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OUR PROGRAM

• To Explicitly Construct...  

• To Understand the Structure of...  

• To Give a Mathematical Proof of Existence of...  

Time-Periodic Solutions
of the

 Compressible Euler Equations
 

(Unpublished--Work in Progress)

• Q1:  By what wave propagation mechanism are 
time-periodic/shock-free solutions possible?  

• Q2:  What is the simplest possible structure?  

· · ·



The compressible Euler equations consist of three 
coupled nonlinear PDE’s that can be interpreted 
as the continuum version of 

               Newton’s Laws of Motion

(1)  Conservation of Mass:  (Continuity Equation)

(2)  Newton’s Force Law:  (Continuum Version)

 “ The time-rate of change of momentum equals 
minus gradient of the pressure”

(3) Conservation of Energy:  (Continuum Version)



• System (Ma), (Mo), (En) describes the time 
evolution of a compressible fluid...   

e = energy
mass =specific internal energy

p=pressure

ρ = mass
vol =density

 (   -D Wave Propagation)

• For wave propagation in                 :

(Mo)

(En)

(Ma)ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = 0

x-direction

{
1

Et + {(E + p)u}x = 0

Compressible Euler Equations:

u = velocity

E = energy
vol = ρe + 1

2ρu2

Compressible
Euler



The Entropy:

• Time-irreversibility is measured by the entropy, which 
evolves according to a derived conservation law:

(Ma),(Mo),(En)        (Ent)

S = entropy
mass =specific entropy

Second Law of 
Thermodynamics

+( )

•  The specific entropy     is a state variable obtained 
by integrating the second law of thermodynamics

dS =
de

T
− p

dτ

T
(2nd Law)

τ = 1/ρ = specific volume

•  A consequence is the “adiabatic constraint”

S

(Ent)(ρS)t + (ρSu)x = 0



• The compressible Euler equations describe 
the time evolution of a perfect fluid in the 
limit that all dissipative forces (like friction 
and heat conduction) are neglected.

• Nevertheless:  There is a canonical dissipation 
present at the zero dissipation limit,  and this 
is encoded in the rate of increase of the 
entropy at shock waves:

Smooth Solution

(time-irreversible)

(time-reversible)

Shock Wave Discontinuity

t



 (The Equation of State)

(Mo)

(En)

(Ma)ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = 0Euler {

An equation of state relating
                 is required to 

close the system.

Et + {(E + p)u}x = 0

Compressible Euler Equations:

E = ρe +
1
2
ρu2

(ρ, p, e)



• The equation of state for a                 or                 :                    

p = − ∂e
∂τ (S, τ)

r= number of atoms in a molecule

γ = 1 + 2/3r = adiabatic gas constant

where:

• It follows that:

γ-law gaspolytropic

The Fundamental Equation of State

• The nonlinearities are Analytic Functions

• “A non-interacting gas composed of molecules derived 
from first principles using only the equipartition of energy 
principle and the second law of thermodynamics...”

e = k0 T = k0 ργ−1 exp
{

S
k0

}

τ = 1/ρ



Conclude:  the compressible Euler equations with 
a polytropic equation of state represents 

(1)  The continuum version of Newton’s Laws...

(2)  The nonlinear theory of sound waves...

Our question:  “Do there exist time-periodic 
solutions of the compressible Euler equations 
that transmit sound waves like the linear theory 
of sound?”



Linear Theory of Sound

ρtt − c2ρxx = 0

ρ = ρ0

S = S0

u = 0

Equations reduce to the Wave Equation

Linearizing the Compressible Euler Equations 
about constant state 

E.g.  The sinusoidal solutions of the wave 
equation are the “modes of vibration” that form 
the basis for the modern theory of music...” 

2π-periodic solutions: ρ(x, t) = sin {n(x± ct)}



Our question:  “Do there exist time-periodic 
solutions of the compressible Euler equations 
that transmit sound waves like the linear theory 
of sound?”

For most of the last 250 years experts have 
thought that time periodic solutions of the 
compressible Euler equations were not possible 
because of the ubiquitous formation of 

SHOCK-WAVES 



The Difficulty in a Nutshell

• The compressible Euler Equations form a system of 3-coupled 
nonlinear conservation laws of form---

• Basic warmup problem:  scalar Burgers Equation:

ut + uux = 0

∇(1,u)u(x, t) = 0

“u=const. along lines of speed u”

“inconsistent with time-periodic evolution”

ut +
1
2
(u2)x = 0

ut + f(u)x = 0



The Problem:

• Basic warmup problem:  scalar Burgers Equation:

ut + uux = 0

“inconsistent with time-periodic evolution”

0

t

x

2ππ

Rarefactive Compressive

End of classical solutiont =

Shock-wave



(Mo)

(En)

(Ma)ρt + (ρu)x = 0{

Et + {(E + p)u}x = 0

For Example:    This always happens in the 2x2 
p-system obtained by closing off the first two 

Euler equations by assuming 

p = p(ρ)

p-system (ρu)t + (ρu2 + p(ρ))x = 0

That is:



Theorem:   (Glimm/Lax 1970)  This always happens 
in 2x2 systems like the p-system...

