dΩ2, (3.1)

and
ds̄2 = −ā(t̄, r̄)dt̄2 + b̄(t̄, r̄)dr̄2 + c̄(t̄, r̄)dΩ2, (3.2)

and that there exists a smooth coordinate transformation Ψ : (t, r) → (t̄, r̄), defined
in a neighborhood of a shock surface Σ given by r = r(t), such that the metrics
agree on Σ. (We implicitly assume that θ and ϕ are continuous across the surface.)
Assume that

c(t, r) = c̄(Ψ(t, r)), (3.3)
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in an open neighborhood of the shock surface Σ, so that, in particular, the areas of
the 2-spheres of symmetry in the barred and unbarred metrics agree on the shock
surface. Assume also that the shock surface r = r(t) in unbarred coordinates is
mapped to the surface r̄ = r̄(t̄) by (t̄, r̄(t̄)) = Ψ(t, r(t)). Assume, finally, that the
normal n to Σ is non–null, and that

n(c) 
= 0 (3.4)

where n(c) denotes the derivative of the function c in the direction of the vector
n.9 Then the following are equivalent to the statement that the components of the
metric g∪ ḡ in any Gaussian normal coordinate system are C1,1 functions of these
coordinates across the surface Σ :

[Gi
j ]ni = 0, (3.5)

[Gij ]ninj = 0, (3.6)

[K] = 0. (3.7)

Here again, [f ] = f̄ − f denotes the jump in the quantity f across Σ, and K is the
second fundamental form on the shock surface.

4 FRW-TOV Shock Matching Outside the Black

Hole—The Case r∗ = 0

To construct the family of shock wave solutions for parameter values 0 < σ ≤ 1
and r∗ = 0, we match the exact solution (2.20)-(2.22) of the FRW metric (1.1) to
the TOV metric (1.3) outside the Black Hole, assuming A > 0. In this case, we
can bypass the problem of deriving and solving the ODE’s for the shock surface
and constraints discussed above, by actually deriving the exact solution of the
Einstein equations of TOV form that meets these equations. This exact solution

9I.e., we assume that the areas of the 2-spheres of symmetry change monotonically in
the direction normal to the surface. E.g., if c = r2, then ∂

∂tc = 0, so the assumption
n(c) 
= 0 is valid except when n = ∂

∂t , in which case the rays of the shock surface would be
spacelike. Thus the shock speed would be faster than the speed of light if our assumption
n(c) 
= 0 failed in the case c = r2.
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represents the general relativistic version of a static, singular isothermal sphere—
singular because it has an inverse square density profile, and isothermal because
the relationship between the density and pressure is p̄ = σ̄ρ̄, σ̄ = const.

Assuming the stress tensor for a perfect fluid, and assuming that the density
and pressure depend only on r̄, the Einstein equations for the TOV metric (1.3)
outside the Black Hole, (that is, when A = 1 − 2M

r̄ > 0), are equivalent to the
Oppenheimer-Volkoff system

dM

dr̄
= 4πr̄2ρ̄, (4.1)

−r̄2 d

dr̄
p̄ = GMρ̄

{
1 +

p̄

ρ̄

} {
1 +

4πr̄3p̄

M

} {
1 − 2GM

r̄

}−1

. (4.2)

Integrating (4.1) we obtain the usual interpretation of M as the total mass inside
radius r̄,

M(r̄) =
∫ r̄

0
4πξ2ρ̄(ξ)dξ. (4.3)

The metric component B ≡ B(r̄) is determined from ρ̄ and M through the equation

B′(r̄)
B

= −2
p̄′(r̄)
p̄+ ρ̄

. (4.4)

Assuming
p̄ = σ̄ρ̄, ρ̄(r̄) =

γ

r̄2
, (4.5)

for some constants σ̄ and γ, and substituting into (4.3), we obtain

M(r̄) = 4πγr̄. (4.6)

Putting (4.5)-(4.6) into (4.2) and simplifying yields the identity

γ =
1

2πG

(
σ̄

1 + 6σ̄ + σ̄2

)
. (4.7)

