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1 Introduction

Abstract

We introduce the locally inertial Godunov method with dynamical time dilation, and
use it to simulate a point of GR shock wave interaction starting from an initial data
set that meets the Einstein-Euler constraint equations weakly. The forward time sim-
ulations, presented here, resolve the secondary wave in the Smoller-Temple shock wave
model for an explosion into a static, singular, isothermal sphere. The backward time
solutions indicate black hole formation from a smooth solution via collapse associated
with an incoming rarefaction wave. A new feature is that spacetime is approximated
as locally flat in each grid cell so that Riemann problems and the Godunov method can
be implemented. Clocks are then dynamically dilated to simulate effects of spacetime
curvature. Prior work of Groah and Temple justifies meeting the Einstein constraint
equations for the initial data only at the weak level of Lipshitz continuity in the met-
ric. As far as we know, this is the first definitive numerical analysis of shock wave
interaction in general relativity. In a followup paper, Rientjes and Temple will present
Rientjes new proof that such points of shock wave interaction represent a new kind of
singularity in general relativity, where spacetime is not locally flat.

We summarize the results in the thesis [16] in which Vogler introduces what we term the
locally inertial Godunov method with dynamic time-dilation, a fractional step method for
simulating spherically symmetric shock-wave solutions of the Einstein-Euler equations in
Standard Schwarzschild Coordinates (SSC), [2]. The underlying issue is that the gravita-
tional metric appears to be singular at shock waves in SSC coordinates, the coordinates
in which the Einstein equations take the simplest form, [2]. The simulations here give a

1This work summarizes results that first appeared in Vogler’s doctoral dissertation, [16]
2Department of Mathematics, University of California, Davis, Davis CA 95616; Supported by NSF Ap-

plied Mathematics Grant Number DMS-070-7532
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definitive numerical demonstration that the locally inertial Godunov method is neverthe-
less a viable first order numerical method for simulating shock waves in SSC. Numerical
convergence of the method is demonstrated for an initial data set obtained by matching a
critically expanding Friedmann-Robertson-Walker (FRW) spacetime to the inside of a static
Tolmann-Oppenheimer-Volkoff (TOV) solution, creating a point of shock wave interaction.3

The subsequent evolution provides a simple model for a general relativistic (GR) explosion
containing both an imploding and exploding shock wave. The backward time evolution shows
black hole formation from an imploding expansion wave. The theory in [2] confirms that
the FRW and TOV solutions need only join up Lipschitz continuously at fixed time in order
to meet the Einstein constraint equations weakly. The most interesting new feature of the
numerical method is that curved spacetime is approximated by Minkowski flat spacetime in
each grid cell making approximation by Riemann problems (RP) and the Godunov method
viable, and this is compensated for by dilating the clocks in each grid cell to account for
spacetime curvature. In this paper we record the elements of the numerical method at a
level sufficient for replication, present a definitive case for convergence of the method, and
establish the Lipschitz structure of the gravitational metric at points of shock wave interac-
tion in the forward time simulation of a GR explosion. In a followup paper, Rientjes and
Temple will present Rientjes’ new proof 4 that at such points of shock wave interaction, the
gravitational metric is essentially only Lipschitz continuous, cannot be smoothed by coordi-
nate transformation, and as a consequence, points of shock wave interaction simulated here
represent a new kind of singularity in general relativity, where spacetime is not locally flat.

The point of departure for this work is the existence theory [2], in which Groah and second
author prove existence of weak shock wave solutions of the Einstein equations in SSC for
gravitational metrics that are only C0,1 (Lipschitz continuous)5 at shock waves. Weak solu-
tions are proven to exist for finite time starting from an initial C0,1 gravitational metric, and
initial density and velocity profiles of bounded total variation. Although solutions appear to
be singular at shocks in the sense that second derivatives of the C0,1 gravitational metrics
contain delta function sources, the analysis shows that the delta functions cancel out in the
curvature tensor, and the Einstein equations are satisfied weakly. This analysis was the first
to connect general relativity to the Glimm scheme through a locally inertial formulation of
the Einstein-Euler equations. The locally inertial formulation is amenable to approximation
locally by flat Minkowski spacetime, so exact RP solutions for the relativisitic compressible
Euler equations can be used in each grid cell, thereby making the analysis of a fractional step
Glimm scheme feasible, [4, 1, 8]. Although the conclusion is that solutions with Lipschitz
continuous gravitational metrics make physical sense in SSC as weak solutions of the Ein-
stein equations in the presence of arbitrary numbers of interacting shock waves of arbitrary
strength, [2] is a general theorem, and there is no known analysis that rigorously details the
local structure of solutions at shock wave interactions. In his thesis [16], Vogler developed
these ideas into a viable numerical method, and used it to carefully simulated a point of GR

3Shock surfaces generically intersect on a two dimensional surface in spacetime, but radial shocks with
spherical symmetry intersect on a three dimensional surface, and cross at a single point in the (t, r) plane.

4The problem was first proposed in second author’s NSF grant DMS-070-7532.
5Here, Ck,l denotes the space of k-continuously differentiable functions whose kth derivative is Holder

continuous with exponent l, C0,1 then denoting the space of Lipschitz continuous functions, c.f. [2].
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shock wave interaction in forward time, and black hole formation in backward time. This is
interesting from several standpoints.

First, the numerics and supporting analysis establish and clarify the C0,1 structure of the
gravitational metric at points of shock wave interaction. This sets the stage for the forth-
coming paper with Reintjes which supplies a proof that, in contrast to Israel’s Theorem for
single shock surfaces [5], (which states that the gravitational metric can always we smoothed
from C0,1 to C1,1 at points on a smooth shock surface in GR), gravitational metrics with this
structure cannot be smoothed to C1,1 by coordinate transformation, the level of smoothness
usually assumed in GR, [10, 3]. In particular, taken together, this demonstrates that there
do not exist coordinate systems better than SSC in which the weak solutions constructed by
Groah and Temple are actually C1,1 strong solutions of the Einstein equations when shock
wave interactions are present.

