
Chapter 5
Experimentally Estimating Phase Response
Curves of Neurons: Theoretical and Practical
Issues

Theoden Netoff, Michael A. Schwemmer, and Timothy J. Lewis

Abstract Phase response curves (PRCs) characterize response properties of
oscillating neurons to pulsetile input and are useful for linking the dynamics of
individual neurons to network dynamics. PRCs can be easily computed for model
neurons. PRCs can be also measured for real neurons, but there are many issues that
complicate this process. Most of these complications arise from the fact that neurons
are noisy on several time-scales. There is considerable amount of variation (jitter)
in the inter-spike intervals of “periodically” firing neurons. Furthermore, neuronal
firing is not stationary on the time scales on which PRCs are usually measured.
Other issues include determining the appropriate stimuli to use and how long to
wait between stimuli.

In this chapter, we consider many of the complicating factors that arise when
generating PRCs for real neurons or “realistic” model neurons. We discuss issues
concerning the stimulus waveforms used to generate the PRC and ways to deal
with the effects of slow time-scale processes (e.g. spike frequency adaption).
We also address issues that are present during PRC data acquisition and discuss
fitting “noisy” PRC data to extract the underlying PRC and quantify the stochastic
variation of the phase responses. Finally, we describe an alternative method to
generate PRCs using small amplitude white noise stimuli.
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1 Introduction

A phase response curve (PRC) quantifies the response of a periodically firing neuron
to an external stimulus (Fig. 5.1). More specifically, it measures the phase shift
of the oscillating neuron as a function of the phase that a stimulus is delivered.
The task of generating a PRC for a real neuron seems straightforward: (1) If the
neuron is not oscillating, then inject a constant current or apply a neuromodulator
to make the neuron fire with the desired period. (2) Deliver a pulsatile stimulus at a
particular phase in the neuron’s periodic cycle, and measure the subsequent change

Fig. 5.1 PRC measured from
a cortical pyramidal neuron.
Top panel: voltage from an
unperturbed periodically
firing neuron (solid line);
voltage from neuron
stimulated with synaptic
conductance near the end of
the cycle, resulting in an
advance of the spike from
normal period (dash-dotted
line); voltage from a neuron
stimulated early in the cycle,
resulting in slight delay of
spike (dotted line). Bottom
panel: spike advance
measured as a function of the
phase of stimulation. Each
dot represents the response to
a stimulus. Solid line is a
function fit to the raw data,
estimating the PRC. Error
bars indicate the standard
deviation at each stimulus
phase. The dashed line is the
second order PRC, i.e. it
indicates the effect of the
synaptic input at that phase
on the period following the
stimulated period. Figure
adapted from Netoff
et al. 2005b
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in timing of the next spike (Fig. 5.1 top panel). (3) Repeat these steps for many
different phases (Fig. 5.1 bottom panel). However, there are many subtle issues that
complicate this seemingly simple process when dealing with real neurons.

Many of the complicating factors in generating PRCs arise from the fact that
neurons are inherently noisy on several timescales. There is usually a considerable
amount of variation in the interspike intervals of “periodically” firing neurons. This
jitter in interspike intervals confounds the change in phase that is due to a stimulus.
Furthermore, neuronal firing is typically not stationary over the timescales on which
PRCs are measured, and a PRC can change significantly with the firing rate of a
neuron. Other important issues that need consideration when constructing PRCs
arise from the inherent nonlinearities and slow timescale processes of neuronal
dynamics. These issues include determining the appropriate stimuli and deciding
how long to wait between stimuli.

In this chapter, we will discuss many of the complicating factors that arise when
generating PRCs for real neurons or “realistic” model neurons. In Sects. 2 and 3, we
focus on theoretical issues for which noise is not a factor. Section 2 addresses issues
around the stimulus waveforms used to generate the PRC. Section 3 discusses the
effects of slow timescale processes, such as spike frequency adaption, on the phase
response properties of a neuron. In Sects. 4 and 5, we discuss issues that arise when
measuring PRCs in “real-world” noisy conditions. Section 4 deals with issues that
are present during data acquisition, and Sect. 5 discusses fitting “noisy” PRC data
to extract the underlying PRC and quantifying the stochastic variation of the phase
responses. Finally, in Sect. 6, we describe an alternative method to generate PRCs
using small amplitude white noise stimuli.

2 Choosing an Appropriate Stimulus

PRCs are often used to predict the phase-locking dynamics of coupled neurons,
using either spike-time response curve (STRC) maps (e.g., (Canavier 2005; Netoff
et al. 2005) also see Chap. 4) or the theory of weakly coupled oscillators (e.g.,
(Ermentrout & Kopell 1991; Kuramoto 1984); also see Chaps. 1 and 2) as follows:

1. The STRC map approach can be used for networks in which synaptic inputs can
be moderately strong but must be sufficiently brief. The limiting assumption of
STRC map approach is that the effect of any input to a neuron must be complete
before the next input arrives. In this case, the PRC can be used to predict the
phase shift due to each synaptic input. Therefore, if one intends to use the STRC
map method to predict phase-locking behavior, then PRCs should be generated
using a stimulus that approximates the synaptic input in the neuronal circuit
under study.

2. The theory of weakly coupled oscillators can be used for completely general
coupling but the total coupling current incident on a neuron at any time must be
sufficiently small. The limiting assumption of this method is that the effects of the
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inputs sum linearly, i.e., the neurons respond to input like a time-dependent linear
oscillator. The infinitesimal PRC (iPRC), which is used in the theory of weakly
coupled oscillators, can be obtained from any PRC generated with sufficiently
small perturbations (so long as the perturbation elicits a “measurable” response).
Typically, current-based stimuli that approximate delta functions are used.

As indicated above, the choice of stimulus used to generate a PRC depends on the
intended use of the PRC. It also depends on the need for realistic stimuli and ease
of implementation. In this section, we will address some of the issues involved in
choosing an appropriate stimulus waveform to generate a PRC. For the case of small
amplitude stimuli, we will also describe the relationships between PRCs generated
with different stimulus waveforms.

2.1 Stimulus Waveforms

2.1.1 Current-based Synaptic Input

Perhaps the simplest stimulus waveform used to measure a neuron’s PRC is a square
pulse of current. Square wave current stimuli are easy to implement in models and
in a real neuron, using a waveform generator. A possible drawback is that square
wave pulses do not resemble synaptic conductances (however, see Sect. 2.2).

A current stimulus waveform that has a shape similar to realistic synaptic input
is an alpha function

Isyn.t/ D Smax
1

�f � �r

�
e� t

�f � e� t
�r

�
; t � 0;

where Smax controls the amplitude of the synaptic current, �f is the time constant
that controls the decay (“fall”) of the synaptic current, and �r is the time constant
that controls the rise time of the synaptic current. Here, t D 0 is the time at the
onset of each synaptic input. Examples of alpha functions with different coefficients
are plotted in Fig. 5.2. The coefficients of the alpha function current stimulus can
be chosen in order to fit the postsynaptic potentials (PSPs) measured in neurons
of interest.1 In the neocortex, physiologically reasonable values for the synaptic
conductance time constants are �f � 1:8ms and �r � 1:4ms for fast excitatory
synapses and �f � 3:5ms and �r � 1:0ms for fast inhibitory synapses (Cruikshank,
Lewis, & Connors 2007). The peak amplitude is synapse specific and depends on the
resistance of the neuron. We usually adjust the amplitude of the synaptic current so

1The time constants of the synaptic currents will be faster than those for the PSP because the current
waveform is filtered due to the RC properties neuronal membrane. To find the time constants of
the synaptic currents, one can adjust these time constants until the current stimulus induces a PSP
waveform that adequately matches an actual PSP.
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Fig. 5.2 Alpha function current stimuli plotted with different time constants and the same total
current (in arbitrary units, AU)

that it elicits a PSP of �1mV in amplitude. Figure 5.3 shows PRCs generated using
an alpha function current stimulus with a positive Smax to simulate an excitatory
synaptic input (top) and a negative Smax to simulate an inhibitory synapse (bottom).