Forward-R
 Wave

x

t

Backward-C 
Wave

Shock-wave

“Periodic solutions decay by shock wave 
dissipation at rate 1/t”



We are proposing the following 
picture of the simplest 

time-periodic solution of the 
compressible Euler equations:

The remainder of the talk is 
devoted to motivating and/or 

explaining this picture...

The Mechanism requires at least
 three coupled equations!



---Our Answer---
The simplest global periodic structure in the xt-plane



Our answerOur answer



Why we are interested in time-periodic 
solutions of compressible Euler...

• Historically ---The equations were derived by Euler in 
1752 as a model for sound wave propagation. 

•  Scientifically ---Time-periodic solutions represent 
dissipation-free long-distance signaling. 

• Could the structure of periodic solutions supply a new 
paradigm for how sound waves, and other nonlinear 
waves, really propagate?

• PDE Issues ---Resonances/Small Divisors/KAM 
theory/ Combinatorics/Diophantine Equations/
Probability Theory

• Bifurcation Theory ---Potential to open the door to 
issues  such as chaos, period-doubling, etc.

• Intellectual Interest ---Our approach is to guess the 
structure by heuristic reasoning based on nonlinear 
waves...and this is prerequisite to rigorous analysis.



History/Prior Results

Periodic solutions of
Compressible Euler



• The first question to ask after Euler is: 

Do the fully nonlinear equations admit 
time-periodic, oscillatory solutions that 
propagate information like the linear sound 
waves of the wave equation?

• For most the last 250 years experts have 
generally thought that such time periodic 
solutions did not exist, due to the phenomenon 
of shock wave formation...

History/Background



• 1687-- Principia/ Newton attempted to give a continuum version 
of his laws of motion in order to derive the speed of sound from 
first principles.

• 1749-- D'Alembert introduced the linear wave equation to 
describe displacements of a vibrating string.

• The wave equation is the basic equation in which all waves 
propagate at the same speed, and so it was natural to conjecture 
that sinusoidal oscillations in the air might account for sound 
waves.  But D'Alembert had no physical derivation of this from 
first principles.  

• 1752-- Euler completed Newton’s program by deriving the fully 
nonlinear theory of sound waves from first principles.

• Euler showed that asymptotically, in the limit of weak signals, the 
compressible Euler equations reduce to the wave equation in the 
density,  thus demonstrating that sound waves could be described 
by periodic sinusoidal oscillations in the density.

• This established the framework for the (linear) theory of sound.

• Ref: D. Christodoulou, ETH Zurich, 2006/Bulletin, Oct. 2007.

History/Background



• 1857-- Riemann showed that shock-wave 
discontinuities can form from smooth solutions 
of the compressible Euler equations. 

Introduced Riemann invariants and the 
Riemann problem to continue the solutions 
past the time of shock formation

History/Background

Riemann, B. Uber die Fortpfanzung ebener Luftwellen von endlicher Schwingungswete,
Abhandlungen der Gesellshaft der Wissenshaften zu Gottingen, Mathematisch-
physikalishe Klasse, Vol. 8, 43 (1858-59)

•  After Reimann... 

• Shock-waves became the cental issue in the 
study of the compressible Euler equations...



• 1964-- Lax proved finite time blow-up in derivatives for 2x2 
systems for which the nonlinear fields are “genuinely nonlinear” 

like the p-system. 

History/Background

• 1970-- Glimm and Lax give definitive result for 2x2 systems---
shocks must form from periodic initial data for the 2x2 p-system

P.D. Lax, Development of singularities of solutions of nonlinear hyperbolic par-
tial differential equations, Jour. Math. Physics, Vol. 5, pp. 611-613 (1964).

J. Glimm, P.D. Lax, Decay of solutions of systems of nonlinear hy-
perbolic conservation laws, Memoirs Amer. Math Soc. 101(1970).

Lax's argument is sufficient to imply blow-up in the 
derivative for space-periodic solutions of the p-system 
thereby implying the formation of shock-waves---
inconsistent with time-periodic evolution. 

Thm:  Solutions of the p-system starting from space 
periodic initial data (small in      ) must form shock-waves 
and decay in the total varation norm at rate ate 1/t. 

L∞



• 1974-97  Blow-up results that extend Lax’s result to 
3x3 systems were not sufficient to rule out the 
possibility of time- periodic sound wave propagation in 
the compressible Euler equations...

F. John, Formation of singularities in one-dimensional wave propagation,
Comm. Pure Appl. Math., Vol. 27, pp. 377-405 (1974).

T.P. Liu, Development of singularities in the nonlinear waves for quasi-linear
hyperbolic partial differential equations, J. Diff. Eqns, Vol. 33, pp. 92-111
(1979).