Another point of interest is that we can assume the fundamental equation of state p = σρ,
σ = c2/3,6 and thereby dovetail nicely with the results in [9] which established that this
is a relativistic Nishida system for flat Minkowski spacetime. We employ the exact global
solution of the RP of [9], greatly simplifying the RP step of the locally inertial Godunov
method, [9, 14], c.f. [7, 9].

The initial data set is also interesting in its own right as a natural starting point for a rigor-
ous proof of GR shock-wave or black hole formation from smooth solutions. It is constructed
by matching initial data from a critical (k = 0) FRW spacetime in self-similar coordinates
[15], to initial data for the exact TOV solution modeling a general relativistic static sin-
gular isothermal sphere [11], and there is a one parameter family of such matchings. The
forward time simulation can be interpreted as resolving the secondary reflected wave in the
Smoller-Temple model of a GR explosion into a static isothermal sphere [11]. The original
Smoller-Temple model was the first example of an exact GR shock wave, and exact formulas
were obtained by eliminating the secondary (incoming) reflected wave, this being effected
by a change in equation of state across the outgoing shock, (approximating a drop in in
temperature across the shock in the isothermal case σ < c2/3). Assuming no change in the
equation of state at the shock, correct when σ = c2/3, the numerics demonstrate that the
secondary reflected wave is an incoming shock wave, not a rarefaction wave. And finally,
because the initial data set agrees with exact solutions on either side of the FRW-TOV inter-
section, finite speed of propagation implies that exact boundary conditions can be imposed
and convergence can be tested on either side of a bounded region of interaction. In particu-
lar, the method entails starting with boundary data on the FRW side of the simulation, and
integrating through the region of interaction to recover (up to transformation of the SSC
time variable) the TOV metric on the other side. Thus we have a GR framework tailored
for a definitive test of convergence of numerical methods at shock waves.

We note also that because the existence theory in [2] applies when the gravitational metric

6Here p is the pressure, ρ is the energy density, c is the speed of light, and p = c2

3
ρ is the exact equation

of state for both pure radiation and the extreme relativisitc limit of free particles, c.f. [17].
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is only C0,1, the Einstein equations are satisfied only weakly in the sense of the theory of
distributions, at shock waves. For the Einstein equations to hold strongly, the metric must
be at least C1,1, one degree smoother. But the admissibility of metrics at the lower regularity
C0,1 in SSC is what makes it feasible to create viable initial data from exact FRW and TOV
solutions because, to meet the Einstein constraint equations weakly on the initial data set
in SSC, solutions need only match Lipschitz continuously at a given time. Matching metrics
at the stronger level of C1,1 would be problematic.

The numerical demonstrations are backed up by Theorem 9.1 below, which states that
if a sequence of approximate solutions generated by the locally inertial Godunov method
converge pointwise almost everywhere and the total variation of the fluid variables remains
uniformly bounded in time, then the limit solution is an exact weak solution to the Einstein
equations. By this general theorem it suffices only to demonstrate numerical convergence to
a limit, with bounded oscillations, in order to conclude the simulated solutions accurately
represent exact (weak) solutions of the Einstein equations.

For the backward time solution in [16], the simulation shows black hole formation via collapse
by an incoming expansion wave, (a generalized rarefaction wave). Since black holes cannot
form in finite time in SSC due to infinite time-dilation at the Schwarzschild radius, we argue
for black hole formation by numerically confirming the solution gets well within the Buchdahl
stability limit of 9/8 the Schwarzschild radius, the limit beyond which there exists no static
configuration sufficient to hold the mass up from the inside, [12]. Specifically, we take the
numerics to a time-dilation factor of 2.9×104, and black hole number 2GM/r = .922 ≥ .888...,
the latter being the Buchdahl limit. This calculation took about a week to perform on a PC.
A proposal for future research is to simulate all the way into and through the black hole by
continuing the evolution via a locally inertial formulation of the equations in transformed
coordinates, like Eddington-Finkelstein or Kruskal, that regularize the singularity at the
Schwarzschild radius, [17]. (See [6] and references therein for a numerical investigation of
black hole and shock wave formation by shock capturing methods.)

In Section 2 we introduce the Einstein-Euler equations, and the FRW and TOV exact solu-
tions. In Section 3 we give formulas for the FRW metric in SSC coordinates. In Section 4
we give formulas for a TOV static isothermal sphere. In 5 we give one parameter family of
matched FRW-TOV initial data. In 6 we give the elements of the locally inertial Godunov
method. In Section 7 we discuss the Riemann problem step of the method. In Section 8
we put in the time-dilation. In Section 9 we state Theorem 9.1 on convergence. In Section
10 we present the forward time simulations, and give a definitive numerical demonstration
of the convergence of the locally inertial Godunov method in the presence of shock waves.
Section 10 we put in dimensions to give an indication of the physical regimes to which the
simulations apply.
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2 Preliminaries

The Einstein-Euler equations
G = κT, (1)

of general relativity are equations for the gravitational metric tensor g, coupled to the rela-
tivistic compressible Euler equations through the identity

Div T = 0. (2)

Here G is the Einstein curvature tensor, T is stress energy tensor for a perfect fluid, and κ
is the coupling constant

κ =
8πG
c4

, (3)

where G is Newton’s gravitational constant, and we use the convention that c = 1 and G = 1
whenever convenient, [17]. In component form,

Gij = κT ij , (4)

T ij = (ρ + p)wiwj + pgij, (5)

and
ds2 = gijdxidxj,

where w = (w0, ..., w3) is the unit 4-velocity, ρ the energy density, p the pressure, and we
use the Einstein summation convention whereby indices i, j = 0, ..., 3 are raised and lowered
with the metric, and summation is assumed on repeated up-down indices.