From (4.3) we obtain
A = 1 − 8πGγ < 1. (4.8)

Applying (4.4) leads to

B = B0

(
ρ̄

ρ̄0

)− 2σ̄
1+σ̄

= B0

(
r̄

r̄0

) 4σ̄
1+σ̄

. (4.9)
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By rescaling the time coordinate, we can take B0 = 1 at r̄0 = 1, in which case
(4.9) reduces to

B = r̄
4σ̄

1+σ̄ . (4.10)

We conclude that when (4.7) holds, (4.5)-(4.8) and (4.9) provide an exact solution
of the Einstein field equations of TOV type10, for each 0 ≤ σ̄ ≤ 1. By (4.8), these
solutions are defined outside the Black Hole, since 2M

r̄ < 1. When σ̄ = 1/3, (4.7)
yields γ = 3

56πG , (c.f., [47], equation (11.4.13)).
To match the FRW exact solution (2.20)-(2.22) with equation of state p = σρ

to the TOV exact solution (4.5)-(4.10) with equation of state p̄ = σ̄ρ̄ across a shock
interface, we first set r̄ = Rr to match the spheres of symmetry, and then match
the timelike and spacelike components of the corresponding metrics in standard
Schwarzschild coordinates. The matching of the dr̄2 coefficient A−1 yields the
conservation of mass condition that implicitly gives the shock surface r̄ = r̄(t),

M(r̄) =
4π
3
ρ(t)r̄3. (4.11)

Using this together with (4.6) and (4.6) gives the following two relations that hold
at the shock surface:

r̄ =

√
3γ
ρ(t)

, (4.12)

ρ =
3
4π

M

r̄(t)3
=

3γ
r̄(t)2

= 3ρ̄. (4.13)

Matching the dt̄2 coefficient B on the shock surface determines the integrating
factor ψ in a neighborhood of the shock surface by assigning initial conditions
for (2.9). Finally, the conservation constraint [Tij ]ninj = 0 leads to the single
condition

0 = (1 −A)(ρ+ p̄)(p+ ρ̄)2 +
(

1 − 1
A

)
(ρ̄+ p̄)(ρ+ p)2 + (p− p̄)(ρ− ρ̄)2, (4.14)

which upon using p = σρ and p̄ = σ̄ρ̄ is satisfied assuming the condition

σ̄ =
1
2

√
9σ2 + 54σ + 49 − 3

2
σ − 7

2
≡ H(σ). (4.15)

10In this case, an exact solution of TOV type was first found by Tolman [45], and
rediscovered in the case σ̄ = 1/3 by Misner and Zapolsky, c.f. [47], page 320.
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Alternatively, we can solve for σ in (4.15) and write this relation as

σ =
σ̄(σ̄ + 7)
3(1 − σ̄)

. (4.16)

This guarantees that conservation holds across the shock surface, and so it follows
from Theorem 4 that all of the equivalencies in Theorem 3 hold across the shock
surface. Note that H(0) = 0, and to leading order σ̄ = 3

7σ+O(σ2) as σ → 0. Within
the physical region 0 ≤ σ, σ̄ ≤ 1, H ′(σ) > 0, σ̄ < σ, and H(1/3) =

√
17−4 ≈ .1231,

H(1) =
√

112
2 − 5 ≈ .2915.

Using the exact formulas for the FRW metric in (2.20)-(2.22), and setting
R0 = 1 at ρ = ρ0, t = t0, we obtain the following exact formulas for the shock
position:

r̄(t) = αt, (4.17)

r(t) = r̄(t)R(t)−1 = β t
1+3σ
3+3σ , (4.18)

where

α = 3(1 + σ)

√
σ̄

1 + 6σ̄ + σ̄2
,

β = α
1+3σ
3+3σ

(
3γ
ρ0

) 1
3+3σ

. (4.19)

It follows from (4.6) that A > 0, and from (4.18) that r∗ = limt→0 r(t) = 0. The
entropy condition that the shock wave be compressive follows from the fact that
σ̄ = H(σ) < σ. Thus we conclude that for each 0 < σ ≤ 1, r∗ = 0, the solutions
constructed in (4.5)-(4.19) define a one parameter family of shock wave solutions
that evolve everywhere outside the Black Hole, which implies that the distance
from the shock wave to the FRW center is less than one Hubble length for all
t > 0.