Li Ta-Tsien, Zhou Yi and Kong De-Xing, Global classical solutions for gen-
eral quasilinear hyperbolic systems with decay initial data, Nonlinear. Analysis.,
Theory., Methods. and Applications., Vol. 28, No. 8, pp. 1299-1332 (1997).

History/Background



•1984-88-- The idea that time periodic 
solutions may exist was kindled by work of 
Majda, Rosales, Schonbeck and Pego:

History/Background

A. Majda and R. Rosales, Resonantly interacting weakly
nonlinear hyperbolic waves I. A single variable, Stud. in
Appl. Math., 22, pp. 149-179 (1984).

A. Majda, R. Rosales and M.Schonbeck, A canonical
system of integrodifferential equations arising in resonant
nonlinear acoustics, Stud. in Appl. Math., 79, pp. 205-
262 (1988).

R.L. Pego, Some explicit resonating waves in weakly
nonlinear gas dynamics, Stud. in Appl. Math., 79, pp.
263-270 (1988).

•(Scalar/Asymptotic Models) 



• 1996-99-- Rosales and two students, Shefter and 
Vaynblat, produced detailed numerical 
simulations of the Euler equations starting from 
periodic initial data, and these numerical studies 
indicated that periodic solutions of the 3x3 
compressible Euler equations do not decay like 
the 2x2 p-system, and they made observations 
about the possibility of periodic, or quasi-
periodic attractor solutions.

History/Background

M. Shefter and R. Rosales, Quasi-periodic solutions in weakly nonlinear gas
dynamics, Studies in Appl. Math., Vol. 103, pp. 279-337 (1999).

D. Vaynblat, The strongly attracting character of large amplitude nonlinear
resonant acoustic waves without shocks. A numerical study. M.I.T. Dissertation,
(1996).



• CONCLUDE:  Until now, we do not understand the 
structure of time periodic solutions, nor the 
mechanism that can prevent shock formation.  

• Moreover, it is difficult to numerically simulate time-
periodic solutions by starting with general space 
periodic data and running the solution until the 
shock-wave dissipation resolves itself into a periodic 
configuration...

• ...Errors are difficult to control in large time 
simulations...

• ...  Shock-waves alter the entropy field, and so the 
background entropy field remains unknown until 
the shock-wave dissipation is done.  The final 
entropy field to which a general time periodic 
solution will decay is then pretty much impossible 
to predict, and hence difficult to simulate without 
understanding the mechanism for periodic wave 
propagation at the start.



PART I.  Derive the  simplest 
periodic structure by analyzing 
how waves can change from 

Compressive to Rarefactive 
at entropy jumps.

“Derive the simplest pattern of 
R’s and C’s such that 

Compression (C) 
& Rarefaction (R) 
are balanced along  

characteristics (sound waves)”.



PART II.  Realize solutions with 
this simplest structure at a 
Linearized Level.

Set up a Perturbation Problem to 
prove the existence of nearby 
nonlinear solutions by the Implicit 
Function Theorem in Banach 
Spaces



Compressive 
and 

Rarefactive waves



Assuming:

• Smooth, 1-D motion

• polytropic equation of state

The Euler equations are equivalent to: 

τt − ux = 0
ut + px = 0

St = 0

System closes with the    -law relation

p = Kτ−γeS/cτ

• Three coupled nonlinear equations in the 
three unknowns

(Mo)

(Ma)

(Ent)

The Euler system in Lagrangian coordinates 
(relative to a frame moving with the fluid)

γ

(τ, u, S)



•S=Const             2x2 p-system

 

τt − ux = 0
ut + px = 0

St = 0
(Mo)

(Ma)

(Ent)

• In a frame moving with the fluid, the Euler 
equations are equivalent to:

τt − ux = 0
ut + p(τ, S)x = 0

• Sound waves:                                

c =
√
−pτ =

√
Kγτ−

γ+1
2 eS/2cτ . (1)

dx
dt = ±c c=

Lagrangian Formulation

τ = 1/ρ

Sound speed



τt − ux = 0
ut + px = 0

St = 0

• The system supports 3  Wave Families 
determined by the eigenfamilies         of      :

λ1 = −c λ2 = 0 λ3 = c

1-waves 2-waves 3-waves

• Sound speed: c =
√
−pτ =

√
Kγτ−

γ+1
2 eS/2cτ . (1)

Ut + F (U)x = 0

dF




τ
u
S





t

+




−u
p
0





x

= 0

(λi, Ri)

Lagrange equations
 as a 

System of Conservation Laws



• 3 characteristic families associated with          : 

1-waves
(back)

2-waves
3-waves

(forward)
dx

dt
= λ1 = −c

dx

dt
= λ3 = c

dx

dt
= λ2 = 0

1-waves2-waves3-waves

Linearly
Degenerate

Genuinely
Nonlinear

Genuinely
Nonlinear

∇R2
λ2 ≡ 0∇R1

λ1 > 0 ∇R3
λ3 > 0

(λi, Ri)