We restrict to spherically symmetric gravitational metrics in SSC coordinates

ds2 = −B(t, r)dt2 +
1

A(t, r)
dr2 + r2dΩ2, (6)

A(t, r) = 1 −
2GM

r
, (7)

where M is the mass fuction, (t, r) are temporal and radial coordinates, dΩ2 = dθ2+sin2 θdφ2

represents the standard line element of the unit 2-sphere, and x ≡ (x0, . . . , x3) ≡ (t, r, θ, φ)
is the spacetime coordinate system. It is well known that a general spherically symmetric
gravitational metric of form

ds2 = −A(t, r)dt2 + B(t, r)dr2 + 2D(t, r)dtdr + C(t, r)dΩ2, (8)

can, under generic conditions, be transformed over to SSC, [17].
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Putting the SSC metric ansatz (6) into MAPLE, (suppressing the bars), the Einstein equa-
tions G = κT reduce to the four partial differential equations7
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and subscripts denote partial differentiation.

In the presence of shock waves, the stress-energy tensor T is discontinuous, and thus A and
B in (9)-(12) are Lipschitz continuous at best. In this case equation (12), is satisfied only
in the weak sense. In [14] it is shown that when the metric is Lipschitz and and the stress-
energy tensor is bounded in sup-norm, system (9)-(12) is weakly equivalent to the system
obtained by replacing (10) and (12) with ∇i T i0 = 0 and ∇i T i1 = 0, respectively, (c.f. (2)),
and these can be written in the locally inertial form

{T 00
M },0 +

{√
ABT 01

M

}

,1
= −

2

x

√
ABT 01

M , (13)

{T 01
M },0 +

{√
ABT 11

M

}

,1
= −

1

2

√
AB

{
4

x
T 11

M +
( 1

A
− 1)

x
(T 00

M − T 11
M ) (14)

+
2κx

A
(T 00

M T 11
M − (T 01

M )2) − 4xT 22

}

,

where T ij
M , are the Minkowski stresses, related to T ij by

T 00
M = BT 00, (15)

T 01
M =

√

B

A
T 01, (16)

T 11
M =

1

A
T 11, (17)

7Beware that in [2], A is used for the dt2 coefficient and B for the dr2 coefficient of the metric.
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and

T 22 =
σρ

x2
. (18)

Here, {},0 and {},1 denote derivatives with respect to t and r, respectively. The remaining
two equations (9) and (11) can then be rearranged as

A′

A
=

( 1
A
− 1)

x
−

κx

A
T 00

M , (19)

B′

B
=

( 1
A
− 1)

x
+

κx

A
T 11

M . (20)

We use the following formula for the M obtained from (7) and (15),

M(t, r) = M(t, r0) +
κ

2

∫ r

r0

T 00
M (t, r)r2dr. (21)

When σ = const. and

p = σρ, (22)

the components of TM are given by

T 00
M =

c4 + σ2v2

c2 − v2
ρ, (23)

T 01
M =

c2 + σ2

c2 − v2
cvρ, (24)

T 11
M =

v2 + σ2

c2 − v2
c2ρ, (25)

where v is the velocity.

v =
1√
AB

u1

u0
,

c.f. [2]. The main point is that TM is independent of the metric, and unlike T , the equations
(15)-(20) close when T 0j

M are taken as the conserved quantities.

Using x in place of r, the equations take the form of a system of conservation laws with
sources,

ut + f(A, u)x = g(A, u, x), (26)

A′ = h(h, u, x),

where
u = (T 00

M , T 01
M ) ≡ (u0, u1) (27)
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are the Minkowski energy and momentum densities,

A = (A, B) (28)

are the metric components,

f(A, u) =
√

AB (T 01
M , T 11

M ) (29)

is the flux,

g(A, u, x) = (g0(A, u, x), g1(A, u, x)),

with

g0(A, u, x) = −
2

x

√
ABT 01

M , (30)

g1(A, u, x) = −
1

2

√
AB

{
4

x
T 11

M +
( 1

A
− 1)

x
(T 00

M − T 11
M ) (31)

+
2κx

A
(T 00

M T 11
M − (T 01

M )2) − 4xT 22

}

,

gives the source term of the balance law, and

h(A, u, x) = (h0(A, u, x), h1(A, u, x)), (32)

with

h0(A, u, x) =
(1 − A)

x
− κxT 00

M , (33)

h1(A, u, x) =
B

A

{
(1 − A)

x
+ κxT 11

M

}

, (34)

is the source term for the metric.

Our purpose is to introduce an effective first order method, the locally inertial Godunov
method, and use it to compute a family of weak solutions of system (26).

3 Exact FRW Solutions in SSC

The Einstein equations for the k = 0 FRW metric

ds2 = −dt2 + R2(t){dr2 + r2dΩ2}, (35)

in co-moving coordinates are

H2 = κ
3ρ − k, (36)

ρ̇ = −3(ρ + p)H. (37)
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When p = ρc2/3, the solution is

ρ(t) =
3

4κt2
, (38)

where we have assumed t is time since the big bang, [15].

To match FRW to TOV in SSC, we use the following representation of FRW found in [15].

Theorem 3.1. Assume p = 1
3ρ and k = 0. Then the FRW metric (35) under the coordinate

transformation

r̄ =
√

tr,

t̄ =

{

1 +
r̄2

4t2

}

t = t +
r2

4
,

(39)

goes over to the following metric in SSC

ds2 = −
1

1 − v2
dt̄2 +

1

1 − v2
dr̄2 + r̄2dΩ2, (40)

where the fluid velocity v is related to r̄/t̄ by

ξ ≡
r̄

t̄
=

2v

1 + v2
. (41)

A direct consequence is the following Corollary.

