Numerical Refinement of a Finite Mass Shock-Wave Cosmology

Blake Temple, UC-Davis

Collaborators: J. Smoller, Z. Vogler, B. Wissman

References

- Exact solution incorporating a shock-wave into the standard FRW metric for cosmology...
- Smoller-Temple, Shock-Wave Cosmology Inside a Black Hole, PNAS Sept 2003.
- Smoller-Temple, Cosmology, Black Holes, and Shock Waves Beyond the Hubble Length, Meth. Appl. Anal., 2004.

References:

- Connecting the shock wave cosmology model with Guth's theory of inflation...
- How inflationary spacetimes might evolve into spacetimes of finite total mass, with J. Smoller, Meth. and Appl. of Anal., Vol. 12, No. 4, pp. 451-464 (2005).

• How inflation is used to solve the flatness problem, with J. Smoller, Jour. of Hyp. Diff. Eqns. (JHDE) Vol. 3, no. 2, 375-386 (2006).

References:

The locally inertial Glimm Scheme...

- A shock-wave formulation of the Einstein equations, with J. Groah, Meth. and Appl. of Anal., 7,
 No. 4,(2000), pp. 793-812.
- Shock-wave solutions of the Einstein equations: Existence and consistency by a locally inertial Glimm Scheme, with J. Groah, Memoirs of the AMS, Vol. 172, No. 813, November 2004.
- Shock Wave Interactions in General Relativity: A Locally Inertial Glimm Scheme for Spherically Symmetric Spacetimes, with J. Groah and J. Smoller, Springer Monographs in Mathematics, 2007.

Our Shock Wave Cosmology Solution

• The solution can be viewed as a natural generalization of a k=0 Oppenheimer-Snyder solution to the case of non-zero pressure, inside the Black Hole----

2M/r > 1

The Shock Wave Cosmology Solution

$$ds^{2} = -B(\bar{r})d\bar{t}^{2} + \frac{1}{1 - \frac{2M(\bar{r})}{\bar{r}}}d\bar{r}^{2} + \bar{r}^{2}d\Omega^{2}$$

$$\frac{2M}{\bar{r}} > 1$$
 \longrightarrow \bar{r} is timelike

- In [Smoller-Temple, PNAS] we constructed an exact shock wave solution of the Einstein equations by matching a (k=0)-FRW metric to a TOV metric *inside the Black Hole* across a subluminal, entropysatisfying shock-wave, out beyond one Hubble length
- To obtain a large region of uniform expansion at the center consistent with observations we needed $\frac{2M}{\bar{r}}>1$
- $\frac{2M}{\bar{r}} = 1 \iff \bar{r} = Hubble \ Length \equiv \frac{H}{c}$

- The TOV metric inside the Black Hole is the simplest metric that cuts off the FRW at a finite total mass.
- Approximately like a classical explosion of finite mass with a shock-wave at the leading edge of the expansion.
- The solution decays time asymptotically to Oppenheimer-Snyder----a finite ball of mass expanding into empty space outside the black hole, something like a gigantic supernova.

- Limitation of the model: TOV density and pressure are determined by the equations that describe the matching of the metrics
- $p = \frac{c^2}{3}\rho$ can only be imposed on the FRW side
- Imposing $p = \frac{c^2}{3}\rho$ on the TOV side introduces secondary waves which can not be modeled in an exact solution
- Question: How to model the secondary waves?

- OUR QUESTION: How to refine the model to incorporate the correct TOV equation of state, and thereby model the secondary waves in the problem?
- OUR PROPOSAL: Get the initial condition at the end of inflation
- Use the Locally Inertial Glimm Scheme to simulate the region of interaction between the FRW and TOV metrics

DETAILS OF THE EXACT SOLUTION

The Final Equations

 $p = \sigma \rho$ $\sigma = const.$

Autonomous System

$$S' = 2S(1+3u) \{ (\sigma - u) + (1+u)S \} \equiv F(S, u)$$

$$u' = (1+u)\{-(1-3u)(\sigma-u) + 6u(1+u)S\} \equiv G(S,u)$$

Big Bang
$$\equiv 0 \leq S \leq 1 \equiv \frac{\text{Emerges From}}{\text{White Hole}}$$

Entropy Condition: $\bar{p} < p, \ \bar{\rho} < \rho, \ \bar{p} < \bar{\rho}$

$$S < \left(\frac{1-u}{1+u}\right) \left(\frac{\sigma-u}{\sigma+u}\right) \equiv E(u)$$

The entropy conditions for an outgoing shock hold when $u_{\sigma}(S) < E(S)$

Phase Portrait $p = \sigma \rho$ 1/3 $\sigma < 1/3$ Isocline u = E(S)Big Bang **Rest Point** Solution emerges from $u_{\sigma}(S)$ White Hole $Q_{\sigma}(S)$

$$s_{\sigma}(S) \equiv shock \ speed < c \ for \ 0 < S < 1$$

$$s_{\sigma}(S) \to 0$$
 as $S \to 0$

$$s_{\sigma}(S) \to c \text{ as } S \to 0$$

The Hubble length catches up to the shock-wave at S=1, the time when the entire solution emerges from the White Hole

• We are interested in the case $\sigma = 1/3$ \approx correct for $t = Big\ Bang$ to $t = 10^5yr$

• ρ and p on the FRW and TOV side tend to the same values as $t \to 0$

• It is as though the solution is emerging from a spacetime of constant density and pressure at the Big Bang ≈ Inflation

$$s_{\sigma}(S) \to c \text{ as } S \to 0$$

Conclude: A solution like this would emerge at the end of inflation if the fluid at the end of inflation became co-moving wrt a (k = 0) FRW metric for $\bar{r} < \bar{r}_0$, and co-moving wrt the simplest spacetime of finite total mass for $\bar{r} > \bar{r}_0$.