• The three Characteristic Families of Euler:

λ1 = −c λ2 = 0 λ3 = c

3-waves

• Three eigen-families of 

Ut + F (U)x = 0




τ
u
S





t

+




−u
p
0





x

= 0

Ut + dF · Ux = 0

R1 =




1
c
0



 R3 =




1
−c
0



R2 =




−pS/pτ

0
1





2-waves1-waves

c =
√
−pτ =

√
Kγ

(
1
τ

) γ+1
2

eS/2cτ




τ
u
S





t

=




0 −1 0
pτ 0 pS

0 0 0








τ
u
S





x

= 0

dF



λ1 = −c λ2 = 0 λ3 = c

3-waves

• Three eigen-families of        ...dF

R1 =




1
c
0



 R3 =




1
−c
0



R2 =




−pS/pτ

0
1





2-waves1-waves

Conclude:  

S is constant through 1,3-waves

u, p are constant through 2-waves



rt − crx = 0
st + csx = 0

Riemann Invariants

At constant entropy:

(r, s)

τt − ux = 0
ut + px = 0

St = 0

Problem: r and s depend on the entropy S

S = const.

s ≡ const. along 3-characteristics
r ≡ const. along 1-characteristics



Ut + F (U)x = 0

(λi, Ri)

Ut + dF · Ux = 0

• Assume that          is a (smooth) eigen-field 
for      :dF

Let      denote an integral curve of  vector field

(dF − λiI) Ri = 0

Ri Ri

Letting states    on      propagate with speed                     
defines a 1-parameter family of simple waves                     

RiU

Ri

U

x

t

λi(U)

dx

dt
= λi(U0)

U0

Ri(U0)

U(x, t) = U0

Simple Waves

• nxn system of conservation laws:



Letting states     on      propagate with speed        
defines a 1-parameter family of simple waves                     

RiU

Ri

U

x

t

λi(U)

dx

dt
= λi(U0)

U0

Ri(U0)

U(x, t) = U0

1,3-Simple waves are either 
Compressive (C) or Rarefactive (R)                     



• The 2-field             is Linearly Degenerate: 

2-contact discontinuity

(λ2, R2)

∇R2
λ2 ≡ 0

2-waves can be rescaled into time-reversible 
contact discontinuities

SL SR

Conclude:   time-periodic solutions allow for
discontinuities in entropy S

dx

dt
= λ2 = 0



•Use    and     instead of      and    :

m = eS/2cτ

A Convenient Change of  Variables

z m ρ S

z =
∫ ∞

τ

c

m
dτ =

(
2
√

Kγ

γ − 1

)
ρ

γ−1
2



•At each constant value of the entropy, the 
system reduces to a transformed version 
of the 2x2 p=system that depends on 
the entropy through variable m:

zt + c
mux = 0

ut + mczx + 2 p
mmx = 0

mt = 0

zt + c
mux = 0

ut + mczx = 0

S=const.



r = u−mz

s = u + mz

rt − crx = 0
st + csx = 0

zt + c
mux = 0

ut + mczx = 0

• In terms of the Riemann invariants    and    :

     depend on entropy      independent of entropy 

•Conclude:  Equations in          isolate the 
dependence on    in coefficients

(z, u) (r, s)

(z, u)
S

r s



Riemann invariant coordinates in         -plane 

sr

u

z

Slope=mSlope=−m

m = eS/2cτ

Relationship Between Coordinates

(z, u)



Compressive and Rarefactive Waves 
(R/C)

Consider 1,3-waves at constant entropy S:

Definition: The R/C character of a wave in a general
smooth solution is defined (pointwise) by:

Forward R iff st ≤ 0,

Forward C iff st ≥ 0,

Backward R iff rt ≥ 0,

Backward C iff rt ≤ 0.

3-wave ≡ “forward”-wave

1-wave ≡ “backward”-wave



Theorem:   R/C character is preserved along 
backward and forward characteristics

Forward-R
 Wave

Backward-C 
Wave

x

t

When the ENTROPY is CONSTANT...

m ≡Constant



The R/C character of a wave 
CAN CHANGE

 at an entropy jump...

For Example:

x

t

mL mR

3-wave (+)1-wave (-)
2-wave



The R/C character of a wave 
CAN CHANGE

 at an entropy jump...

For Example:

x

t
R−out

C+
in R−in

R+
out

mL mR



The R/C character of a wave 
CAN CHANGE

 at an entropy jump...