Using (4.17) and (4.18), one can determine the shock speed, and check when
the Lax Characteristic condition holds at the shock. The result is the following11,
(see [33] for details),

11Note that even when the shock speed is larger than c, only the wave, and not the
sound speeds or any other physical motion, exceeds the speed of light. See [29] for the
case when the shock speed is equal to the speed of light
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Theorem 5 There exist values 0 < σ1 < σ2 < 1, (σ1 ≈ .458, σ2 =
√

5/3 ≈ .745),
such that, for 0 < σ ≤ 1, the Lax characteristic condition holds at the shock if and
only if 0 < σ < σ1; and the shock speed is less than the speed of light if and only if
0 < σ < σ2.

The explicit solution in the case r∗ = 0 can be interpreted as a general rela-
tivistic version of a shock wave explosion into a static, singular, isothermal sphere,
known in the Newtonian case as a simple model for star formation, (see [36, 4]).
As the scenario goes, a star begins as a diffuse cloud of gas. The cloud slowly
contracts under its own gravitational force by radiating energy out through the
gas cloud as gravitational potential energy is converted into kinetic energy. This
contraction continues until the gas cloud reaches the point where the mean free
path for transmission of light is small enough that light is scattered, instead of
transmitted, through the cloud. The scattering of light within the gas cloud has
the effect of equalizing the temperature within the cloud, and at this point the
gas begins to drift toward the most compact configuration of the density that bal-
ances the pressure when the equation of state is isothermal. This configuration
is a static, singular, isothermal sphere, the general relativistic version of which is
the exact TOV solution beyond the shock wave when r∗ = 0. This solution in the
Newtonian case is also inverse square in the density and pressure, and so the den-
sity tends to infinity at the center of the sphere. Eventually, the high densities at
the center ingnite thermonuclear reactions. The result is a shock-wave explosion
emanating from the center of the sphere, and this signifies the birth of the star.
The exact solutions when r∗ = 0 represent a general relativistic version of such a
shock-wave explosion.

5 Shock Wave Solutions Inside the Black Hole—

The case r∗ > 0.

When the shock wave is beyond one Hubble length from the FRW center, we obtain
a family of shock wave solutions for each 0 < σ ≤ 1 and r∗ > 0 by shock matching
the FRW metric (1.1) to a TOV metric of form (1.3) under the assumption that

A(r̄) = 1 − 2M(r̄)
r̄

≡ 1 −N(r̄) < 0. (5.1)

In this case, r̄ is the timelike variable. Assuming the stress tensor T is taken to
be that of a perfect fluid co-moving with the TOV metric, the Einstein equations
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G = κT, inside the Black Hole, take the form, (see [41] for details),

p̄′ =
p̄+ ρ̄

2
N ′

N − 1
, (5.2)

N ′ = −
{
N

r̄
+ κp̄r̄

}
, (5.3)

B′

B
= − 1

N − 1

{
N

r̄
+ κρ̄

}
. (5.4)

The system (5.2)-(5.4) defines the simplest class of gravitational metrics that
contain matter, evolve inside the Black Hole, and such that the mass function
M(r̄) < ∞ at each fixed time r̄. System (5.2)-(5.4) for A < 0 differs substantially
from the TOV equations for A > 0 because, for example, the energy density T 00 is
equated with the timelike component Grr when A < 0, but with Gtt when A > 0.
In particular, this implies that, inside the Black Hole, the mass function M(r̄)
does not have the interpretation as a total mass inside radius r̄ as it does outside
the Black Hole.