Corollary 3.1. The fluid variables (ρ, v) corresponding to (40) satisfy

ρ(ξ, r̄) =
3v(ξ)2

κr̄2
, v(ξ) =

1 −
√

1 − ξ2

ξ
. (42)

4 Exact TOV Solutions in SSC

The general relativistic version of TOV metrics that model static singular isothermal spheres
was described in [9]. Assuming p = σρ, these are given by

ds2 = −B(r̄)dt̄2 +

(

1

1 − 2GM(r̄)
r̄

)

dr̄2 + r̄2dΩ2, (43)

with

B(r̄) = Bt(t̄)B0(r̄)
4σ

1+σ , (44)

A(r̄) = 1 − 8πGγ, (45)

M(r̄) = 4πγr̄, (46)
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and
ρ(r̄) =

γ

r̄2
, v = 0, (47)

where

γ =
1

2πG

(
σ

1 + 6σ + σ2

)

, (48)

depends on σ. The velocity is zero because the TOV metric is a time independent metric
in SSC coordinates, (c.f. equation (3.4) of [10]). The arbitrary function Bt(t̄) is included
to account for the time scale freedom in (43), a freedom required to match the simulated
FRW-TOV solution at a later time. That is, our simulation involves integrating the metric
starting from FRW boundary data on the left hand side of the simulation, and the TOV
metric comes out of the simulation to the right of a region of interaction. But the time-
scaling function Bt(t̄) comes out of the simulation, cannot be imposed ahead of time, and
as a result, the TOV metric must be re-matched by adjusting Bt(t̄) at each time step.

5 One Parameter Family of Shock Wave Initial Data

Assume an initial time t̄0 > 0 and radius r̄0 to be determined later. We match the metric
components (A, B) of the FRW and TOV metrics (35) and (43) Lipschitz continuously at
(t̄0, r̄0), thereby posing an initial discontinuity in the fluid variables. By (40) and (45) we
have

AFRW (t̄0, r̄0) = 1 − v

(
r̄0

t̄0

)2

= 1 − 8πGγ = ATOV (t̄0, r̄0). (49)

Let v0 = v(r̄0/t̄0) represent the fluid velocity on the FRW side of the discontinuity so (49)
implies

v0 =
√

8πGγ =

√

4σ

1 + 6σ + σ2
. (50)

Note that v0 is independent of the the free parameter r0. Using (41) we find the unknown
starting time t̄0 as

t̄0 =
r̄0(1 + v2

0)

2v0
. (51)

The independence of v0 from r̄0 along with (51) implies the initial start time is proportional
to the initial radius of the discontinuity. Finding t̄0 enables us to build the initial profile of
the FRW metric for any radial coordinate r̄ < r̄0 by computing ξ = r̄/t̄0 and using equations
(40)-(42).

On the TOV side, A is already determined as the constant (45). To find B, use (40) and
(44) to get

BTOV (t̄0, r̄0) = B0(r̄0)
4σ

1+σ =
1

1 − v2
0

= BFRW (t̄0, r̄0), (52)
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forcing the constant B0 to take the form

B0 =
r̄
− 4σ

1+σ

0

1 − v2
0

. (53)

Combining (49)-(53) in the case σ = 1/3, and letting ξ = r̄/t̄0, we define the initial data
vinit(r̄), ρinit(r̄), Ainit(r̄), and Binit(r̄) posed at time t̄0, depending on the free parameter r̄0,
as follows.

vinit(r̄) =

{
1−
√

1−ξ2

ξ
r̄ < r̄0

0 r̄ > r̄0,
(54)

ρinit(r̄) =

{
3v2

init

κr̄2 r̄ < r̄0
γ
r̄2 r̄ > r̄0,

(55)

Ainit(r̄) =

{

1 − v2
init r̄ < r̄0

1 − 8πGγ r̄ > r̄0,
(56)

and

Binit(r̄) =

{
1

1−v2
init

r̄ < r̄0

B0(r̄)
4σ

1+σ r̄ > r̄0.
(57)

6 Locally Inertial Godunov Method

In this section we define the algorithm for the locally inertial Godunov method.

To start, fix a minimum radius rmin, a maximum radius rmax, the number of spatial gridpoints
n, and a start time t0. In our simulations, the number of spatial grid points n is chosen to
be a power of two (i.e. n = 2k for some k). From these parameters, the mesh width ∆x is
determined to be

∆x =
rmax − rmin

n − 1
, (58)

and is fixed throughout the scheme. Let (xi, tj) represent a mesh point in an unstaggered
grid defined on the domain

D = {rmin ≤ xi ≤ rmax, tj ≥ t0}. (59)

The spatial points are defined as

xi ≡ rmin + (i − 1)∆x for i = 1, . . . , n. (60)
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∆t1

∆tj

∆x

t

t0

t1

...
tj

tj+1

xx1 = rmin . . . xi−1

xi− 1
2

xi

xi+ 1
2

. . . xn = rmax

Rij

Figure 1: The Riemann cell Rij

Unlike the mesh width, the time step or the mesh height, ∆t, changes from one time step
to the next because there is no way to determine beforehand the smallest ∆t satisfying the
CFL condition for every time step. So for every time tj , a new time step is computed by

∆tj = min

{

∆x

2
√

AijBij

}

, (61)

where the minimum is taken over all the spatial gridpoints at time tj of the metric Aij =
(Aij , Bij), to be defined shortly. Starting at t0, the temporal mesh points are defined by

tj ≡ t0 +
j

∑

k=1

∆tk for j = 1, . . . ,∞. (62)

We assume at our current time tj for j ≥ 0 there exists a solution u(tj, x) and A(tj, x) for
(tj , x) ∈ D. This solution is either provided as the starting solution at t0 or from the last
iteration of the locally inertial Godunov scheme constructed inductively. To implement the
method, this solution is discretized into piecewise constant states. Discretizing the conserved
quantities u(tj, x), let u∆x be given by piecewise constant states uij at time t = t+j as follows:

u∆x(t, x) = uij ≡ u(tj, xi) for xi− ≤ x < xi+, t = t+j . (63)

For notational convenience, we denote xi+ ≡ xi+ 1
2

and xi− ≡ xi− 1
2

throughout this paper.