The shape of the PRC can be significantly affected by the shape of the
stimulus waveform used to generate it. PRCs measured from the same neuron
using excitatory currents with different time constants are shown in Fig. 5.4. As
the synaptic time constants increase, the PRC peak shifts down and to the left. This
shift in the PRC is associated with changes in phase-locking of synaptically coupled
neurons; simply by slowing the time constants of the synapses, it is possible for
a network to transition from synchronous firing to asynchronous firing (Lewis &
Rinzel 2003; Netoff et al. 2005; Van Vreeswijk, Abbott, & Ermentrout 1994).

The PRC can also be affected by the magnitude of the stimulus used to generate
it. As shown in the example in Fig. 5.5, the peak of the PRC typically shifts up and to
the left as the magnitude of excitatory input increases. PRCs for inhibitory pulses are
generally flipped compared to those for excitatory pulses, and the peak in the PRC
typically shifts down and to the right as the magnitude of inhibitory input increases.
For sufficiently small input, the magnitude of the PRC scales approximately linearly
with the magnitude of the input. In fact, for sufficiently small input, the changes in
the PRC that occur due to changes in the stimulus waveform can be understood
in terms of a convolution of the stimulating current with the neuron’s so-called
infinitesimal PRC. This will be described more fully in Sect. 2.2. Some of the
changes in the PRC that occur in response to changes of the stimuli with large
magnitudes follow the same trends found for small stimuli; however, other changes
are more complicated and involve the nonlinear properties of neurons.

When stimulating a neuron, the maximum a neuron’s spike can be advanced is
to the time of the stimulus. In other words, the spike cannot be advanced to a time
before the stimulus was applied. Therefore, the spike advance is limited by causality.
Often we plot the causality limit along with the PRC to show the maximal advance
(as shown in Fig. 5.16). When plotting PRCs measured from neurons if the stimulus
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Fig. 5.3 Phase response curves measured with alpha-function current stimuli: [top] voltage trace
from neuron over one period [middle] excitatory stimuli, [bottom] inhibitory stimuli. Each plot
depicts the spike time advance, in proportion of the period, as a function of stimulus phase.
Zero phase and a phase of 1 are defined as voltage crossing of �20mV. The INa C IK model
of Izhikevich (2007) was used to model neuronal dynamics with ISI D 15ms. The synaptic
parameters were �r D 0:25ms, �f D 0:5ms, and Smax D 0:04

was too strong much of the data will hug the causality limit for a significant portion
of the phase. This indicates that the stimulus is eliciting an action potential at these
phases. If this is the case, we will drop the stimulus strength down. Because each
neuron we record has a different resistance, it is not possible to choose one stimulus
amplitude that works for every cell. We often have to adjust the amplitude. If the
stimulus amplitude is too weak, we find the PRC is indistinguishable from flat.

The line of causality can affect the estimate of the PRC as well. If the neuron is
close to the line of causality, it effectively truncates the noise around the PRC. PRCs
measured using excitatory synaptic inputs are affected more by the line of causality
than those measured with inhibitory synaptic inputs, where the effect is to generally
delay the next spike. In Chap. 7 of this book, it will be addressed how the truncation
of the noise can affect the estimation of the PRC and how to correct for it.
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Fig. 5.4 The shape of PRC changes with the shape of the stimulus waveform. Phase response
curves are measured with alpha function excitatory current stimuli. Inset shows synaptic wave-
forms as the rise time constants and falling time constants are varied. The INa C IK model of
Izhikevich (2007) was used to model neuronal dynamics with a period of 7.2 ms and Smax D 0:04
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Fig. 5.5 The shape of PRC changes with the magnitude of the stimulus waveform. Phase response
curves are measured with alpha-function current stimuli. The INa CIK model of Izhikevich (2007)
was used to model neuronal dynamics with ISI D 15ms. The synaptic time constants were �r D
0:25ms and tf D 0:5ms
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2.1.2 Conductance-based Synaptic Input

When a neurotransmitter is released by a presynaptic cell, it opens ion channels in
the postsynaptic cell, evoking a synaptic current carried by the flow of ions through
the cell membrane. The synaptic current depends on the number of channels opened
(i.e., the activated synaptic conductance) and the potential across the membrane. To
simulate a more realistic “conductance-based” synapse, an alpha function can be
used to describe the synaptic conductance waveform which is then multiplied by
synaptic driving force (the difference between the membrane potential V and the
reversal potential of the synaptic current Esyn/ to calculate the synaptic current

Isyn.t/ D Gsyn.t/.Esyn � V.t//; t � 0;

where the synaptic conductance waveformGsyn.t/ is defined to be

Gsyn.t/ D gsyn
1

�s � �f

�
e� t

�s � e� t
�f

�
; t � 0:

The parameter gsyn scales the amplitude of the synaptic conductance. Note that
stimulating a neuron with a conductance waveform requires a closed loop feedback
system, called a dynamic clamp. The details of a dynamic clamp will be discussed
Sect. 4.1.

The synaptic reversal potential is calculated using the Nernst equation if the
channels only pass one ion, or the Goldman–Hodgkin–Katz equation if it passes
multiple ions (Hille 1992). Excitatory glutamatergic ion channels are cationic,
passing some sodium and potassium ions, and therefore the associated excitatory
synaptic current reversal potential is usually set near 0 mV. Inhibitory GABAergic
ion channels pass mainly chloride or potassium ions, and therefore the associated
inhibitory synaptic reversal potential is usually set near �80mV. The time constants
for synaptic conductances are very similar to those previously quoted for synaptic
currents.

In Fig. 5.6, the synaptic conductance profiles and corresponding current wave-
forms for an excitatory synaptic conductance-based input are plotted for different
input phases, as illustrated in the Golomb–Amitai model neuron (Golomb &
Amitai 1997). As the neuron’s membrane potential changes over the cycle, so does
the synaptic driving force. Thus, the synaptic current waveform will be different
for different input phases. For this reason, a PRC measured with a conductance-
based input will be different from a PRC measured using a stimulus with a fixed
current waveform. For excitatory conductance-based synaptic inputs, the input
current can even reverse direction when the action potential passes through the
excitatory synaptic reversal potential. Differences between PRC generated with
inhibitory conductance-based input current-based input are more pronounced than
for excitatory input because the cell’s voltage between action potentials is much
closer to the inhibitory reversal potential than for the excitatory reversal potential.
This results in larger fractional changes of the driving force (and therefore input
current) when compared to excitatory synapses.
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Fig. 5.6 Synaptic input current varies with phase for conductance-based synaptic input. [Top left
panel] Identical synaptic conductance (Gsyn/ waveforms started at different phases; [middle left
panel] the corresponding synaptic current waveforms; [bottom left panel] the membrane potential
used to calculate the synaptic current waveforms. Notice that the synaptic current depends on the
membrane potential. [Right panels] PRCs measured with inhibitory current input and inhibitory
conductance input. The bottom panel shows the voltage trace, and the synaptic reversal potential
at �80mV. To model the current-based waveforms, the synaptic driving force was held constant
at 16 mV (i.e., V �Esyn D �64mV � .�80mV/). The INa C IK model of Izhikevich (2007) was
used for figures in the left panels, and the Golomb–Amitai model (1997) was used for figures in
the right panels
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2.2 The Infinitesimal Phase Response Curve (iPRC)

The infinitesimal phase response curve (iPRC or Z/ is a special PRC that directly
measures the sensitivity of a neuronal oscillator to small input current2 at any given
phase. The iPRC is used in the theory of weakly coupled oscillators to predict
the phase-locking patterns of neuronal oscillators in response to external input
or due to network connectivity (Ermentrout & Kopell 1991; Kuramoto 1984) see
also Chaps. 1 and 2). For mathematical models, the iPRC can be computed by
linearizing the system about the stable limit cycle and solving the corresponding
adjoint equations ((Ermentrout & Chow 2002), see also Chap. 1). Equivalently, the
iPRC can be constructed by simply generating a PRC in a standard fashion using a
small delta function3 current pulse and then normalizing the phase shifts by the net
charge of the pulse (the area of the delta function). More practically, the iPRC can
be obtained using any stimulus that approximates a delta function, i.e., any current
stimulus that is sufficiently small and brief. Typically, small brief square pulses are
used. Note that, for sufficiently small stimuli, the system will behave like a time-
dependent linear oscillator, and therefore the iPRC is independent of the net charge
of the stimulus that was used. When generating approximations of a real neuron’s
iPRC, it is useful to generate iPRCs for at least two amplitudes to test for linearity
and determine if a sufficiently small stimulus was used.