The equations (5.3), (5.4) do not have the same character as (4.1), (4.2) and
the relation p̄ = σ̄ρ̄ with σ̄ = const. is inconsistent with (5.3), (5.4) together with
the conservation constraint and the FRW assumption p = σρ for shock matching.
Thus, instead of looking for an exact solution of (5.3), (5.4) ahead of time, as in
the case r∗ = 0, we assume the FRW solution (2.20)-(2.22), and derive the ODE’s
that describe the TOV metrics that match this FRW metric Lipschitz continuously
across a shock surface, and then impose the conservation, entropy and equation of
state constraints at the end. Matching a given k = 0 FRW metric to a TOV metric
inside the Black Hole across a shock interface, leads to the system of ODE’s, (see
[41]) for details),

du

dN
= −

{
(1 + u)

2(1 + 3u)N

} {
(3u− 1)(σ − u)N + 6u(1 + u)

(σ − u)N + (1 + u)

}
, (5.5)

dr̄

dN
= − 1

1 + 3u
r̄

N
, (5.6)

with conservation constraint

v =
−σ (1 + u) + (σ − u)N

(1 + u) + (σ − u)N
, (5.7)

where

u =
p̄

ρ
, v =

ρ̄

ρ
, σ =

p

ρ
. (5.8)
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Here ρ and p denote the (known) FRW density and pressure, and all variables are
evaluated at the shock. Solutions of (5.5)-(5.7) determine the (unknown) TOV
metrics that match the given FRW metric Lipschitz continuously across a shock
interface, such that conservation of energy and momemtum hold across the shock,
and such that there are no delta function sources at the shock, [14, 34]. Note that
the dependence of (5.5)-(5.7) on the FRW metric is only through the variable σ,
and so the advantage of taking σ = const. is that the whole solution is determined
by the inhomogeneous scalar equation (5.5) when σ = const. We take as the
entropy constraint the condition that

0 < p̄ < p, 0 < ρ̄ < ρ, (5.9)

and to insure a physically reasonable solution, we impose the equation of state
constriant on the TOV side of the shock

0 < p̄ < ρ̄. (5.10)

Condition (5.9) implies that outgoing shock waves are compressive. Inequalities
(5.9) and (5.10) are both implied by the single condition, (see [41])),

1
N

<

(
1 − u

1 + u

) (
σ − u

σ + u

)
. (5.11)

Since σ is constant, equation (5.5) uncouples from (5.6), and thus solutions of
system (5.5)-(5.7) are determined by the scalar non-autonomous equation (5.5).
Making the change of variable S = 1/N, which transforms the “Big Bang” N → ∞
over to a rest point at S → 0, we obtain,

du

dS
=

{
(1 + u)

2(1 + 3u)S

} {
(3u− 1)(σ − u) + 6u(1 + u)S

(σ − u) + (1 + u)S

}
. (5.12)

Note that the conditions N > 1 and 0 < p̄ < p restrict the domain of (5.12) to
the region 0 < u < σ < 1, 0 < S < 1. The next theorem gives the existence of
solutions for 0 < σ ≤ 1, r∗ > 0, inside the Black Hole, c.f. [40]:

Theorem 6 For every σ, 0 < σ < 1, there exists a unique solution uσ(S) of
(5.12), such that (5.11) holds on the solution for all S, 0 < S < 1, and on this
solution, 0 < uσ(S) < ū, limS→0 uσ(S) = ū, where

ū = Min {1/3, σ} , (5.13)
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and

lim
S→1

p̄ = 0 = lim
S→1

ρ̄. (5.14)

For each of these solutions uσ(S), the shock position is determined by the solution
of (5.6), which in turn is determined uniquely by an initial condition which can
be taken to be the FRW radial position of the shock wave at the instant of the Big
Bang,

r∗ = lim
S→0

r(S) > 0. (5.15)

Concerning the the shock speed, we have:

Theorem 7 Let 0 < σ < 1. Then the shock wave is everywhere subluminous, that
is, the shock speed sσ(S) ≡ s(uσ(S)) < 1 for all 0 < S ≤ 1, if and only if σ ≤ 1/3.