For Example:

x

t
R−out

C+
in R−in

R+
out

(zR(t), uR(t))
(zL(t), uL(t))

mL mR



For Example:

x

t

R−out

C+
in R−in

R+
out

(zR(t), uR(t))
(zL(t), uL(t))

The Rankine-Hugoniot jump conditions characterize 
how R/C changes at an entropy jump...

qR
L =

(
mR

mL

) 1
γ



Example:

x

t

R−out

C+
in R−in

R+
out

(zR(t), uR(t))
(zL(t), uL(t))

mL < mR mL > mR



CONCLUDE: we can determine the R/C changes
across the entropy jump from inequalities on the
time derivative of the solution at the left hand side
of the entropy jump alone. Doing this in all cases
yields the following theorem.

Tangent space showing all possible R/C wave structures when

mL < mR



Tangent space showing all possible R/C wave structures when

mL > mR



• Note:  All 16 possible interaction squares 
appear EXCEPT ones where R/C value of 
both waves change simultaneously:

R R

CC

R

R C

C

R

R

C

C

RR

C CNot possible:

• CONCLUDE:  A wave in one family can 
change its R/C value only in the presence 
of a wave of the opposite family that 
transmits its R/C value



The Simplest Possible Periodic 
Structure that Balances 

Compression and Rarefaction



We we say that a periodic pattern 
of R’s and C’s is

CONSISTENT 

(1)  R/C is balanced along every 
1,3-characteristic

(2)  The interaction squares at entropy jumps  

IF:

DEFN:   

 are consistent with squares
  in the                              R/C diagrams, 

respectively

mL > mR, mL > mR

mL > mR, mL > mR



The simpest consistent R/C pattern

“Extend periodically”

m m mm

m > m



Each number above is consistent with the 
numbered interaction below

m mm m

m = mL > mR = mm = mL < mR = m

m > m



Each 1,3-characteristic traverses 8-C’s and 
8-R’s before returning 



Each 1,3-characteristic traverses 8-C’s and 
8-R’s before returning 

The lettered interactions at constant 
entropy jump transmit R/C 

1,3-characteristics traverse 4-C’s and 4-R’s before
returning 

Identifying these



Inspection of the change in         along 
the axes indicates that the solution is 
consistent with elliptical rotation of 
the solution along the entopy jumps

This leads to the following consistent 
cartoon of the simplest possible 

periodic solution

u̇, ż



The simplest possible periodic structure
m > m

m m mmmm m m m m



Labeling the states along the entropy 
jumps and plotting them according to 
the change in          indicates that the 
solution is consistent with elliptical 
rotation of the solution along the 

entopy jumps

u̇, ż



Labeling the states by numbers and letters
m m m m

m > m

x

t



Ellipses showing periodicity in (z,u)-plane



Edit

The global nonlinear periodic structure



•NOTE:   There is an LR-asymmetry:                  

differ from squares for

Interaction squares for

mL < mR mL > mR

mL < mR

mL > mR



Max/Min Characteristics 
always jump 

UP 
going 

The 1,3-wave crests are
SUBSONIC

NOT    
SUPERSONIC

OUTWARD

LR-asymmetry



The 1,3-Max/Min-Characteristics jump UP going 
OUTWARD           SUBSONIC



Edit

x0 L

= speed of the wave crests<speed of the sound waves =

t

vpvg

vg =
L

Tg
< vp =

L

Tp

Tg

Tp



The speed of the wave crests is 
like an effective 

“Group-Velocity”

The characteristic=sound speed like a 
“Phase-Velocity”

Max/Min-Characteristics jump UP

Group-Velocity < Phase-Velocity

.....



PART II.  Realize solutions with this 
simplest structure at a Linearized Level

Set up a Perturbation Problem to prove 
the existence of nearby nonlinear 
solutions by the Implicit Function 
Theorem in Banach Spaces

Problem:  Resonances/Small Divisors



The nonlinear 
eigenvalue problem
as a perturbation 

of a linear problem



OBSERVE:   The simplest periodic structure    

(1)  Periodicity in space 

imposes two special symmetries:

(2)  Max/Min-characteristics JOIN UP

These are conditions imposed on the 
tiling that defines the periodic structure 

in xt-space    



{
Space period

Time 
period{

(1)  Simplest structure is space-periodic

t

x



t

t

x

(1)  Simplest structure is space-periodic



Edit

(2) In the simplest periodic structure

t

x

Max/Min-characteristics JOIN UP



Inspection of the periodic structure indicates:

m > m

m = m

m = m

m = m(1)         Nonlinear evolution at             

(2)          Jump from                to

(3)          Nonlinear evolution at

(4)          Jump from                 to

(5)         Half period shift 

m = m

m = m

J :

J−1 :

S :

E :

E :

m = m

• Solution jumps between two entropy levels                  

• Starting with time-periodic “initial data” U(t) at 
x=0,  solution evolves through five operations 
before periodic return:



N
NJ J−1

{U(t)
U(t){

J J−1

S

The periodicity condition

S · J 1 · E · J · E [U(·)] = U(·)

EE



I.e.