2.2.1 Relationship Between General PRCs and the iPRC

The iPRC measures the linear response of an oscillating neuron (in terms of phase
shifts) to small delta-function current pulses. Therefore, it can serve as the impulse
response function for the oscillatory system: The phase shift due to a stimulus of
arbitrary waveform with sufficiently small amplitude can be obtained by computing
the integral of the stimulus weighted by the iPRC. Thus, a PRC of a neuron for any
particular current stimulus can be estimated from the “convolution”4 of the stimulus
waveform and the neuron’s iPRC

PRC.�/ Š
Z 1

0

Z.t C �T /Istim.t/dt ; (5.1)

2In general, the iPRC is equivalent to the gradient of phase with respect to all state variables
evaluated at all points along the limit cycle (i.e. it is a vector measuring the sensitivity to
perturbations in any variable). However, because neurons are typically only perturbed by currents,

the iPRC for neurons is usually taken to be the voltage component of this gradient
�
@�

@V

�
evaluated

along the limit cycle.
3A delta-function is a pulse with infinite height and zero width with an area of one. Injecting a
delta-function current into a cell corresponds to instantaneously injecting a fixed charge into the
cell, which results in an instantaneous jump in the cell’s membrane potential by a fixed amount.
4The definition of a convolution is g � f . / D R

g. � t /f .t/dt D R
g.�.t �  //f .t/dt , so

technically, PRC.�/ D Z � l.��T /.
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where PRC(�) is the phase shift in response of a neuron with an iPRC Z.t/ and
a current stimulus of waveform Istim.t/, and � is the phase of the neuron at the
onset of the stimulus. Note that (5.1) assumes that the relative phase of the neuron
� is a constant over the entire integral. However, because only small stimuli are
considered, phase shifts will be small, and thus this assumption is reasonable.

2.2.2 Calculating PRCs from iPRCs

Assuming that the functional forms of the stimulus (as chosen by the experimenter)
and the iPRC (as fit to data) are known, an estimate of the PRC can be calculated
using (5.1). From a practical standpoint, the interval of integration must be truncated
so that the upper limit of the interval is tmax < 1. By discretizing � and t so that
tj D j�t and �j D j �t=T with j D 1: : :N , �t D tmax=N , equation becomes

PRC.�j / Š
N�1X
kD0

Z.tk C �jT /Istim.tk/�t: (5.2)

(Note that a simple left Reimann sum is used to approximate the integral, but high
order numerical integration could be used for greater accuracy). Equation (5.2) can
be used to directly compute an approximation of the PRC in the time domain. In this
direct calculation, tmax should be chosen sufficiently large to ensure that the effect of
the stimulus is almost entirely accounted for. In the case of small pulsatile stimuli,
one period of the neuron’s oscillation is usually sufficient (i.e., tmax D T ).

The PRC could also be calculated by solving (5.2) using discrete Fourier
transforms (DFTs)

PRC.�j / Š 1

N

N�1X
nD0

OZn OI.N�1/�ne�i2 n�j T =tmax�t; (5.3)

where OZn and OIn are coefficients of the nth modes of the DFTs of the discretized Z
and Istim, as defined by

x.tj / D
N�1X
nD0

Oxne
i2 ntj
tmax ; Oxn D 1

N

N�1X
jD0

x.tj /e�i2 ntj =tmax : (5.4)

Note that, because the DFT assumes that functions are tmax-periodic, a PRC(�j /
calculated with this method will actually correspond to phase shifts resulting from
applying the stimulus Istim tmax-periodically. To minimize this confounding effect,
tmax should be two or three times the intrinsic period of the neuron for small pulsatile
stimuli (i.e., tmax D 2T or 3T ).
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2.2.3 Calculating iPRC from the PRC Measured with Current-based
Stimuli

If a PRC was measured for a neuron using a stimulus that had a sufficiently small
magnitude, then the iPRC of the neuron can be estimated by “deconvolving” the
functional form of the PRC with the stimulus waveform, i.e., solving (5.2) forZ.tj /.
Deconvolution can be done in the time domain or the frequency-domain. Equation
(5.3) shows that the nth mode of the DFTs of the discretized PRC is 1PRCn D
OZn OI.N�1/�n�t . Therefore, the iPRC can be computed by

Z.tj / Š
N�1X
nD0

 
1PRCn

OI.N�1/�n�t

!
ei2 n�fT =tmax : (5.5)

We can also directly solve (5.2) for the iPRC, Z.tj /, in the time domain by noting
that

PRC.�j / Š
NX
kD1

Z.tk C �jT /Istim.tk/�t;

D
NX
kD1

Istim.tk � �j T /Z.tk/�t; (5.6)

which can be written in matrix form as

PRC Š I stim NZ; (5.7)

where PRC and NZ are the vectors representing the discretized PRC and iPRC,

respectively, and I stim is an N �N matrix with the j ,kth element Istim .tk � �j T /.
Therefore, we can find the iPRC NZ by solving this linear system. Note that this

problem will be well posed because all rows of I stim are shifts of the other rows.
A related method for measuring the iPRC using a white noise current stimulus

will be discussed in Sect. 6.

2.2.4 iPRCs, PRCs, and Conductance-based Stimuli

As inferred from Sect. 2.1.2, the synaptic waveform for conductance-based stimuli
is not phase invariant. However, the ideas in previous sections can readily be
extended to incorporate conductance-based stimuli. The PRC measured with a
synaptic conductance is related to the iPRC by

PRC.�/ Š
Z 1

0

Z.t C �T/gsyn.t/.Esyn � V.t C �T //dt: (5.8)
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Assuming that the functional forms of the stimulus, the iPRC and the membrane
potential are known, an estimate of the PRC for conductance-based stimuli can
be calculated in a similar manner to that described for current-based stimuli in
Sect. 2.2.2. That is, the PRC can be computed in the time domain or frequency
domain, using

PRC.�j / Š
N�1X
kD0

Z.tk/Œgsyn.tk � �j T /.Esyn � V.tk//��t; (5.9)

D �
N�1X
nD0

OZn Ovn Og.N�1/�ne�i2 n�f T =tmax�t; (5.10)

where Ovn and Ogn are the nth modes of the DFTs of the discretized functions .V .t/�
Esyn/ and gsyn.t/. Furthermore, the iPRC can be calculated from the PRC in the
frequency domain by noting that the nth mode of the DFTs of the discretized PRC
is 1PRCn D �Ozn Ovn Og.N�1/�n�t for conductance-based stimuli (see (5.10)), therefore

Z.tj / D �
N�1X
nD0

 
1PRC�n

Ovn Og.N�1/�n�t

!
ei2 n�j T=tmax : (5.11)

When computing the iPRC in the time domain, we can first “deconvolve” (5.8) to
find the product (Esyn � V.t//KZ.t/, and then divide out the driving force to find
the Z.t/. Note that numerical error could be large when .Esyn � V.tk// is small,
therefore care should be taken at these points (e.g., these points could be discarded).