Concerning the shock speed near the Big Bang S = 0, the following is true:

Theorem 8 The shock speed at the Big Bang S = 0 is given by:

lim
S→0

sσ(S) = 0, σ < 1/3, (5.16)

lim
S→0

sσ(S) = ∞, σ > 1/3, (5.17)

lim
S→0

sσ(S) = 1, σ = 1/3. (5.18)

Theorem 8 shows that the equation of state p = 1
3ρ plays a special role in the

analysis when r∗ > 0, and only for this equation of state does the shock wave
emerge at the Big Bang at a finite non-zero speed, the speed of light. Moreover,
(5.13) implies that in this case, the correct relation p̄

ρ̄ = σ̄ is also achieved in the
limit S → 0. The result (5.14) implies that, (neglecting the pressure p at this time
onward), the solution continues to a k = 0 Oppenheimer-Snyder solution outside
the Black Hole for S > 1.

It follows that the shock wave will first become visible at the FRW center
r̄ = 0 at the moment t = t0, (R(t0) = 1), when the Hubble length H−1

0 = H−1(t0)
satisfies

1
H0

=
1 + 3σ

2
r∗, (5.19)
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where r∗ is the FRW position of the shock at the instant of the Big Bang. At this
time, the number of Hubble lengths

√
N0 from the FRW center to the shock wave

at time t = t0 can be estimated by

1 ≤ 2
1 + 3σ

≤
√
N0 ≤ 2

1 + 3σ
e
√

3σ( 1+3σ
1+σ ).

Thus, in particular, the shock wave will still lie beyond the Hubble length 1/H0

at the FRW time t0 when it first becomes visible. Furthermore, the time tcrit > t0
at which the shock wave will emerge from the White Hole given that t0 is the first
instant at which the shock becomes visible at the FRW center, can be estimated
by

2
1 + 3σ

e
1
4
σ ≤ tcrit

t0
≤ 2

1 + 3σ
e

2
√

3σ
1+σ , (5.20)

for 0 < σ ≤ 1/3, and by the better estimate

e
√

6
4 ≤ tcrit

t0
≤ e

3
2 , (5.21)

in the case σ = 1/3. Inequalities (5.20), (5.21) imply, for example, that at the
Oppenheimer-Snyder limit σ = 0,

√
N0 = 2,

tcrit

t0
= 2,

and in the limit σ = 1/3,

1.8 ≤ tcrit

t0
≤ 4.5, 1 <

√
N0 ≤ 4.5.

We can conclude that the moment t0 when the shock wave first becomes visible at
the FRW center, the shock wave must lie within 4.5 Hubble lengths of the FRW
center. Throughout the expansion up until this time, the expanding universe must
lie entirely within a White Hole—the universe will eventually emerge from this
White Hole, but not until some later time tcrit, where tcrit does not exceed 4.5t0.

6 Conclusion

We believe that the existence of a wave at the leading edge of the expansion of
the galaxies is the most likely possibility. The alternatives are that either the
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universe of expanding galaxies goes on out to infinity, or else the universe is not
simply connected. Although the first possibility has been believed for most of the
history of cosmology based on the Friedmann universe, we find this implausible and
arbitrary in light of the shock wave refinements of the FRW metric discussed here.
The second possibility, that the universe is not simply connected, has received
considerable attention recently12. However, since we have not seen, and cannot
create, any non-simply connected 3-spaces on any other length scale, and since
there is no observational evidence to support this, we view this as less likely than
the existence of a wave at the leading edge of the expansion of the galaxies, left
over from the Big Bang. Recent analysis of the microwave background radiation
data shows a cut-off in the angular frequencies consistent with a length scale of
around one Hubble length, [1]. This certainly makes one wonder whether this
cutoff is evidence of a wave at this length scale, especially given the consistency of
this possibility with the case r∗ > 0 of the family exact solutions discussed here.
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