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Synchronization of Electrically Coupled Resonate-and-Fire Neurons\ast 

Thomas Chartrand\dagger , Mark S. Goldman\ddagger , and Timothy J. Lewis\S 

Abstract. Electrical coupling between neurons is broadly present across brain areas and is typically assumed to
synchronize network activity. However, intrinsic properties of the coupled cells can complicate this
simple picture. Many cell types with electrical coupling show a diversity of post-spike subthresh-
old fluctuations, often linked to subthreshold resonance, which are transmitted through electrical
synapses in addition to action potentials. Using the theory of weakly coupled oscillators, we ex-
plore the effect of both subthreshold and spike-mediated coupling on synchrony in small networks
of electrically coupled resonate-and-fire neurons, a hybrid neuron model with damped subthresh-
old oscillations and a range of post-spike voltage dynamics. We calculate the phase response curve
using an extension of the adjoint method that accounts for the discontinuous post-spike reset rule.
We find that both spikes and subthreshold fluctuations can jointly promote synchronization. The
subthreshold contribution is strongest when the voltage exhibits a significant post-spike elevation in
voltage, or plateau potential. Additionally, we show that the geometry of trajectories approaching
the spiking threshold causes a ``reset-induced shear"" effect that can oppose synchrony in the presence
of network asymmetry, despite having no effect on the phase-locking of symmetrically coupled pairs.
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1. Introduction. Synchronization of activity between neurons has been hypothesized to
contribute to a variety of brain functions [99], including motor control [25], memory [41], and
coordination between brain regions [14]. This synchrony can be supported by either electrical
or chemical synapses, or some combination of the two. Because electrical synapses (gap junc-
tions) diffusively couple the voltages of connected cells, their effect is typically thought to be
synchronizing, an idea with support from both theoretical and experimental studies [7, 19, 74].
However, their effect is potentially more complex, and exceptions to this rule have been noted
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[97, 18, 69]. In part, this is because the coupling combines effects at the dramatically different
timescales of spiking activity and subthreshold fluctuations of membrane potential [69, 18, 89].
Subthreshold voltage dynamics can vary dramatically across different cell types, particularly
in resonant cells that are often electrically coupled, and these variations can affect synchroniza-
tion mediated by electrical synapses [18, 89, 74, 27]. The resonant properties that determine a
frequency-selective spiking response to input also cause subthreshold dynamics such as tran-
sient oscillations, hyperpolarization followed by rebound, or a depolarized plateau following
the spike [51]. Our goal is to explore the interaction between electrical coupling and resonant
intrinsic dynamics of spiking neurons to understand both the dynamical mechanisms involved
and their relevance to the function of neural systems, including showing how synchronization
can vary between resonant neurons with different patterns of subthreshold voltage.

We study the effect of electrical coupling on the synchronization of resonant spiking neu-
rons by applying the theory of weakly coupled oscillators to reduce the complexity of the
synchronization problem and gain analytical insight [5]. This technique relies on a perturba-
tive approximation to derive a reduced phase model for limit cycle oscillators [96]. Synchro-
nization of the phase model is determined by the interaction function, which captures the
effect of coupling as a function of the phase of each oscillator along its periodic limit cycle.
Determining how the interaction function depends on a property of the oscillator, such as sub-
threshold resonance, spike size, or post-spike behavior, shows how that property contributes
to synchronization.

Common challenges in phase reduction analysis are that it may not be possible to inde-
pendently vary the dynamical properties of interest, or to analytically compute the interaction
function. To address these challenges, we use an idealized hybrid neuron model for the dy-
namics of resonant spiking. Hybrid neuron models, such as the integrate-and-fire model and
its generalizations, simplify spiking as a threshold crossing with discrete post-spike reset, com-
bined with continuous subthreshold dynamics between spikes. We focus on the resonate-and-
fire model [53], which has linear damped oscillations as its subthreshold dynamics to model
resonant phenomena. The subthreshold linearity and discrete reset map allow the model to
remain analytically tractable and yet capture a wide range of post-spike voltage dynamics,
including both plateau potentials (prolonged elevation of voltage) and after-hyperpolarization
(AHP), a dip in voltage following the spike. With the separation of discrete and continuous
dynamics, we can independently vary the subthreshold and spiking properties of the model
and determine their effects on the synchrony of small model networks.

On the other hand, the discrete reset map complicates the application of weakly coupled
oscillator theory for the analysis of synchrony. Calculating the phase response curve (PRC),
which measures the phase shift resulting from a perturbation to the oscillator at any point
along the limit cycle, is the first step in the phase model reduction. The discontinuous spiking
dynamics lead to discontinuity of the PRC, which is usually derived under an assumption
of continuous periodicity. In certain cases, discontinuous PRCs can be calculated directly
[80, 23, 38], but the discontinuity in general necessitates an extension of standard methods for
calculating the PRC. Recent results have shown that for general hybrid models the PRC can
be calculated by a variation to the standard ``adjoint method"" [98, 87], linked to the saltation
matrix of nonsmooth dynamical systems theory [8, 3]. We present an alternative, intuitive
derivation of this result that elucidates the connection to the geometry of the threshold and
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reset in hybrid neuron models, and we apply this understanding to our resonate-and-fire
analysis.