Estimates of the iPRCs for a real neuron that are calculated from PRCs measured
with excitatory synaptic conductance in one case and inhibitory synaptic conduc-
tance in another are shown in Fig. 5.7 (Netoff, Acker, Bettencourt, & White 2005).
While the measured PRCs look dramatically different, the iPRCs are quite similar,
indicating that the main difference in the response can be attributed to changes in
the synaptic reversal potential. The remaining differences between the estimated
iPRCs are likely due to small changes in the state of the neuron, error introduced by
fitting the PRCs, and/or the fact that the response of the neuron to the stimuli is not
perfectly linear.

3 Dealing with Slow timescale Dynamics in Neurons

Processes that act on relatively slow time scales can endow a neuron with the
“memory” of stimuli beyond a single cycle. In fact, a stimulus applied to one
cycle is never truly isolated from other inputs. In this section we will address how
neuronal memory can affects the phase response properties of a neuron. Specifically,
we will discuss how stimuli can affect the cycles following the cycle in which the
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Fig. 5.7 Estimates of the infinitesimal PRC (iPRC) for a pyramidal neuron from CA1 region of
the hippocampus as calculated using PRCs. A synaptic conductance stimulus was used to generate
PRCs of the neuron, and then the shape of the synaptic waveform was deconvolved from the PRC
to estimate the iPRC. (Top panel) Voltage trace of neuron over one period. Inset is the synaptic
conductance waveform. (Middle two panels) PRCs measured with excitatory conductances (upper)
and inhibitory conductances (lower). (Bottom panel) iPRCs estimated using the excitatory and
the inhibitory PRCs. The iPRCs from the two data sets, despite being measured with completely
different waveforms, are similar. Figure modified from Netoff et al., 2005a

neuron was stimulated and how to quantify these effects (Sect. 3.1). We also address
how the effect of repeated inputs can accumulate over many periods, resulting in
accommodation of the firing rate and alteration of the PRC (Sect. 3.2).

3.1 Higher-order PRCs

A stimulus may not only affect the interspike intervals (ISIs) in which it is applied
but may also affect the ISIs of the following cycles, although usually to a lesser
degree. This can happen in two ways. The first is when the stimulus starts in one
cycle but continues into the next cycle. The second is through neuronal memory.
For example, a phase shift of a spike during one cycle may result in compensatory
changes in the following cycle, or the stimuli may significantly perturb a slow
process such as an adaption conductance. Often a large spike advance is followed
by a small delay in the next period (Netoff et al. 2005; Oprisan & Canavier 2001).
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Fig. 5.8 First, second, and third order PRCs. The first order PRC is measured as the change in
period of the cycle that the stimulus was applied, while second and third order PRCs are measured
from additional phase shifts of spikes in the subsequent cycles. Often the second and third order
PRCs are small compared to the first order PRC and are of alternating sign. Simulations were
performed using the Golomb–Amitai model (1997)

As mentioned earlier, the PRC represents the phase shifts of the first spike following
the onset of the stimulus, so the PRC measured this way can be considered the “first
order PRC”. The additional phase shifts of the second spike (or nth spike) following
the onset of the stimulus versus the phase of the stimulus onset is called the “second
order PRC” (or nth order PRC). Examples of first, second, and third order PRCs
are shown in Fig. 5.8. The higher order PRCs are usually small as compared to the
first order PRC, but can have significant implications in predicting network behavior
when accounted for (Oprisan & Canavier 2001).

3.2 Functional PRCs

Many neurons exhibit significant accommodation when a repeated stimulus is
applied. Thus, the shape of the PRC can depend on whether the perturbed cycle
is measured before or after the accommodation. Usually, the PRC is measured by
applying a single stimulus every few periods, in order to let the neuron recover
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Fig. 5.9 Functional PRC takes accommodation into consideration. The neuron is stimulated at the
same phase for many cycles, and the PRC is determined from the average interspike intervals
averaged over the last cycles. (Top trace) Voltage (in mV) and current for a stimulus applied
repeatedly at a fixed phase. Time series taken from one set of stimuli shown in middle panel.
(Middle) Interspike intervals (ISIs): circles represent unstimulated cycles; dots are stimulated
periods. The phase of the stimulus is systematically varied from the earliest to latest across the
stimulus trains. Simulations were performed using the Golomb–Amitai model (1997). (Bottom)
PRCs without accommodation (calculated from first ISI) and with accommodation (calculated
from last ISI)

from the stimulus and return to baseline firing rate. If the stimulus is repeated at
each cycle and the same time lag, the neuron may accommodate to the synaptic
input by changing the ISI over the first few cycles. One approach to deal with the
accommodation is to measure the phase advance after the neuron has accommodated
to the input and reached a steady-state response. The phase response curve from the
accommodated neuron is termed the functional phase response curve (fPRC) (Cui,
Canavier, & Butera 2009). The method is illustrated in Fig. 5.9. The PRC taken from
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the first stimulus interval looks different from the last train. Under conditions where
a neuron may accommodate significantly during network dynamics, the predictions
of network phase locking using the fPRC may produce more accurate results than
predictions using standard PRCs.

4 Issues in PRC Data Acquisition

On the timescale of a full PRC experiment, the neuron’s firing rate can drift
significantly. This drift can confound the small phase shifts resulting from the
stimuli. “Closed-loop” experimental techniques can be used to counteract this drift
and maintain a stable firing rate over the duration of the experiment. In this Sect. 4.1,
we introduce the dynamic clamp technique, which enables closed loop experiments
(Sect. 4.1), and we describe a method for using the dynamic clamp to control the
spike rate in order to reduce firing rate drift over the duration of the experiment
(Sect. 4.2). We also show how the dynamic clamp can also be used to choose the
phases of stimulation in a quasi-random manner, which can minimize sampling bias
(Sect. 4.3).

4.1 Open-loop and Closed-loop Estimation of the PRC

Historically, patch clamp experiments have been done in open loop, where a
predetermined stimulus is applied to the neuron and then the neuron’s response
is measured. With the advent of fast analog-to-digital sampling cards in desktop
computers, it has been possible to design experiments that require real-time
interactions between the stimulus and the neuron’s dynamics in a closed-loop
fashion, called a dynamic-clamp (Sharp, O’Neil, Abbott, & Marder 1993).

There are many different real-time systems available for dynamic clamp ex-
periments (Prinz, Abbott, & Marder 2004). We use the Real-Time eXperimental
Interface (RTXI) system (Dorval, 2nd, Bettencourt, Netoff, & White, 2007; Dorval,
Christini, & White, 2001; Dorval, Bettencourt, Netoff, & White, 2008), which is
an open-source dynamic clamp based on real-time Linux. It is freely available to
the public for download at http://www.rtxi.org. Modules for controlling the firing
rate of the neuron, simulating synapses and measuring the PRC can be downloaded
with the RTXI system. The RTXI system is modular, allowing one to write small
modules that perform specific tasks and then connect them together to run full
sets of experiments. Figure 5.10 illustrates the modules used to generate PRCs
experimentally. We note that the modular design makes it relatively easy to replace
a synaptic conductance module with a module to trigger a picospritzer to inject
neurotransmitters proximal to the dendrite to simulate synapses.

http://www.rtxi.org
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Fig. 5.10 Schematic of RTXI system for measuring phase response curves. Neuron is whole
cell patch clamped with glass electrode connected to patch clamp amplifier. Spike detect module
identifies occurrence of action potentials. Spike rate controller monitors the inter-spike intervals
and adjusts applied current to maintain neuron at user specified firing rate using an ePI closed-
loop feedback. PRC module determines the times to stimulate the neuron given the history and
sends trigger pulses to the synaptic conductance module. PRC module also records data to file
for analysis. Synaptic conductance module simulates synaptic conductances by injecting current
waveform that is dependent on time-varying synaptic conductance and voltage of neuron

4.2 Controlling Spike Rate

The PRC measures the neuron’s deviation from the natural period due to a stimulus.
If the firing rate of the neuron drifts over the time that PRC data is collected, then
the measured spike advance caused by the synaptic perturbation will be confounded
with the drift in the spike rate. An advantage of closed-loop measurements is that
the baseline applied current can be adjusted slightly from cycle to cycle to maintain
the firing rate close to a desired frequency.