We define the grid rectangle Rij so the mesh point (xi−, tj) is in the bottom center of it,

Rij ≡ {xi−1 ≤ x < xi, tj ≤ t < tj+1}, 1 ≤ i ≤ n + 1, j ≥ 0, (64)

which is diagrammed in Figure 1. Each grid rectangle is a Riemann cell, containing a solution
to a distinct Riemann problem. We are limited to solving Riemann problems within Riemann
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cells having a constant speed of light. To this end, the metric source A = (A, B) must be
approximated by a constant value, denoted Aij, in each Riemann cell Rij throughout the
simulation. These constant values are established by setting

A∆x(t, x) = Aij ≡ A(tj , xi−) for (t, x) ∈ Rij . (65)

This approximation makes A∆x discontinuous along each line x = xi, i = 1, . . . , n, at each
time step t = tj .

To implement the Godunov step, we need boundary profiles at the left and right boundaries
along with the initial profiles at time t0 because the Godunov step is a three point method,
and the points x1 and xn need left and right partners, respectively, to pose the boundary
Riemann problems. These boundary profiles are used to implement the boundary Riemann
problems and are referred to as ghost cells. The left and right ghost cells, located at the points
x0 and xn+1, respectively, must be consistent with our numerical solution to the Einstein
equations around these boundaries. Any inconsistency in these boundary conditions would
result in errors propagating into the solution, corrupting the data; therefore, data is needed
for the left ghost cell u0,j and A0,j along with the right ghost cell un+1,j and An+1,j that
are solutions to the Einstein equations synchronized with the data close to the boundary.
Figure 2 displays the location of these ghost cells.

For the ghost cell on the FRW side at the gridpoint x0, use (42) to express the fluid velocity
as a function of time t̄j

v0,j =
1 −

√

1 − ξ2

ξ
, (66)

where ξ = x0/t̄j . With this fluid velocity, the fluid density becomes

ρ0,j =
3v2

0j

κx2
0

. (67)

Since the metric components are staggered relative to the fluid variables, we need to compute
the half gridpoint

x 1
2

= x0 +
∆x

2
, (68)

and use it to find the corresponding velocity

v 1
2
,j =

1 −
√

1 − ξ2

ξ
, (69)

for ξ = x 1
2
/t̄j. We use this velocity to compute the metric components,

A1,j = 1 − v2
1
2
,j
, B1j =

1

1 − v2
1
2
,j

. (70)

The boundary condition for the TOV is static, so values of the fluid variables and the metric
component A are constant in time, but the function B changes by the time scale factor Bt in
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tj

tj+1

︸ ︷︷ ︸

u0,j

︸ ︷︷ ︸

u1,j
. . .

︸ ︷︷ ︸

ui−1,j

︸ ︷︷ ︸

uij

︸ ︷︷ ︸

ui+1,j
. . .

︸ ︷︷ ︸

unj

︸ ︷︷ ︸

un+1,j

︷ ︸︸ ︷
A1,j

︷ ︸︸ ︷
Aij

︷ ︸︸ ︷
Ai+1,j

︷ ︸︸ ︷
An+1,j

Ghost Ghost

Figure 2: Staggering of the metric A and the solution u

(44), and must be rematched during each time step, as discussed in the last section. Using
the above criteria for the TOV ghost cell, let xn be the gridpoint position of this border. We
rematch the time scale at time t̄j by the following formula

Bt = B(t̄j , xn)(xn)−
4σ

1+σ , (71)

where B(t̄j , xn) is the simulated solution at the coordinate (t̄j , xn).

The discontinuities of the metric A∆x are staggered relative to the approximate solution u∆x

as illustrated in Figure 2. This staggering puts constant metric values within each Riemann
cell and constant conserved quantity states at the bottom of each Godunov cell. Constant
conserved quantities u∆x in each Godunov cell and a constant metric A∆x in each Riemann
cell enables us to pose Riemann problems in locally inertial coordinate frames where we are
capable of solving the relativistic compressible Euler equations. More specifically, there is a
Riemann problem at the bottom center of each Riemann cell Rij

ut + f(Aij, u)x = 0

u0(x) =

{

uL = ui−1,j x < xi−

uR = ui,j x > xi−.

(72)

Let uRP
ij (t, x) denote the solution of (72) within the Riemann cell Rij , and define

uRP
∆x (t, x) ≡ uRP

ij (t, x) for (t, x) ∈ Rij (73)

as the Riemann problem step of the fractional step scheme.

Given the solutions to the Riemann problems in each Riemann cell Rij , we implement the
Godnunov step to obtain the average of fluid variables uRP

∆x across the intervals [xi−, xi+] at
the next time step tj+1. Since the metric A is different on both sides of xi, separate averages
must be taken over the left and right half cells and combined to obtain the true average. In
particular, let ūL

ij and ūR
ij be the average on the left and right half cells, respectively. Also,

let uL
∗ = uRP

ij (t−j+1, xi−) and uR
∗ = uRP

ij (t−j+1, xi+) represent the zero speed states left and right
Riemann problem, respectively, as shown in Figure 2. To perform the Godunov step on the
left half cell, we compute

ūL
ij = uij −

2∆t

∆x
{f(Aij, uij) − f(Aij, u

L
∗ )}, (74)

and do the same for the right half cell

ūR
ij = uij −

2∆t

∆x
{f(Aij, u

R
∗ ) − f(Aij, uij)}, (75)
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where the 2 accounts for the half cell calculations. Taking the average of these results leads
to

ūij =
1

2
{ūL

ij + ūR
ij}, (76)

defining our Godunov step of the method.