The paper is organized as follows. In section 2, we describe the general properties and
history of hybrid models in neuroscience and define the resonate-and-fire model. In section 3,
we review the theory of weakly coupled oscillators and present our approach to calculating the
PRC for hybrid models. The remainder of the paper contains our analysis of synchronization
in the electrically coupled resonate-and-fire model. In section 4, we apply our adjoint method
approach to obtain analytical expressions for the PRC and interaction function of the model.
To explore the dependence of the interaction function on model parameters, we focus sepa-
rately on the even- and odd-symmetric components of the interaction function, which lead to
distinct effects on synchrony determined by the symmetry of network coupling. In section 5,
we show that the spike itself always promotes robust synchrony through its contributions to
the odd component, while the post-spike subthreshold fluctuations can additionally strongly
promote synchrony in the plateau potential regime. We also show, in section 6, that the
threshold and reset can phase-shift the interaction function through ``reset-induced shear""
arising from the geometry of trajectories crossing the threshold, leading to an even compo-
nent that can have complex effects on synchronization. In example three-cell networks, the
presence of this even component leads to often-ignored effects on network synchronization
when heterogeneity of frequencies or coupling breaks the symmetry of the interactions.

2. Hybrid models and the resonate-and-fire model. Hybrid models have a central role
in the history of mathematical neuroscience. Well before the detailed processes generating
action potentials were understood, Lapicque [67] postulated that inputs to a neuron accu-
mulate in a continuous process of integration, eventually triggering a spike. This idea led
to the leaky integrate-and-fire model (2.1) and a number of variations that are still widely
used [35, 53, 54, 10, 1]. The separation of the dramatically different timescales of spiking
and subthreshold dynamics into distinct mechanisms gives these models both computational
efficiency and analytic tractability. Hybrid models have surprisingly rich and complex dy-
namics, inspiring active study from both neuroscience and dynamical systems perspectives
[104, 95, 15]. We first introduce some fundamental examples of hybrid models in neuroscience
and then define the specifics of the resonate-and-fire model along with notation for arbitrary
hybrid model dynamics.

2.1. Single-variable integrate-and-fire models. The leaky integrate-and-fire model con-
sists of a single voltage variable with linear subthreshold dynamics between spikes [67, 13, 1].
External current input I is integrated through changes in the neuron's membrane potential
(voltage) subject to a ``leak,"" or linear decay over time (governed by the membrane capac-
itance C, conductance gL, and reversal potential vL). When voltage crosses a threshold vT
from below, a spike occurs, and the voltage is reset to vR.

C
dv

dt
=  - gL (v  - vL) + I, v

\bigl( 
t - 
\bigr) 
= vT =\Rightarrow v

\bigl( 
t+
\bigr) 
= vR.(2.1)

For sufficiently large constant current input, the equilibrium voltage veq = vL + I
gL

is pushed
over the threshold vT , and the model exhibits a regular spiking state, a limit cycle with
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periodic firing. Note that the existence of a limit cycle in one dimension is enabled by the
discontinuous reset.

A number of variations on this classic model have been proposed. In a single dimension,
nonlinear variants can approximate the effects of voltage-dependent ion channel conductances
on subthreshold dynamics, more accurately modeling the approach to threshold. Prominent
examples include the quadratic [35, 12] and exponential [42] integrate-and-fire models, as well
as arbitrary nonlinearities derived via model reduction or optimized to match recorded spike
trains [58]. For the analysis of synchrony, a number of significant theoretical discoveries have
been made using networks of single-variable integrate-and-fire neurons coupled by chemical
or electrical synapses [36, 78, 63, 21, 44, 69, 89, 85, 70, 73].

Despite these successes, some firing properties of real cells (and of more realistic models)
are not captured by single-variable models, particularly fluctuations in subthreshold voltage
following the spike. The diversity of post-spike dynamics found in different cell types includes
fast (Figure 2.1a left) and slow (Figure 2.1a center) AHP, plateau potentials (Figure 2.1a
right), and damped oscillations. Although variations in the level of fast AHP can be modeled
to a limited degree in single-variable models [89], the other examples shown cannot be rep-
resented due to nonmonotonic voltage trajectories. To capture these requires increasing the
dimensionality of the model.

2.2. Multivariable linear integrate-and-fire models. The idea of linear feedback between
two factors governing a neuron's approach to the firing threshold was developed independently
by some of the earliest mathematical neuroscientists, Rashevsky [91], Hill [49], and Young
[112]. Adding a second ``adaptation/facilitation"" current variable [105, 92, 77] allows a model
to reflect slow recovery processes in the neuron (typically the gating dynamics of ion channels)
that can create resonance, adaptation, and a full range of post-spike voltage dynamics.