The inflationary diSitter spacetime has all of the symmetries of a vaccuum, and so there is no preferred frame at the end of inflation

diSitter spacetime

in (k=0)-FRW coordinates

Finite-Mass time-slice at the end of Inflation

 $\frac{2M}{\bar{r}} > 1$ and $\bar{r} \ timelike$

diSitter spacetime in TOV-coordinates

No preferred coordinates

t = const.

 $Inflation \quad T_{ij} = ho_* g_{ij}$

 $M, \bar{r} = const.$

End of Inflation $T_{ij} = (\rho + p)u^iu^j + pg_{ij}$

Shock

u co-moving wrt

t = const.

(k=0)-FRW

 $ds^{2} = -dt^{2} + R(t)^{2} \left\{ dr^{2} + r^{2} d\Omega^{2} \right\}$

u co-moving wrt

$$M = const.$$

TOV

$$ds^{2} = -B(\bar{r})d\bar{t}^{2} + \frac{1}{1 - \frac{2M(\bar{r})}{\bar{r}}}d\bar{r}^{2} + \bar{r}^{2}d\Omega^{2}$$

 $t = \text{the end of inflation} \approx 10^{-30} s = t_0$

A Locally Inertial Method for Computing Shocks

Einstein equations-Spherical Symmetry

$$ds^{2} = -A(r,t)dt^{2} + B(r,t)dr^{2} + r^{2} \left(d\theta^{2} + \sin^{2}\theta \ d\phi^{2}\right)$$

$$G=8\pi T$$

$$\frac{A}{r^2B} \left\{ r \frac{B'}{B} + B - 1 \right\} = \kappa A^2 T^{00} \tag{1}$$

$$-\frac{B_t}{rB} = \kappa ABT^{01} \tag{2}$$

$$-\frac{B_t}{rB} = \kappa A B T^{01}$$

$$\frac{1}{r^2} \left\{ r \frac{A'}{A} - (B - 1) \right\} = \kappa B^2 T^{11}$$
(3)

$$-\frac{1}{rAB^2} \{ B_{tt} - A'' + \Phi \} = \frac{2\kappa r}{B} T^{22}, \tag{4}$$

$$B = \frac{1}{1 - \frac{2M}{r}}$$

$$\Phi = -\frac{BA_tB_t}{2AB} - \frac{B}{2} \left(\frac{B_t}{B}\right)^2 - \frac{A'}{r} + \frac{AB'}{rB} + \frac{A}{2} \left(\frac{A'}{A}\right)^2 + \frac{A}{2} \frac{A'}{A} \frac{B'}{B}.$$

$$(1)+(2)+(3)+(4)$$

$$(1)+(3)+div T=0$$

References:

The locally inertial Glimm Scheme...

- A shock-wave formulation of the Einstein equations, with J. Groah, Meth. and Appl. of Anal., 7,
 No. 4,(2000), pp. 793-812.
- Shock-wave solutions of the Einstein equations: Existence and consistency by a locally inertial Glimm Scheme, with J. Groah, Memoirs of the AMS, Vol. 172, No. 813, November 2004.
- Shock Wave Interactions in General Relativity: A Locally Inertial Glimm Scheme for Spherically Symmetric Spacetimes, with J. Groah and J. Smoller, Springer Monographs in Mathematics, 2007.

Nishida System

Global Exact Soln of RP, [Smol,Te]

Remarkable Change of Variables

 Equations close under change to Local Minkowski variables:

$$T \longrightarrow \mathbf{u} = T_M$$

• I.e., Div T=0 reads:

$$0 = T_{,0}^{00} + T_{,1}^{01} + \frac{1}{2} \left(\frac{2A_t}{A} + \frac{B_t}{B} \right) T^{00} + \frac{1}{2} \left(\frac{3A'}{A} + \frac{B'}{B} + \frac{4}{r} \right) + \frac{B_t}{2A} T^{11}$$

$$0 = T_{,0}^{01} + T_{,1}^{11} + \frac{1}{2} \left(\frac{A_t}{A} + \frac{3B_t}{B} \right) T^{01} + \frac{1}{2} \left(\frac{A'}{A} + \frac{2B'}{B} + \frac{4}{r} \right) T^{11} + \frac{A'}{2B} T^{00} - 2\frac{r}{B} T^{22}$$

Time derivatives A_t and B_t cancel out under change $T \to \mathbf{u}$

Good choice because o.w. there is no A_t equation to close Div T = 0!