We proceed to define the ODE step. Let û(t, u0) denote the solution to the following initial
value problem

ût = G(Aij, û, x) = g(Aij, û, x) − A′ · ∇Af(Aij, û, x),

û(0) = u0,
(77)

where G(A, û, x) = (G0, G1) takes the form

G0 = −
1

2

√
AB

(
c2 + σ2

c2 − v2

)

cv
ρ

x

{

2(
1

A
+ 1) −

κ

A
(c2 − σ2)ρx2

}

, (78)

G1 = −
1

2

√
AB

(
c2 + σ2

c2 − v2

)
ρ

x

{

4v2 + (
1

A
− 1)(c2 + v2) +

κ

A
(σ2 − v2)c2ρx2

}

. (79)

We define the approximate solution u∆x(t, x) and A∆x(t, x) analytically to derive the piece-
wise formulas used to update the numerical scheme and to be used in the convergence proof
of Section 9. The conserved quantities are defined by the formula

u∆x(t, x) = uRP
∆x (t, x) +

∫ t

tj

{G(Aij, û(ξ − tj , u
RP
∆x (t, x), x)}dξ (80)

Therefore, u∆x(t, x) is equal to uRP
∆x (t, x), the solution to the Riemann problems, plus a

correction term from the ODE step of the method. The metric is derived from the definition
of the mass

M∆x(x, t) = Mrmin
+

κ

2

∫ x

rmin

u0
∆x(r, t)r

2dr. (81)

In terms of these equations, define the metric as

A∆x(x, t) = 1 −
2M∆x(x, t)

x
, (82)

and

B∆x(x, t) = Br0
exp

∫ x

rmin

{
{A∆x(r, t)}−1 − 1

r
+

κr

A∆x(r, t)
T 11

M (u∆x(r, t))

}

dr. (83)

Finally, in order to update the metric and conserved quantities, we use the Riemann prob-
lem averages ūij to replace the Riemann problem solution uRP

∆x (t, x) and perform numerical
integration on the analytical equations (80)-(83). This process leads us to define

ui,j+1 = ūij +

{

G(
1

2
(Aij + Ai+1,j), û(ξ − tj , ūij, x))

}

∆tj . (84)
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The mass is
Mi,j+1 = Mrmin

+
∑

k<i

κ

2

(

u0
∆x(xk−, tj+1)x

2
k−∆x

)

, (85)

with

u0
∆x(xk−, tj+1) =

1

2
{u0

k−1,j+1 + u0
k,j+1}, (86)

and the metric becomes

Ai,j+1 = 1 −
2Mi,j+1

xi−
, (87)

and
Bi,j+1 = Brmin

eτ , (88)

where

τ =

{

∑

k<i

{Ak,j+1}−1 − 1

xk−
+

κxk−

Ak,j+1
T 11

M (u∆x(xk−, tj+1))∆x

}

, (89)

with

u∆x(xk−, tj+1) =
1

2
{uk−1,j+1 + uk,j+1}. (90)

Note that since the metric is staggered relative to the conserved quantities, we use the in
between values, like xk− and u∆x(xk−, tj+1) in the update step. Let Ai,j+1 = (Ai,j+1, Bi,j+1)
denote the constant value for A∆x on Ri,j+1. This concludes the update step and completes
the definition of the approximate solution u∆x and A∆x by induction.

To summarize the method, the locally inertial Godunov method constructs the solution
inductively with four major steps: a Riemann problem step, a Godunov step (with time
dilation), an ODE step, and an update step. The Riemann problem step is described in
equations (72) and (73). Formulas (74)-(76) denote the Godunov step. The ODE step is
detailed in (77)-(80). Finally, equations (84)-(90) express the update step.

7 The Riemann Problem Step

In this section we discuss the Riemann problem (RP) step of the locally inertial method.
When

√
AB = constant, p = σρ and we neglect the source terms on the right hand side,

equations (13), (14) reduce to
ut +

√
ABF (u)x = 0, (91)

where

u ≡ (u0, u1) =

(

ρ[

(
σ + c2

c2

)
v2

c2 − v2
+ 1], ρ(σ + c2)

v

c2 − v2

)

, (92)

and

F (u) ≡ (F 0, F 1) =

(

ρ(σ + c2)
v

c2 − v2
, ρ[(σ + c2)

v2

c2 − v2
+ σ]

)

. (93)
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The RP is the initial value problem when the initial data u0(x) consists of two constant
states separated by a jump discontinuity at x = 0,

u0(x) =

{

uL x < 0
uR x > 0.

(94)

System (91) with (94) define the RP step of the locally inertial method. Except for the extra
factor

√
AB, equations (91) agree with the relativistic compressible Euler equations in flat

Minkowski spacetime,
ut + F (u)x = 0, (95)

and we will account for the factor
√

AB by time-dilation. When
√

AB = 1, p = σρ, the
RP for the compressible Euler equations was given in closed form in [9]. We summarize the
results in the following theorem:

Theorem 7.1. There exists a solution of the RP for system (95) with an equation of state
p = σρ, 0 <

√
σ < c, as long as uL and uR satisfy ρL, ρR > 0 and −c < vL, vR < c. The

solution is given by a 1-wave followed by a 2-wave, satisfies ρ > 0, and all speeds are bounded
by c. This solution is unique in the class of rarefaction waves and admissible shock waves.

We now record the exact formulas required in the construction of the RP solutions, c.f. [9].
(These formulas correct typos in [9], specifically in (2.5.73), (2.5.74), (4.2.12), and (4.2.13)
recorded in [14].)

To start, the mapping between the conserved variables (u0, u1) and the fluid variables (ρ, v),
1 − 1 and nonsingular in ρ > 0, |v| < c, is given by

v(u0, u1) =
c2

2σu1
{(σ + c2)u0 −

√

(σ + c2)2(u0)2 − 4σ(u1)2}. (96)

ρ(u0, u1) =
(c2 − v2)u1

(σ + c2)v
. (97)

The eigenvalues (wave speeds) λ1,2 = λ−,+ of DF in (93) are given by

λi =
v ±

√
σ

1 ±
√
σv

c2

,

and the Riemann invariants r and s are

r(ρ, v) =
1

2
ln

(
c + v

c − v

)

−
√

K

2
ln(ρ), (98)

s(ρ, v) =
1

2
ln

(
c + v

c − v

)

+

√

K

2
ln(ρ), (99)

where

K =
2σc2

(σ + c2)2
. (100)
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so that (ρ, v) are given by

ρ(r, s) = exp

{
s − r√

2K

}

, (101)

v(r, s) = −
c(1 − es+r)

1 + es+r
. (102)