To maintain the firing rate of the neuron, we developed an event based proportional-
integral (ePI) controller (Miranda-Dominguez, Gonia, & Netoff 2010). The baseline
current is adjusted immediately after the detection of the spike and only small
changes in current are allowed from cycle to cycle. The current at each spike
is calculated as I.n/ D Kpe.n/ C Ki

Pn
jD0 e.j /, where e.n/ is the difference

between the measured inter-spike interval (ISI) on cycle n and the target period,
Kp is the proportional constant, and Ki is an integration constant. It is possible to
determine optimal values for these coefficients based on the gain of the neuron’s
response to change in current and the time to settle, which is out of the scope of this
chapter and will be published elsewhere. We have found that for most neurons using
Kp D 6�10�12 andKi D 6�10�10 works well. Figure 5.11 demonstrates the effects
of the spike rate controller. The ISIs are plotted for an open-loop experiment in
which a constant current is injected into a neuron and for a closed-loop experiment
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Fig. 5.11 Spike rate control using ePI controller. (a) In the open-loop configuration, inter-spike
interval experiences significant drift over the �30 second time interval in which the baseline
applied current is applied, and the average inter-spike interval near the end of the trace (30 to
35 s) is over 10 ms away the target interval of 100 ms. Autocorrelations of first lag is nearly zero
(see bottom row). This indicates that the error from one cycle is almost completely independent
of the previous cycle. (b) With closed-loop control, the inter-spike interval converges quickly to
the target rate of 100 ms. (c and d) The mean inter-spike interval, after the initial transient, is
statistically indistinguishable from the target rate throughout the time interval in which the baseline
applied current is applied. (e and f) During this time, the current injected into the cell is varying to
maintain the neuron close to the target spike rate. Standard deviation of the error in open-loop and
closed-loop are similar, indicating that the closed-loop is only reducing the drift in the inter-spike
interval rate and not the variability from spike to spike. (g and h) The autocorrelation at the first lag
is nearly zero for both the open and closed loop controller. If feedback gain (from the proportional
feedback coefficient) is too high, the first lag of the autocorrelation will be negative, indicating a
ringing of the controller
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in which a current is adjusted to maintain the neuron at a desired firing rate. The
mean ISI in the open-loop experiments undergoes a drift of �10–20 ms, whereas the
mean ISI in the closed-loop experiments stays very close target period of 100 ms.
The autocorrelation is also shown to show that the method does not introduce any
significant correlation, which occurs if the feedback loop begins to oscillate.

4.3 Phase-Sampling Methods

When generating a PRC for a deterministic computational model of a neuron, it is
easy to systematically sample the response to stimuli at various phases by simply
stepping through phases of stimulation, while measuring the phase shift in response
to each stimulus, and restarting the model neuron at a particular initial condition
on the limit cycle after each measurement. In generating PRCs for real neurons,
stimuli are delivered sequentially to a oscillating neuron. Experimentally, it is best
to leave several unstimulated interspike intervals after each stimulus to minimize
any interactions between the effects of stimuli. This can be achieved by periodically
stimulating the neuron at intervals several times longer than the neuron’s natural
period. Assuming that the neuron has some variability in its period (i.e., jitter) or by
choosing the ratio between the period of the neuron and the period of stimulation
corresponds to an irrational number, this method should sample the period close to
uniformly and in an unbiased fashion. The advantage of this somewhat haphazard
sampling method is that it can be done open loop. The disadvantage is that, in
practice, it may result in oversampling of some phases and undersampling of others.

With a closed-loop experimental system, the phase at which the stimuli are
applied can be selected directly (i.e., by triggering the stimuli off of spike times). By
randomly selecting the phases of stimulation, you can ensure that there are no biases
introduced by the experimental protocol. However, even with randomly selecting
phases it does not sample the phases most efficiently. Efficiency is paramount in
experiments, because you are racing the slow death of the cell, and thus optimum
sampling can improve your PRC estimates. Quasi-random selection of phases, using
a “low-discrepancy” sequence such as a Sobol sequence, can cover the phases in 1p

N

the time as it would take a random sequence, where N is the number of data points
(Press 1992). The Sobol sequence as a function of stimulus cycle is illustrated at the
bottom of Fig. 5.12.

5 Fitting Functions to PRCs

The interspike intervals measured after applying stimuli can be highly variable
for real neurons, even if the stimuli are applied at the same phase. Because of
this variability, PRC experiments yield scatter plots of phase shift vs the phase
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Fig. 5.12 Sobol sequence to sample the phase of stimulation. With closed-loop experiments
stimuli can be applied at selected phases. The Sobol sequence is a quasi-random sequence, which
efficiently samples phase and minimizes bias. The plot represents the selected stimulus phase
plotted against the stimulus number. The intervals are not random, but not periodic

of stimulation. By appropriately fitting noisy PRC data, a functional relationship
can be obtained to characterize the mean response of the neuron. This functional
form of the PRC can then be used in conjunction with coupled oscillator theory
to predict of the network behaviors. In this section, we discuss fitting polynomial
functions (Sect. 5.1) and Fourier series to PRC data (Sect. 5.2) and address the issue
of determining optimal number of fit coefficients in terms of the Aikake Information
Criterion (Sect. 5.3). We also discuss statistical models of the variance in PRC data
(Sect. 5.4).

5.1 Polynomials

Simple functions that are sufficiently flexible to accommodate the shapes of
PRCs are polynomials (Netoff et al. 2005; Tateno and Robinson 2007). Fitting
polynomials to PRC data is easy to implement: Matlab and many other data analysis
programs have built-in functions that provide the coefficients of a kth degree
polynomial to fit data in the least squares sense. A kth order polynomial fit to PRC
data has the form

PRC.�/ D Ck�
k C Ck�1�k�1 C � � � C C2�

2 C C1�CC0;

where PRC(�) is the change in phase as a function of the phase of the stimulus �,
Cx’s are the coefficients that are determined by the fit to the data.

Often, spiking neurons are insensitive to perturbations during and immediately
following spikes. This property is manifested in PRCs with noisy but flat portions
at the early phases, which can sometimes cause spurious oscillations in polynomial
fits. These oscillations in the fit can be reduced or eliminated by constraining the
PRC to be zero at � D 0 by using the following constrained polynomial:

PRC.�/ D .Ck�
k C � � � C C2�

2 C C1� C C0/�
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Fig. 5.13 Free and constrained polynomial fits to PRC data for excitatory input to a neuron. Phase
advance as a function of stimulus phase is measured for a pyramidal neuron in hippocampus.
The neuron was firing at 10 Hz (100 ms intervals). The solid line is an unconstrained 6th order
polynomial fit (using 7 coefficients) to the points. Notice that the line does not meet the (0,0)
point or the (1,0). The dashed line is a two-ended constrained polynomial fit (4 coefficients and 2
constraints) that forces the curve to start at (0,0) and end at (1,0)

Moreover, because excitatory inputs can only advance the phase of the next spike
to the point that the neuron actually spikes, excitatory synaptic inputs to spiking
neurons generally elicit a PRC with no phase shifts at � D 1. Thus, it is useful to
constrain the fit of the PRC to be zero at both � D 0 and � D 1,

PRC.�/ D .Ck�
k C � � � C C2�

2 C C1� C C0/�.1� �/:

To obtain a constrained polynomial for the general period-1 polynomial case, a
constant term C . must added to the above polynomial (Tateno & Robinson 2007).

