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• The solution can be viewed as a natural 
generalization of a k=0 Oppenheimer-
Snyder solution to the case of non-zero 
pressure, inside the Black Hole----
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• In [Smoller-Temple, PNAS] we constructed 
an exact shock wave solution of the 
Einstein equations by matching a (k=0)-
FRW metric to a TOV metric inside the 
Black Hole across a subluminal, entropy-
satisfying shock-wave, out beyond one 
Hubble length

• To obtain a large region of uniform 
expansion at the center consistent with 
observations we needed
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• The TOV metric inside the Black Hole is the 
simplest metric that cuts off the FRW at a finite 
total mass.

• Approximately like a classical explosion of finite 
mass with a shock-wave at the leading edge of 
the expansion.

• The solution decays time asymptotically to 
Oppenheimer-Snyder----a finite ball of mass 
expanding into empty space outside the black 
hole, something like a gigantic supernova.



• Limitation of the model:   TOV density and pressure are 
determined by the equations that describe the matching of 
the metrics

•              can only be imposed on the FRW side

• Imposing             on the TOV side introduces secondary 
waves which can not be modeled in an exact solution 

• Question:  How to model the secondary waves?
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• OUR QUESTION:  How to refine the model to incorporate the 
correct TOV equation of state, and thereby model the secondary 
waves in the problem?

• OUR PROPOSAL:  Get the initial condition at the end of inflation 

• Use the Locally Inertial Glimm Scheme to simulate the region of 
interaction between the FRW and TOV metrics
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The Final Equations

≡ 0 ≤ S ≤ 1 ≡
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sσ(S) ≡ shock speed < c for 0 < S < 1 sσ(S) → 0 as S → 0
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Shock Position=

=Hubble Length
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The Hubble length catches up to the shock-wave at S=1, the 
time when the entire solution emerges from the White Hole



Kruskall Picture

Black Hole Singularity

White Hole Singularity

t̄ = +∞

t̄ = −∞

t = t∗

2M

r̄
= 1

p̄ != 0

ρ̄ != 0

TOV
FRW 

Universe
Inside Black Hole

FRW

FRW

Schwarzschild Spacetime

2M

r̄
= 1

Shock Surface

Outside Black Hole

p = 0

ρ = 0



We are interested in the case σ = 1/3

ρ and p on the FRW and TOV side

tend to the same values as t → 0

≈ correct for t = Big Bang to t = 105yr

It is as though the solution is emerging
from a spacetime of constant density and
pressure at the Big Bang ≈ Inflation
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The inflationary diSitter spacetime has all of the 
symmetries of a vaccuum, and so there is no 
preferred frame at the end of inflation

Conclude: A solution like this would emerge at the
end of inflation if the fluid at the end of inflation
became co-moving wrt a (k = 0) FRW metric for r̄ < r̄0,
and co-moving wrt the simplest spacetime of
finite total mass for r̄ > r̄0.
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A Locally Inertial Method 
for

Computing Shocks



Einstein equations-Spherical Symmetry
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Locally Inertial Glimm/Godunov Method
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Remarkable Change of  Variables
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Speculative Question:   Could the anomolous 
acceleration of the Galaxies and Dark Energy 

be explained within Classical GR as the effect of 
looking out into a wave?

This model represents the simplest simulation  
of such a wave



Standard Model for Dark Energy

Leads to:

Divide by H2 = ρcrit:

Assume k = 0 FRW:
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Best data fit leads to ΩΛ ≈ .73 and ΩM ≈ .27

Implies:  The universe is 73 percent dark energy
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         We think this numerical proposal represents a 
natural mathematical starting point for numerically 

resolving the secondary waves neglected in the exact 
solution.

      Also a possible starting point for investigating 
whether the anomalous acceleration/”Dark Energy” 

could be accounted for within classical GR with classical 
sources?   

Conclusion