The following formulas are also useful:

v(λ1) =
λ1 +

√
σ

1 +
√
σλ1

c2

, v(λ2) =
λ2 −

√
σ

1 −
√
σλ2

c2

,

ρ(r, v) = exp

{

−
√

2

K

(

r −
1

2
ln

{
c + v

c − v

})
}

, (103)

ρ(s, v) = exp

{√

2

K

(

s −
1

2
ln

{
c + v

c − v

})}

. (104)

The 1,2-rarefaction curves R1, R2 are are the straight lines s = const., r = const. in the
plane of Riemann invariants given by,

UR ≡ (rR(uR), sR(uR)) = (rR(ρR, vR), sR(ρR, vR))

UL ≡ (rL(uL), sL(uL)) = (rL(ρL, vL), sL(ρL, vL)),
(105)

and the 1,2-shock curves S1, S2 are given by the following parametrization with respect to
β, 0 ≤ β < ∞:

∆r = r − rL = −
1

2
ln{f+(2Kβ)} −

√

K

2
ln{f+(β)} ≡ Sr

1(β),

∆s = s − sL = −
1

2
ln{f+(2Kβ)} +

√

K

2
ln{f+(β)} ≡ Ss

1(β),

(106)

∆r = r − rL = −
1

2
ln{f+(2Kβ)} −

√

K

2
ln{f−(β)} ≡ Sr

2(β),

∆s = s − sL = −
1

2
ln{f+(2Kβ)} +

√

K

2
ln{f−(β)} ≡ Ss

2(β),

(107)

where

f∓(β) ≡ 1 + β

{

1 ∓
√

1 +
2

β

}

, (108)

and

β ≡ β(v, vL) =
(σ + c2)2

2σ2

(v − vL)2

(c2 − v2)(c2 − v2
L)

, (109)
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with shock speeds

s1 = c

√

f+(β) + σ
c2

f+(β) + c2

σ

, (110)

s2 = c

√

f−(β) + σ
c2

f−(β) + c2

σ

. (111)

The formulas (106), (107) display the so called Nishida property of this system, that i-
shock curves based at different points are rigid translations of one another, and 1-shock
curves are reflections of 2-shock curves, c.f. [9]. Constructing the Godunov averages requires
computing the zero speed middle state of the RP, which is greatly simplified in plane of
Riemann invariants by the Nishida property. Vogler’s RP algorithm solves for the middle
state u∗ ≡ u(t, x) = (ρ∗, v∗) by first converting uL and uR to Riemann invariants via (98),
(99), numerically computing UM in the rs-plane, then converting UM back to fluid variables
using (101), (102).

8 Time Dilation Between Space Time Cells

When
√

AB += 1, the factor can be accounted for in the solution of the RP for (91) in a
grid cell by solving the RP for

√
AB = 1, and then rescaling the time in that grid cell, by a

factor of
√

AB. The factor
√

AB has the effect of dilating the physical (geodesic) time in a
grid cell relative to the coordinate time, , c.f. Figure 8. Thus, our GR Godunov method has
the nice property that it allows for the use of exact RP solutions in each grid cell, and the
consequent errors due to neglecting the local curvature are accounted for by simply rescaling
the local time relative to coordinate time. The following theorem, based on this, expresses
that if the time in a Godunov cell is shortened, the resulting average is an affine combination
of the original average and the center state, based on the ratio of the original and new time
change.

Theorem 8.1. Let

∆t̃ =
∆x

2
√

AB
(112)

represent the maximum time in a Godunov cell before the CFL condition is violated. If the
change in time is shortened from ∆t̃ to ∆t < ∆t̃ in a Godunov cell containing the solution to
the RP’s u(t, x), the average across that grid cell at time ∆t̃, ū(∆t̃), and at time ∆t, ū(∆t),
are related by

ū(∆t) = λū(∆t̃) + (1 − λ)uC (113)

where λ = ∆t
∆t̃

< 1 is the ratio between the two times.
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Figure 3: Effects of time dilation

9 Convergence to a Weak Solution

Our main convergence theorem regarding the locally inertial Godunov method with dynamic
time dilation is the following.

Theorem 9.1. Let u∆x(t, x) and A∆x(t, x) be the approximate solution generated by the
locally inertial Godunov method starting from the initial data u∆x(t0, x) and A∆x(t0, x) for
t0 > 0. Assume these approximate solutions exist up to some time tend > t0 and converge to
a solution (u∆x,A∆x) → (u,A) as ∆x → 0 along with a total variation bound at each time
step tj

T.V.[rmin,rmax]{u∆x(tj, ·)} < V, (114)

where T.V.[rmin,rmax]{u∆x(tj , ·)} represents the total variation of the function u∆x(tj, x) on
the interval [rmin, rmax]. Assume the total variation is independent of the time step tj and
the mesh length ∆x. Then the solution (u,A) is a weak solution to the Einstein equations
(9)-(12).

The proof involves demonstrating that the terms in the residual of numerical approximations
of the locally inertial Godunov method that do not converge first order in ∆x, come back
to cancel other terms of the same order, producing only terms first order in ∆x. The result
implies that only convergence and stability need be numerically verified in order to conclude
the limit is a weak solution of the Einstein equations. The proof is omitted. See [16] for
details.

10 FRW-TOV Simulation in Forward Time

We now present the results of the forward time simulation of the FRW/TOV matched model.
We use the initial profiles (54)-(57) along with the boundary conditions (66)-(71) developed
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Figure 4: Initial profiles
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in the last section to start and run the simulation. Figure 4 shows the initial profiles with
these parameters for the fluid variables (ρinit, vinit) and the metric Ainit, along with the
mass. By selecting the initial discontinuity at r̄0 = 5, equation (51) gives the initial start
time of t̄0 = 5.4554. Note that the discontinuities in the fluid variables jump down from the
FRW side to the TOV side. Moreover, the FRW density ρ and the TOV density ρ̄ at this
discontinuity are related by ρ = 3ρ̄.