Examples of a two-end constrained fit and a no-constraint fit to raw PRC data
generated with excitatory stimuli are illustrated in Fig. 5.13. Figure 5.14 shows
examples of a one-end constrained fit (PRC.�/ D 0), a two-end constrained fit
and a no-constraint fit for PRC data generated with inhibitory inputs. In the case of
inhibitory input, there are almost zero phase shifts at early phases, but input causes
considerable phase shifts at late phases.

5.2 Fourier Series

Due to the periodic nature of many PRCs, PRC data is often fit using Fourier
series (e.g. (Galan, Ermentrout, & Urban 2005; Mancilla, Lewis, Pinto, Rinzel, &
Connors 2007; Ota, Nomura, & Aoyagi 2009)). A kth order Fourier series fit to PRC
data can be written as
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Fig. 5.14 Fits to PRC data generated with inhibitory input. PRCs generated with inhibitory inputs
have different shapes than those generated with excitatory curves. This is predominantly because
phase shifts are not limited by causality. The largest delays usually occur immediately prior to the
neuron spiking. A 4th order polynomial (5 coefficients) fit is plotted with a solid line. A 6th order
polynomial fit (4 coefficients and 2 constraints) with the beginning constrained to (0,0) and the end
to (0,1) is plotted with a dotted line. This function does not fit the right hand side of the data well.
A 5th order polynomial fit (4 coefficients and 1 constraint) constrained only at the beginning to
(0,0) is plotted with a dot-dashed line. This curve provides the best fit to the data

PRC.�/ D a0 C
kX

jD1
faj cos.2 j�/C bj sin.2 j�/g;

where the Fourier coefficients are given by

a0 D 1

N

NX
nD1

��n; aj D 2

N

NX
nD1

��n cos.2 j�n/; bj D 2

N

NX
nD1

��n sin.2 j�n/;

where��n is the phase advance measured on stimulus number n that was delivered
at phase �n, andN is the number of data samples. Because many PRCs are zero for
� D 0 and � D 1, a better fit for fewer parameters can sometimes be obtained by
using the Fourier sine series

PRC.�/ D
kX

jD1
bj sin. j�/; bj D 2

N

NX
nD1

��n sin. j�n/:
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Fig. 5.15 Fourier sine series fit to PRC data for a hippocampal, CA1 pyramidal neuron. (Top
panel) The same raw data as used in Fig. 5.13, but data is fit using a Fourier sine series. Curves
for fits using different numbers of modes (coefficients) are indicated in the legend. The dotted (1
Coef), dot-dashed (2 Coefs) and solid (4 Coefs) show that the fit improves with more coefficients.
However, while the dashed line (10 Coefs) technically has lower residual error, the curve exhibits
spurious oscillate, indicating it is overfitting to the data. (Bottom panel) the Akaike Information
Criterion (AIC) is used to determine the optimal number of coefficients. The minimum at 4
coefficients indicates that no more than 4 coefficients should be used to fit the PRC

Figure 5.15 illustrates PRC data that is fit using the Fourier sine series with
kD 1; 2; 3, and 10. It can be seen that the PRC data set is fit well with only the
first few modes. Seemingly spurious oscillations appear when the first 10 modes are
used to fit the PRC data, suggesting the data are over fit.

One advantage that Fourier series has over polynomials is that one can get a
reasonably good idea of the shape of the PRC by considering the values of the
coefficients. Furthermore, the H -function, which is defined as H.�i/ D �iC1 �
�i � PRC1.�1/C PRC2.1��i/, where PRC1.Œ��i / represents the phase advance
of cell 1 given the synaptic input from cell 2 and PRC2.1��i/ is phase advance of
cell 2 given the approximate phase of cell 1’s input (assuming the phase advance
of cell 1 from cell 2’s input is nearly zero). This is the difference between the
two neuron’s spikes on can simply be estimated by summing only the odd Fourier
Coefficients (Galán, Ermentrout, & Urban 2006).
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5.3 Over- and Underfitting PRC Data: Akaike Information
Criterion (AIC)

Because Fourier modes are orthogonal to one another, each Fourier coefficient can
be determined sequentially5 and the fitting process can be stopped when the quality
of the fit is satisfactory. As indicated above, when too few modes are included,
the data will not be well fit, and as more modes are included, the residual error
of the fit will decrease. However, while including additional modes can decrease
the residual error, the decreased error may not be justified by the additional fitting
parameters. To determine how many modes (i.e., number of fitting parameters)
should be included, one can use the Akaike information criterion (AIC) (Burnham
& Anderson 1998). The Akaike information criterion6 is calculated using the
function

AIC.k/ D 2k C n

0
@ln

0
@ 1
n

nX
jD1

2j .k/2
1
A
1
A;

where k is the number of fitting parameters (e.g., Fourier coefficients), n is the
number of points in the data set, and 2j .k/ is the residual error for the j th data point
to the fitted PRC using the k fitting parameters. The optimal number of parameters
is determined when AIC(k/ is at its minimum. In Fig. 5.15 (bottom), AIC is plotted
as a function of the number of parameters used to fit neuronal PRC data. It can be
seen that the minimum occurs at k D 4, thus using more than 4 Fourier modes is
overfitting the PRC data.

The AIC can be used in a similar manner to select the optimal number of
coefficients for polynomial fits. In fact, the AIC can be used to determine which
model (i.e., a Fourier series, a constrained polynomial, etc.) yields the optimal fit.
We note, however, that the AIC does not determine whether the fits are statistically
significant.

There are alternative approaches to check for validity of fits to PRC data. Galan
et al. (2005) fit raw PRC data with a Fourier series and then tested their fit by
comparing it to smoothed data and to fits when the data had been shuffled along the
phase axis (abscissa) of the PRC. There are also techniques that employ Bayesian
methods to produce a maximum a posteriori (MAP) estimation of the iPRC ((Ota,
Omori, & Aonishi 2009) see also Chap. 8).

5Note that this could be done for polynomial fits too by using orthogonal polynomials (e.g.,
Legrendre or Chebychev polynomials).
6This formula for the AIC assumes that errors are independently distributed and described by a
Gaussian distribution.
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5.4 Fitting Noise Around the PRC

PRC data for real neurons can be quite noisy. Models that use PRCs to predict
phase-locking dynamics usually do not account for the variable phase-response
properties of neurons. Accounting for the variance of PRC data into these models
could provide insight into inherently stochastic behaviors such as random leader
swapping and jitter around “stable” phase-locked states. Therefore, it could be very
useful to obtain a good description of the variability of PRC data.

The variance in PRC data could be generated from several sources. One source
of variability could be due to external synaptic noise, which will influence the
neurons’ spike times along with the simulated input applied through the electrode.
We find that blocking synaptic inputs in slice experiments did not dramatically
reduce the variability (Netoff, unpublished), indicating that synaptic noise may not
be a major source of variability of in vitro PRC data. Another source of variability
could be the stochastic fluctuation of the ion channels in the neurons themselves.
It has not yet been identified how much of the variability can be attributed to this
source. Identifying the source of the noise may be important in determining how the
variability is related to the shape of the PRC, i.e., the variability in spike time may
be phase dependent.