m = m

m = m

m = m(1)        Nonlinear evolution at             

(2)       Jump from                 to

(3)        Nonlinear evolution at

(4)          Jump from                 to

(5)       Half period shift 

m = m

m = m

J :

J−1 :

S :

E :

E :

m = m

x

t
{
Time 

period

Space period

{
m m mmm mmm m m



N
NJ J−1

{U(t)
U(t){

J J−1

S

The simplest periodicity 
condition

EE

S · J−1 · E · J · E [U(·)] = U(·)



Label the stages of      evolution by ·ˇ ˆ̃ *

t
2π

2π-periodic

U(·)

“initial data”

Ǔ(t) Ũ(t) Û(t) U∗(t) U#(t)U̇(t)



Dimensionless Variables

Give time and space the same dimension by defin-
ing y through the relation

Define the dimensionless variables

y − y0 =
x− x0

c0

Equations convert to the dimensionless form

wy + σ(w)vt = 0
vy + σ(w)wt = 0

σ(w) = w−d d ≡ γ + 1
γ − 1

w =
z

z0

v =
u− u0

m0z0

m ≡ m0



The nonlinear evolution equations take the non-
dimensional form:

where:

wy + σ(w)vt = 0
vy + σ(w)wt = 0

d ≡ γ + 1
γ − 1σ ≡ σ(w) = w−d

The equations are independent of base states!

I.e., independent of

Remarkable Fact:

m0, z0, u0



The Transformed Problem

J

S · J−1 · E(θ) · J · E(θ) [V (·)] = V (·)

J J−1

S

2π

“initial 
data”

· ˇ ˆ˜ *

V̇ (t) V̌ (t) Ṽ (t) V̂ (t) V ∗(t)

V #(t)

E(θ) E(θ)

V (t) =
(

w(t)
v(t)

)



The Nonlinear Evolution Operator

wy + σ(w)vt = 0
vy + σ(w)wt = 0

DEFINE: 

to be evolution by system  

starting from “initial data”  

V (y, ·) = E(y)[V (·)]

[0, y]through interval 

V (0, t) = V (t)



where 

 

J =
(

m

m

) d−1
d+1

V = (w, v)

Define: the entropy jump operator J
acting on V (·) pointwise by

J
[

w
v

]
=

(
1 0
0 J

) [
w
v

]

 

  NOTE:         is LINEAR       J

The Entropy Jump Operator
in (w,v)-coords



The Shift Operator

Define the shift operator S
acting on V by

SV (t) = V (t + π)

  

  NOTE:         is LINEAR       S



The Periodicity Condition for 
the Nonlinear Problem 

in 
V=(w,v)-space

N [V̇ (t)] ≡ S · J−1 · E(θ) · J · E(θ) [V̇ (t)] = V̇ (t)

N ≡ S · J−1 · E(θ) · J · E(θ)



The Periodicity Condition

J

J J−1

S

2π

“initial 
data”

· ˇ ˆ˜ *

V̇ (t) V̌ (t) Ṽ (t) V̂ (t) V ∗(t)

V #(t)

E(θ) E(θ)

N [V (t)] ≡ S · J−1 · E(θ) · J · E(θ) [V ] = V (t)



C.f. The Nonlinear/Linearized Problem:

The Nolinear Problem:

The Linearized Problem:

Evolution by  

Evolution by  

M[V (·)] ≡ S · J−1 · L(θ) · J · L(θ)[V (·)] = V (·)

V (y, ·) = E(y)[V (·)]
wy + σ(w)vt = 0
vy + σ(w)wt = 0

V (y, t) = L(θ)[V (t)]
wy + vt = 0
vy + wt = 0
σ(w0) = σ(1) = 1

N [V (t)] ≡ S · J−1 · E(θ) · J · E(θ) [V ] = V (t)



For the 
“Linearized Problem”

wave speeds are 
constant at each 

entropy level

This is the limit as the 
states at each entropy 
level oscillate near a 

constant state

........



The L^2-Space

Define:  the space of periodic functions
 even in w, odd in v

V (t) =
[

w(t)
v(t)

]

∆ = ⊕+∞
n=0∆n

∆n =
{

V (t) =
[

an cos nt
bn sinnt

]
: an, bn ∈ R

}



LEMMA: If V (t) = (w(t), v(t)) ∈ ∆ is 2π-periodic,
sufficiently smooth and sufficiently small, then both
M [V (·)] (t) and N [V (·)] (t) are well defined smooth
functions, and

N [V (·)] (y) ∈ ∆M [V (·)] (y) ∈ ∆ and

for all 0 ≤ y ≤ θ + θ

E.g.              denotes the function 
y-units through the evolution of             

N [V (·)] (y)

N



The Perturbation Problem:

Fε = Gε − I

Gε[V ] =
1
ε

{
N

[(
1
0

)
+ εV

]
−

(
1
0

)}

Define:

where

so

F(ε, V ) ≡ Fε[V ] = Gε[V ]− V

=
1
ε

{
N

[(
1
0

)
+ εV

]
−

(
1
0

)}
− V



Proof:

Gε[V ] =
1
ε

{
N

[(
1
0

)
+ εV

]
−

(
1
0

)}
= V

N
[(

1
0

)
+ εV

]
=

(
1
0

)
+ εV

Fε[V ] = 0

LEMMA 1: If V ∈ ∆ solves

Fε[V ] = 0

for ε "= 0, then

W =

(
1
0

)
+ εV

defines a periodic solution of the nonlinear
compressible Euler equations.