$$\frac{A}{r^2B}\left\{r\frac{B'}{B} + B - 1\right\} = \kappa A^2 T^{00} \tag{1}$$

$$-\frac{B_t}{rB} = \kappa ABT^{01} \tag{2}$$

$$\frac{1}{r^2} \left\{ r \frac{A'}{A} - (B - 1) \right\} = \kappa B^2 T^{11} \tag{3}$$

$$-\frac{1}{rAB^2} \left\{ B_{tt} - A'' + \Phi \right\} = \frac{2\kappa r}{B} T^{22}, \tag{4}$$

Locally Inertial Formulation

$$\left\{T_{M}^{00}\right\}_{,0} + \left\{\sqrt{\frac{A}{B}}T_{M}^{01}\right\}_{,1} = -\frac{2}{x}\sqrt{\frac{A}{B}}T_{M}^{01},\tag{1}$$

$$\left\{T_{M}^{01}\right\}_{,0} + \left\{\sqrt{\frac{A}{B}}T_{M}^{11}\right\}_{1} = -\frac{1}{2}\sqrt{\frac{A}{B}}\left\{\frac{4}{x}T_{M}^{11} + \frac{(B-1)}{x}(T_{M}^{00} - T_{M}^{11})\right\}$$
(2)

$$+2\kappa x B(T_M^{00}T_M^{11}-(T_M^{01})^2)-4xT^{22}\},$$

$$\frac{B'}{B} = -\frac{(B-1)}{x} + \kappa x B T_M^{00},$$
 (3)

$$\frac{A'}{A} = \frac{(B-1)}{x} + \kappa x B T_M^{11}. \tag{4}$$

$$\mathbf{u} = (T_M^{00}, T_M^{01})$$
 $\mathbf{A} = (A, B)$

$$T_M^{00} = \frac{c^4 + \sigma^2 v^2}{c^2 - v^2} \rho$$

$$T_M^{01} = \frac{c^2 + \sigma^2}{c^2 - v^2} cv\rho$$

$$T_M^{11} = \frac{v^2 + \sigma^2}{c^2 - v^2} \rho c^2$$

$$\mathbf{u}_t + f(\mathbf{A}, \mathbf{u})_x = g(\mathbf{A}, \mathbf{u}, x)$$
$$\mathbf{A}' = h(\mathbf{A}, \mathbf{u}, x)$$

Grid Rectangle

• Solve RP for $\frac{1}{2}$ -timestep

$$\mathbf{u}_{t} + f(\mathbf{A}_{ij}, \mathbf{u})_{x} = 0$$

$$\mathbf{u} = \begin{cases} \mathbf{u}_{i-1,j} & x \leq x_{i} \\ \mathbf{u}_{ij} & x > x_{i} \end{cases} \longrightarrow u_{ij}^{RP}$$

• Solve ODE for $\frac{1}{2}$ -timestep

$$\mathbf{u}_{t} = g(\mathbf{A}_{ij}, \mathbf{u}, x) - \nabla_{\mathbf{A}} f \cdot \mathbf{A}'$$
$$\mathbf{u}(0) = \mathbf{u}_{ij}^{RP}$$

Sample/Average then update **A** to time t_{j+1}

$$\mathbf{A}' = h(\mathbf{A}, \mathbf{u}, x)$$

$$\mathbf{A}(r_0, t_{j+1}) = \mathbf{A}_0(t_{j+1})$$

 $t = \text{the end of inflation} \approx 10^{-30} s = t_0$

Speculative Question: Could the anomolous acceleration of the Galaxies and Dark Energy be explained within Classical GR as the effect of looking out into a wave?

This model represents the simplest simulation of such a wave

Standard Model for Dark Energy

• Assume Einstein equations with a cosmological constant:

$$G_{ij} = 8\pi T_{ij} + \Lambda g_{ij}$$

• Assume k = 0 FRW:

$$ds^{2} = -dt^{2} + R(t)^{2} \left\{ dr^{2} + r^{2} d\Omega^{2} \right\}$$

• Leads to:

$$H^2 = \frac{\kappa}{3}\rho + \frac{\kappa}{3}\Lambda$$

• Divide by $H^2 = \rho_{crit}$:

$$1 = \Omega_M + \Omega_{\Lambda}$$

• Best data fit leads to $\Omega_{\Lambda} \approx .73$ and $\Omega_{M} \approx .27$

Implies: The universe is 73 percent dark energy

Could the Anomalous acceleration be accounted for by an expansion behind the Shock Wave?

TOV:
$$ds^2 = -B(\bar{r})d\bar{t}^2 + \frac{1}{1 - \frac{2M(\bar{r})}{\bar{r}}}d\bar{r}^2 + \bar{r}^2d\Omega^2$$

$$\frac{2M}{\bar{r}} > 1$$
 \longrightarrow \bar{r} is timelike

Conclusion

- We think this numerical proposal represents a natural mathematical starting point for numerically resolving the secondary waves neglected in the exact solution.
- Also a possible starting point for investigating whether the anomalous acceleration/"Dark Energy" could be accounted for within classical GR with classical sources?