The variance around the PRC can be strongly phase dependent, as can be seen in
Figs. 5.13 and 5.16. For moderate to large-sized inputs, the variability in response
to excitatory inputs earlier in the cycle is usually greater than inputs arriving at
the end of the cycle. There are two causes for the decreased variability at late
phases. One is that, as the neuron approaches threshold toward the end of the cycle,
synaptic inputs are more likely to directly elicit an action potential. A directly
elicited action potential has significantly less variability than a spike whose time
has been modulated by synaptic inputs early in the cycle. Inhibitory synaptic inputs
generally do not elicit an action potential, and therefore generate PRCs with more
uniform variability across phase, as shown in Fig. 5.14.

The simplest way to estimate the noise is to bin the data and estimate the standard
deviation in each phase bin. The drawback to this method is that dividing the data
into finer temporal bins results in fewer points in each bin and a less accurate
estimate of the standard deviation. This also leads to a piecewise model of the
variance.

Another approach is to fit a continuous function relating the variance to the phase.
A simple function that can be fit to the standard deviation around the PRC data for
excitatory stimuli is O�.�/ D n1 C n2

p
1 � �. At the end of the cycle when � D 1,

the second term is zero and the standard deviation is equal to n1. As the phase of the
input decreases, the variance increases as a square root of the phase. The motivation
for this function is ad hoc, but is based on the premise that the noise is summed
from the time of the synaptic input to the end of the period. Therefore, the variance
increases linearly in time (and the standard deviation as a square root) as the synaptic
input is applied earlier in the phase.
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Fig. 5.16 Fitting a function to the phase-dependent noise. (Top panel) Raw PRC data fit with a
function to estimate the mean PRC. The standard deviations are shown with error bars at each phase
of the PRC. The slanted blue line represents the line of causality, the maximum phase advance
that can occur (i.e., neuron spikes at time of stimulus). (Bottom panel) The estimated PRC is
subtracted from the raw data leaving the residuals of the PRC. The dashed line represents the
standard deviation of the PRC at each phase fit with a simple function using maximum likelihood.
The solid line represents a fit function that makes use of the PRCs shape in predicting standard
deviation of the noise

Fitting a function to the noise is not as easy as fitting a function to the
mean. Rather than optimizing the least squares error from the fit function, we
must find the maximum likelihood function instead. First, we start with removing
our best estimate of the PRC from the raw data r.i/ D DATA PRC.�.i// �
PRC FIT.�.i// to get the residuals. The residuals of the PRC are plotted in lower
panel of Fig. 5.16. Next, we need to estimate the probability of seeing the actual
measured interspike intervals given an estimate of the variance at each phase. We

can choose the initial conditions for the function O�.�/ as: n1 D
q

1
n

Pn
i r.i/

2

and slope N2 D 0. Assuming that the residuals are Gaussianly distributed and
independent, the probability of observing each point given our function for the
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variance is p.i/ D 1

ı.i/
p
2x

exp
�
� r.i/2

2ı.i/2

�
. The total likelihood of all the points

observed is the product of the probabilities at each point, L D Qn
i p.i/. Because

this probability can become very small very quickly and approach the limits of
the machine precision, it is usually calculated as the log likelihood, log.L/ D
�Pn

i

�
1
2

log.2  O�.i/2/C log.p.i//
�
. Optimizing the log likelihood by adjusting

the parameters of O� , we can fit the function to the variance of the data. Standard
deviation as a function of phase fitting our function to the noise is shown in Fig. 5.16.

Recently, Ermentrout, Beverlin, 2nd, Troyer, & Netoff (2011) has shown that,
when a neuron is subjected to additive white noise, the relationship between the
variance in phase response of a neuron and the shape of the iPRC (Z) is

var.�/ D22
�
Œ1C ˇZ0.�/�2

Z �

0

Z2.s/ds C
Z T

�

Z2.s C ˇZ.�//ds

�
;

where 2 is the magnitude of the (white) noise and ˇ is the strength of the
(delta function) stimulus. Note that, to leading order in ˇ, this variance is phase
independent for small ˇ and is equivalent to the intrinsic jitter in the ISIs

var.�/ D22
�Z T

0

Z2.s/ds

�
:

The parameters 2 and ˇ are usually unknown; therefore, they are used as free
parameters to fit the function to the data optimizing the maximum likelihood. Fits to
the residuals using this function is plotted in Fig. 5.16. This function gives slightly
higher accuracy in fitting the variance over the simpler square-root function given
the same number of free parameters.

6 Measuring iPRC with “White Noise” Stimuli

In this section, we outline an alternative method for measuring the infinitesimal
phase response curve (iPRC). The method consists of continuously stimulating
the neuron with a small-amplitude highly fluctuating input over many interspike
intervals, measuring the phase shifts of all spikes due to the stimulus, and then
deconvolving the stimulus and the phase-shifts to obtain the iPRC. The method is
suggested in Izhikevich (Izhikevich 2007) and is related to work in Ermentrout et al.
(Ermentrout, Galan, & Urban 2007) and Ota et al. (Ota et al. 2009).

As described in Sect. 2.3, we assume that the stimuli are sufficiently small so that
stimulus has a linear effect on the phase of the neuron. Therefore, the phase shift
� k of the kth spike during the stimulus is approximated by integral of the product
of the iPRCZ.t/ and the stimulus Istim;k.t/ D ��k.t/ over the kth interspike interval

� k D T � Tk Š
Z Tk

0

Z.	.t//��k.t/dt; (5.12)
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where Tk is the duration of the kth interspike interval, T is the intrinsic period of the
neuron, and 	.t/ is the absolute phase of the neuron. The stimulus ��k.t/ is chosen
to be a piecewise constant function that is a realization of Gaussian white noise,
i.e., time is broken up into very small intervals of width �t and the amplitudes of
��k.t/ is each subinterval is drawn from a Gaussian distribution with zero mean and
variance �2, where � is assumed to be small. Note that this stimulus is composed of
a wide range of Fourier modes that will typically form a basis for the iPRC Z.

The phase of the unstimulated neuron increases linearly with time, and therefore
we approximate the phase of the weakly stimulated neuron as 	.t/ D T=Tkt . By
changing variables so that the integration is in terms of phase, (5.12) becomes

� k Š
Z T

	D0
Z.	/��k.t.	//

Tk

T
d	: (5.13)

Note that, in this form, the upper limit of integration is independent of k, i.e., it
is the same for all cycles. By discretizing phase into M � 20 equal bins of width
�	 D T=M , (5.13) can be approximated using a middle Riemann sum

� k Š
MX
jD1

Z.	j /h��k.tj /iTk
T
�	; (5.14)

where h��k.tj /i is the average of the stimulus in the j th bin during the kth cycle

h��k.tj /i 1
�

Z tjC�k=2

tj��k=2
��k.t/dt :

and 	j D �
j � 1

2

	
�	 , tj D Tk

T
	j , and�k D Tk

T
�	 . Figure 5.17 shows an example

of a fluctuating stimuli (second panel) and its binned and averaged version for a
single cycle andM D 20.