Proof  (Formally):

Gε[V ] =
1
ε

{
N

[(
1
0

)
+ εV

]
−

(
1
0

)}
= V

F(ε, V ) = Gε[V ]− V =
1
ε

{
N

[(
1
0

)
+ εV

]
−

(
1
0

)}
− V

= M[V ]− V + O(ε2)

}
Tends to evolution at            

with error
σ = 1

O(ε2)

LEMMA 2: In the limit ε → 0 we recover the
linear problem:

lim
ε→0
Gε[V ] =M[V ],



Exact Linearized 
Solutions Exhibiting 

the Simplest Periodic 
Structure



Theorem:   

(1)     There exists a unique solution of the       
linearized equations in the 1-Fourier mode  

(2)      For almost every choice of periods, 
this solution is isolated in the kernel of the 

linearized operator  

(3)  The eigenvalues of the linearized operator 
can be bounded away from zero by 

M− I

|λn − 1| ≥ 1
nr

(“The starting estimate you need to apply the hard 
implicit function in the presence of small divisors”)



Proof:

Consider first linear evolution:

Evolution by  

M[V (·)] ≡ S · J−1 · L(θ) · J · L(θ)[V (·)] = V (·)

V (y, t) = L(θ)[V (t)]
wy + vt = 0
vy + wt = 0V (t) = (w, v)

(
wn(y)
vn(y)

)
= R(ny)

(
wn(0)
vn(0)

)

(
wn

vn

)′
+ n

[
0 1
−1 0

] (
wn

vn

)
= 0

Conclude:  counterclockwise rotation      
represents        in the n’th F-mode

R(nθ)
L(θ)



Consider next the linear jump operator:

Conclude:      represents      in the n’th F-mode

Then 

J =
(

m

m

) d−1
d+1

J
[

w
v

]
=

(
1 0
0 J

) [
w
v

]

J : D

(
wn(y)
vn(y)

)
=

(
wn(y)
J vn(y)

)
D =

(
1 0
0 J

)

D J



Consider next the linear shift operator:

Conclude:  multiplication by         represents      
in the n’th F-mode

Then 

 

V = (w, v)

 

V (y, t) =
∞∑

n=0

(
wn(y) cos nt
vn(y) sin nt

)

S[V (y, t)] =
∞∑

n=0

[
wn(y) cos (nt + nπ)
vn(y) sin (nt + nπ)

]
=
∞∑

n=0

(−1)n

(
wn(y) cos nt
vn(y) sin nt

)

S : S

(
wn(y)
vn(y)

)
= (−1)n

(
wn(y)
vn(y)

)

(−1)n S

S[V (t)] = V (t + π)



CONCLUDE:  the linear operator
          is represented by matrix multiplication

 in each Fourier-mode:

Conclude:        represents       in the n’th F-mode

M[V (·)] ≡ S · J−1 · L(θ) · J · L(θ)[V (·)] = V (·)

V (t) =
∞∑

n=0

(
wn cos nt
vn sin nt

)

(
wn

vn

) !→ (−1)n · D−1 · R(nθ) · D · R(nθ) ·
(

wn

vn

)
≡Mn

(
wn

vn

)

M

Mn M

Mn = (−1)n · D−1 · R(nθ) · D · R(nθ)



AS A RESULT:  The condition for periodicity in the 
n’th Fourier-mode is:

Mn

(
wn

vn

)
=

(
wn

vn

)

(−1)n · D−1 · R(nθ) · D · R(nθ) ·
(

wn

vn

)
=

(
wn

vn

)

THUS: we look for values of (θ, θ, J) such that
the corresponding operatorM isolates a periodic
solution in the 1-mode; I.e. we find q = (q1, q2) =
(w1, v1) such that

(1)

(2)

M1q = q

Mn

(
w
v

)
!=

(
w
v

)
for all

(
w
v

)
∈ R2



THEOREM: Assume that J > 1, θ > 0, θ > 0 and

θ + θ < π.

Then V (t) = (q1 cos t, q2 sin t) ∈ ∆1 is a solution of M[V ] = V
if and only if

J = cot(θ/2) cot(θ/2)

and q = (q1, q2) ∈ Span {q}, where

q = (cos(θ/2),− sin(θ/2)).