With these initial profiles, we run the simulation for one unit of time (i.e. t̄end = t̄0 + 1).
Figure 5 depicts the evolution of the fluid variables (ρ, v), giving us a frame by frame view
for the evolution of the fluid variables across this time frame, evenly distributed from the
left frame at t̄0 to the right frame at t̄end. After the initial time t̄0, two shock waves form, the
stronger shock moving out toward the TOV side and the weaker shock moving in toward the
FRW side, creating an intermediate pocket of higher density expanding and interacting with
the FRW and TOV metrics on either side. We conclude that the incoming wave, viewed as
secondary to the strong outgoing shock wave, for this solution of the Einstein equations is
another shock wave, reflected back in.

Next, we focus attention on the resulting solution at the end time, t̄end. Figure 6 highlights
where the two shock positions are relative to the cone of sound and the cone of light. The
cone of light is represented by the white region while the cone of sound, embedded in the
cone of light, is represented by the grey region. Note that the edges of the cone of sound
align with the shock waves on either side, confirming that the interaction region between the
two metrics lies completely within the cone of sound. Since the edges of the cone of sound
move at the local sound speed, the explanation here is that the edges of the cone of sound
impinge on the shocks like a characteristic, so if one of the edges were to get slightly ahead
or behind the shock position, then that edge would get pushed back into the shock like the
characteristics close to the shock. Figure 6 also displays the spatial derivatives in the metric
components A and B, the green and orange graphs, respectively. The derivatives (A′, B′),
found using numerical differentiation, have discontinuities aligned with the discontinuities
associated with the fluid variables at the edges of the cone of sound. Looking back at Figure
5, it shows the profiles for the metric (A, B) as being continuous, so the metric is Lipschitz
continuous, reinforcing the fact that we have a weak solution to the Einstein equations.

Convergence was tested by successive mesh refinements confirming a first order convergence
rate. Convergence to FRW and TOV on each side of the interaction region was also con-
firmed. We also explored simulations for a variety of values of the initial data parameter and
came to two conclusions. One is that the resulting solution always has a region of higher
density surrounded by two shock waves, a strong shock on the TOV side and a weak shock
on the FRW side, and the other is that the shock waves have different speeds, resulting
in quantitatively different solutions. We conclude that the initial data set produces a one
parameter family of quantitatively different shock wave solutions to the Einstein equations,
each representing a point of shock wave interaction emanating from the initial discontinuity
in the fluids.
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Figure 5: Evolution of the fluid variables during a unit of time
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Figure 6: Solution after a unit of time, showing the derivatives of the metric
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11 Putting Units into the Simulation

To get a sense of scale in the simulations take the speed of light c = 2.99 × 105 km/sec and
Newton’s constant G = 1.47664 km/M&, where M& = 1.989× 1030 g is the mass of our sun,
c.f. [17]. Using this scale, the range of values in our simulations is

0.09 M& < M < 1.5 M&, (1)

4.43 km < r̄∗ < 10.37 km, (2)

2.69 × 10−5 sec < t̄∗ < 3.18 × 10−5 sec, (3)

1.08 × 10−4M&/km3 < ρ∗ < 5.95 × 10−4M&/km3, (4)

0 km/sec < v < 1.59 × 105 km/sec. (5)

In this case our simulations correspond to a mass of about 1.4 times our sun across a distance
of about 5.94 kilometers for a time interval of about 4.9 microseconds. The average density of
the sun is 7.04×10−19M&/km3, so our simulated densities are about 1.53×1014 times greater
than the average density of the sun, and matter is moving at speeds up to 1.59×105 km/sec.

On a galactic scale, set one unit of mass equal to the mass of the Milky Way, about 1.8 ×
1011 M&. On this scale the simulated values become

1.62 × 1010 M& < M < 2.7 × 1011 M&, (6)

0.084 light-years < r̄∗ < 0.2 light-years, (7)

56 days < t̄∗ < 66 days, (8)

1.94 × 107M&/km3 < ρ∗ < 1.07 × 108M&/km3, (9)

0 km/sec < v < 1.59 × 105 km/sec. (10)

Therefore, on the galactic scale, our simulation corresponds to a mass equivalent to about
1.4 times our Milky Way across a distance of about 0.12 light-years in a time interval of
about 10 days.

12 Conclusion

We have recorded the basic formulas used to construct the locally inertial Godunov method
incorporating time dilation, and the initial data we tested it on (shown in Figure 4). Figure
5 provided snapshots of our simulation of a point of shock wave interaction. The solution
resolves a solution of the Einstein equations in SSC coordinates in which two radial shock
waves emerge from a point of interaction, generating a strong outgoing wave and a weak
incoming wave, enveloping a region of higher density created by the interaction. Changing
the parameter r̄ produces quantitatively different solutions that are qualitatively the same.
The simulated solution only solves the Einstein equations weakly because of discontinuities
in the derivatives of the metric, as shown in Figure 6. We demonstrate that the region of
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interaction lies within the cone of sound by recording convergence between the position of
the shock waves and the edges of the cone of sound, (c.f. [16]). The simulation imposes
boundary data on the FRW side of a region of interaction, and recovers the TOV metric
on the other side by integrating across the interaction region. The numerical convergence
of the FRW and TOV metrics in the non-interaction regions, is recorded in [16]. A proof
of the convergence of the residual tailored to this problem is recorded in Theorem 9.1. The
theorem reduces the problem of proving the simulated solution solves the Einstein equations,
to the much simpler problem of demonstrating numerical convergence alone. The simulation
resolves the “secondary wave” in [11] as a reflected shock wave. In summary, this is a
successful demonstration of numerical convergence at a point of shock wave interaction, in a
GR framework tailored for a definitive test of numerical convergence, in a coordinate system
where the gravitational metric appears singular at shocks. A recent proof by Rientes, (to
appear with second author), shows that such points of shock wave interaction are indeed
a new kind of singularity in general relativity in the sense that the gravitational metric
tensor cannot be smoothed to C1,1 at points of shock wave interaction having the structure
simulated here.
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