If the stimulus is presented over N cycles, (5.14) with k D 1: : :N yields a
system of N equations with M unknowns, i.e., the equally spaced points on the
iPRC Z.	j /. In matrix notation, this system of equations is

� Š 
 NZ (5.15)

where � is an N � 1 vector containing the phase shifts of each spike during
the stimulus, 
 is an N � M matrix in which the j ,k element is h��k.tj /i TkT �	
containing the binned and averaged stimuli for each spike, and NZ is a M �
1 vector containing the points on the iPRC. Thus, estimation of the iPRC is
reduced to solving a “simple” linear algebra problem. Typically, there should be
more phase shifts recorded (N/ than points on the iPRC (M/, so that system
(5.15) is overdetermined and can be solved using a least squares approximation.
Figure 5.18 shows an example of an iPRC estimated using this technique for the
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Fig. 5.17 [Top panel] The membrane potential of a Hodgkin–Huxley model neuron subject to
an applied current of 10�A=cm2 for a single cycle. The blue trace represents the unperturbed
oscillation, and the red trace represents the oscillation perturbed by the “white noise” stimulus in
the middle panel. [Middle panel] A realization of the “white noise” stimuli ��k.t/ that is (sampled
with a time step �t D 0:005ms and � D 1:5�A=cm2/. [Third panel] The stimulus in the second
panel after being divided into M D 20 bins and averaged for each bin. The amplitudes from this
averaged signal make up one row of the matrix 


Hodgkin–Huxley (HH) model neuron with additive current noise. There are 20
points on the estimated iPRC (M D 20) and 40 spikes were sampled (N D 40). The
error in this estimated iPRC is 0.30, where the error is computed as the normalized
`2-norm



 NZ �Za




2

ı

Za




2
, where Za is the iPRC calculated using the adjoint

method evaluated at the appropriate phases.
Because � is a random matrix, it could sometimes have a high condition number,

which could lead to significant error in the estimation of the discretized iPRC NZ.
However, we can reduce the chance of this error by making the number of spikes
considered N sufficiently larger than the number of points on the estimated iPRC
M . Figure 5.19 shows the decrease in the error of the estimation of the iPRC for
the HH model neuron as the number of spikes is increased. Note the steep initial
decrease in the error. In practice, we find that about twice as many spikes (phase
shifts) as number of points on the estimated iPRC yields a relatively low error.
Typically, 20 points provides a good representation of an iPRC for a spiking neuron.
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Fig. 5.18 Example of an estimated iPRC using the “white noise” method for the Hodgkin–Huxley
neuron with “unknown” additive noise. The red trace is the iPRC calculated using the adjoint
method (Ermentrout & Kopell 1991) and the crosses are the estimates of the iPRC found from
solving (5.15) for Z. There are M D 20 points on the estimated iPRC, and N D 40 cycles were
used to calculate the iPRC. The stimulus has parameters �t D 0:005ms and � D 1:5�A=cm2.
The signal (stimulus) to noise ratio was �5.0. The error in the estimated iPRC is 0.30

a b

Fig. 5.19 Error in the estimated iPRC withM D 20 versus the number of interspike intervals. The
error in the estimated iPRC is computed as



 NZ �Za




2
=


Za




2
, where Za is the iPRC calculated

using the adjoint method evaluated at the appropriate phases. (a) The system with no noise. (b)
The system with “unknown” additive white noise with signal (stimulus) to noise ratio of �5.0.
Estimates were made for M D 20 points on the iPRCs. For both cases, the error decreases quickly
as more trials are recorded. The stimulus has parameters �t D 0:005ms and � D 1:5�A=cm2 in
(a) and � D 8�A=cm2 in (b). 700 trials were used to generate the statistics for every point on the
graphs. Data points are mean values and error bars represent the limits that included ˙30% of data
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a b

Fig. 5.20 Error in the estimated iPRC versus signal strength. The error is calculated as described
in Fig. 5.19. The error is shown as a function of the strength of the random signal when (a) the
system has no noise and (b) the system has “unknown” additive white noise. In both cases, there is
an optimal value of the signal strength which minimizes the error in the estimation. Furthermore,
both the mean and standard deviation of the error increase significantly as the signal strength
becomes too large, i.e., the neuron no longer responds linearly. Estimates were made withN D 40

recorded spikes, M D 20 points on the iPRCs, and �t D 0:005ms. The unknown noise had a
magnitude such that the signal (stimulus) to noise ratio was �5.0 when � D 8�A=cm2. 700 trials
were used to generate the statistics for every point on the graphs. Data points are mean values and
error bars represent the limits that included ˙30% of data

Therefore, if a neuron is firing at 10–20 Hz on average, and the phase shifts are
measured over 40 spikes, it only takes 2–4 seconds to record the data needed to
estimate the iPRC.

The strength of the random stimulus, � , also affects the quality of the estimated
iPRC. In practice, the stimulus amplitude must be small in order for the estimation
to be theoretically valid, but it must also be large enough to overcome the intrinsic
noise in the system. Figure 5.20 plots the error in the estimation as a function of
� when there is no unknown additive noise in the system (a), and when there is
unknown additive noise in the system (b). In both cases, there is an optimal value of
� that minimizes the error in our estimation. This optimal value is larger when there
is noise in the system.

While the method described above is perhaps the most straightforward “white
noise” method, other methods that use white noise stimuli to measure the iPRC
have also been proposed. Ermentrout et al. 2007 showed that, when an oscillating
neuron is stimulated with small amplitude white noise, the spike triggered average
(STA) is proportional to the derivative of its iPRC. As such, the iPRC can be
calculated by integrating the STA. Ota (Ota et al. 2009) recently addressed several
practical issues concerning the results of Ermentrout (Ermentrout et al. 2007) and
outlined a procedure to estimate iPRCs for real neurons by using an appropriately
weighted STA.
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Izhikevich (Izhikevich 2007) comments that white noise methods for iPRC
estimation should be more immune to noise than standard pulse methods because
the stimulus fluctuations are spread over the entire cycle and not concentrated at
the moments of pulses. However, to our knowledge, there has been no systematic
comparison of the white noise methods and the standard pulse method. More work
is needed to determine the optimal method for different situations (i.e., different
noise levels, limitations on number of spikes, etc.). Furthermore, we expect that
refinements could be made to improve most of these methods.

7 Summary

• The first step in generating a phase response curve for a neuron is choosing
an appropriate stimulus waveform. When estimating the infinitesimal PRC (for
use with theory of weakly coupled oscillators), a small brief delta-function-like
stimulus pulse can be used. If synaptic inputs are not expected to sum linearly,
then a realistic synaptic waveform should be used to measure the PRC to include
the proper nonlinear responses of the neuron.

• The effects of a pulse stimulus on neuronal firing may last longer than a single
cycle and give rise to measureable changes in ISIs in the cycles following the
stimulated interval. These effects can be quantified with secondary and higher
order PRCs and can be incorporated into models to increase their accuracy
(Maran & Canavier 2008; Oprisan & Canavier 2001). Alternatively, the stimulus
can be repeated at the same phase until the higher order effects accumulate and
stabilize, and then the steady state response to the synaptic input at a phase can
be measured. This results in measuring a “functional PRC” (Cui et al. 2009).

• Neurons exhibit considerable amounts of noise, making phase response data
variable. There are two sources of noise: drift and jitter. Drift in the dynamics of
the neuron occurs from slow timescale neuronal processes and “run down” (slow
death) of the neuron during the experiment. This can be compensated to some
degree by maintaining the firing rate of the neuron with a spike rate controller.
While it is not a panacea, it keeps one aspect (the period) approximately constant
over the duration of the experiment.

• To decrease the duration of the PRC experiment and thereby reduce the effects of
drift on PRC estimation, the sampling of stimulus phase can be optimized. Using
a Sobol sequence to sample the phases is much more efficient than random, or
quasi-periodic sampling.

• The jitter in the phase response can be overcome by fitting a function to the
data to estimate the deterministic portion of the neuron’s PRC. Polynomials
with constraints or Fourier series usually provide good fits to PRC data. The
Akaike information criterion can be used to determine the appropriate number of
coefficients when fitting either a polynomial or the Fourier series.

• The variability in a neuron’s phase response can also be quantified and modeled.
Ermentrout, Beverlin, 2nd, Troyer, & Netoff (2011) has recently shown that the
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phase dependence of the variance is dependent on the shape of the PRC. We
also present a simple function that can be fit to the variance by optimizing the
maximum likelihood that does a reasonably good job.

• White noise stimulus approaches provide alternatives to pulse stimulation meth-
ods for measuring infinitesimal PRCs. This approach uses linear algebra to
estimate the iPRC from neuronal response to white noise applied to several pe-
riods. More work must be done to optimize these methods and to systematically
compare them to the standard pulse stimulation methods.
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