Furthermore, if q̇ = q, then also

q̌ = (cos(θ/2), sin(θ/2))
q̃ = (cos(θ/2), J sin(θ/2))

= ρ(cos(π/2− θ/2), sin(π/2− θ/2)),
q̂ = (− cos(θ/2), J sin(θ/2))

= ρ(− cos(π/2− θ/2), sin(π/2− θ/2)),
q∗ = (− cos(θ/2), sin(θ/2) = −q,

where we have set ρ = ‖q̃‖.



· ˜ ˆ**
V̌ (t) V̂ (t)Ṽ (t) V ∗(t)V̇ (t)

ˇ2π

m m

q̇ q̌ q̃ q̂ q∗

RECALL.....



• Edit

The states q̇, q̌, q̃, q̂, q∗ for q ∈ ∆1

w

v

You can solve for q geometrically:



Linear solutions should perturb to exact 
solutions of the nonlinear problem

CHECK:  The solution in the 1-mode kernel has 
the structure that balances compression and 

rarefaction in the nonlinear problem



THEOREM: Let

E ≡
{
Θ = (θ, θ) : θ, θ > 0, 0 < θ + θ < π

}
.

Then there exists a subset E∗ of full measure in
E such that, if Θ ∈ E∗, then Θ is non-resonant
in the sense that if J is given in terms of Θ by
(**), then the eigenvalues λ±n − 1 of the linearized
operatorM− I are nonzero for all n ≥ 2.



We now impose a further
symmetry and use this to
obtain explicit bounds for
the eigenvalues of Mn.



THEOREM: Assume the symmetric case,

θ = θ ≡ θ, 0 < θ < π/2.

Then there is a set of full measure A ⊂ (0, π/2)
such that, if θ ∈ A, then there is a positive con-
stant C and exponent r ≥ 1 such that the eigen-
values of the linearized operatorM−I satisfy the
estimate

|λ±n − 1| ≥ C

nr
,

for all n ≥ 2. In particular, if π−2θ
2π is the irrational

root of a quadratic equation, we can take r = 1.



•“Proof”:   Define the transformation

φ =
π − θ + θ

2

ψ =
π − θ − θ

2

And apply the theory of Liouville numbers in 
transformed variables assuming                 ... θ = θ = θ



•“Proof”:   That is, we first prove

Choose q = n:
∣∣∣∣
nψ

π
− p

∣∣∣∣ >
C

nr−1

for all n, p ∈ Z.

|λ±n − 1| ≥ C

nr
iff | sin(nψ)| ≥ C

nr

DEFN: ξ = ψ/π is NOT a Liouville
Number if ∃C > 0, r ≥ 2 such that

∣∣∣∣ξ −
p

q

∣∣∣∣ >
C

qr
∀ p/q ∈ Q.

THM: Non-Liouville numbers form a set
of full measure



•“Proof”:   So...
∣∣∣∣
nψ

π
− p

∣∣∣∣ >
C

nr−1

Dist
{

nψ

π
, Z

}
>

C

nr−1

Theorem: If ξ is the irrational root of a rational
quadratic polynomial, we can take r = 2 (best case)

|sin nψ| >
C

nr−1

|λ±n − 1| ≥ C

nr

|λ±n − 1| ≥ C

nr−1



• Edit

Numerical Plot of First 50 Eigenvalues–Case θ != θ



Bifurcation to Nonlinear Solutions

It remains to prove that the linearized 
solutions perturb to solutions of the 
nonlinear equations.

Liapunov-Schmidt decomposes the 
nonlinear problem by coordinates 
natural for the linearized problem: 



Picture:   L-S Decomposition

P ≡ Projection onto R

Decompose the nonlinear problem by the RANGE R
and KERNEL K of the LINEAR OPERATOR M− I:

I − P ≡ Projection onto R⊥

⊕ ⊕

(I − P)Fε[X · Z + WX(ε)]

PFε[X · Z + WX(ε)]

Z

WX(ε)

!→

!→

Bifurcation Equation

Auxiliary Equation

R⊥

R

K

K⊥



We have solved the Bifurcation Equation:

The map is 1-1 invertible, but the 
eigenvalues are not bounded away from 
zero, which leads to issues of small-
divisors analogous to KAM theory.

It remains to prove that the linearized 
solutions perturb to solutions of the 
nonlinear equations.   By Liapunov-Schmidt 
we can reduce the problem to solving the 
so-called auxiliary equation

It remains to solve the Auxiliary Equation:

AUXILIARY EQUATION: P · Fε[X · Z + WX(ε)] = 0

CONCLUSION

{
WX(ε) ∈ K⊥

}
"−→ P · Fε[X · Z + WX(ε)] ∈ R



We are currently working on this!

NOTE:  If the eigenvalues were uniformly 
bounded away from zero, the standard 
Implicit Function Theorem for Banach 
Spaces would directly apply.

NOTE: The Auxiliary Equation poses an 
abstract Implicit Function Theorem 
problem:  “Everything special” about the 
periodic problem has been removed at 
this stage.
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END