A multivariable ``generalized integrate-and-fire"" model can also be derived from a Hodgkin--
Huxley-type biophysical model by linearizing and exploiting separation of timescales to elim-
inate variables [92, 60, 56]. In the simplest example, a single additional variable captures
the most significant slow current, often a calcium, potassium, or hyperpolarization-activated
h-current, or a combination of channels with similar time constants. (For higher-dimensional
linear models, also see [77, 29, 57, 103].) The subthreshold dynamics of a two-variable linear
model with slow current z can be described by [92, 60, 56]

(2.2)
C
dv

dt
=  - gL (v  - vL) - z + I,

\tau 
dz

dt
= k (v  - vz) - z.

This reduced model, with a suitable reset map included, has been shown to capture realistic
spiking dynamics in a range of biologically relevant scenarios [92, 11, 60, 6]. We discuss the
details of reset maps in two dimensions below (section 2.4), but for now we simply consider
the properties of a limit cycle trajectory with reset point x0 = (v0, z0) .

In a two-dimensional model, the reset voltage v0 can have a strong effect on the shape of
the voltage trajectory, reproducing a range of post-spike dynamics as shown in Figure 2.1b.
The voltage trace for a model reset below the firing threshold resembles a fast AHP (Fig-
ure 2.1b, left), as in the leaky integrate-and-fire model. In contrast, when the subthreshold
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Figure 2.1. Distinct post-spike dynamics in spiking neurons range from after-hyperpolarization (AHP),
either fast (left) or slow (center), to depolarized plateau potentials (right). (a) Voltage trajectories from bio-
physically detailed models for cortical cells of fast-spiking (left) and bursting (center) electrophysiological classes,
and for inferior olive neurons (right). (b) Voltage trajectories of the resonate-and-fire model for different re-
set parameters. Instantaneous spikes have been added to the subthreshold trajectories to indicate spike times.
Resonate-and-fire model parameters (veq, v0, w0) from left to right: ( - 1,  - 1,  - 1.2), (0, 0, 1), (2, 0, 1). \lambda = 0.1
for all.

dynamics have an oscillatory component, v0 can be reset above threshold to resemble a pla-
teau potential (Figure 2.1b, right) or at the threshold to resemble a slow AHP (Figure 2.1b,
center). Additional comparison with these biophysical models is shown in section A.1.

Despite the relevance of these distinct voltage dynamics to electrical synaptic interactions,
only a few studies have addressed the synchronization of electrically coupled hybrid models
with more than a single variable [23, 22], and none have considered the effects of post-spike
fluctuations specifically. We also note that nonlinear integrate-and-fire models in multiple
dimensions can be remarkably effective at reproducing diverse spiking patterns [100, 54, 55,
10, 82] and have been applied to study synchronization through chemical synapses [26, 20, 79,
80, 38, 64, 65]. However, such nonlinear models are in general not analytically tractable. For
this reason, we choose to explore the full range of post-spike dynamics in a linear two-variable
integrate-and-fire model that permits direct analysis of synchronization.

2.3. Resonate-and-fire model. The resonate-and-fire model is a two-dimensional lin-
ear integrate-and-fire model introduced by Izhikevich [53] with the goal of capturing essen-
tial features of the dynamics of resonant cells. Several studies have examined dynamics of
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the resonate-and-fire model in biologically relevant scenarios, including spiking triggered by
periodic and noisy input [11, 92, 106, 60] and synchronization of pulse-coupled networks
[79, 80, 81], and a variation on the model has been used to fit realistic spike train data
[17]. Given the rich range of possible dynamics, we choose to analyze synchronization in the
resonate-and-fire model rather than a more general two-dimensional linear integrate-and-fire
form.

The subthreshold dynamics of the resonate-and-fire model are a slightly restricted canon-
ical form of (2.2) in the damped oscillation regime (complex eigenvalues). Additionally, the
model restricts the parameter space by assuming that a single time constant \lambda governs the
decay of both variables, \lambda = gL

C = 1
\tau .

1 To simplify our notation, the slow current variable z is

replaced by an effective adaptation/facilitation variable w = 1
\Omega C z with \Omega =

\sqrt{} 
k
\tau C , voltage is

measured relative to vz, and the tonic current input is subsumed into the equilibrium voltage
veq = vL  - vz +

I
gL
;

(2.3)

dv

dt
=  - \lambda (v  - veq) - \Omega w,

dw

dt
=  - \lambda w +\Omega v.

Without loss of generality, we set the threshold voltage to vT = 0 and rescale time such
that \Omega = 1 (though allowing variations about this mean frequency in the network setting).
Unless otherwise specified, we choose a fixed value for the decay parameter, \lambda = 0.1; our
results are qualitatively similar as long as \lambda is sufficiently small (relative to \Omega = 1). In
the opposite extreme, taking the limit \lambda \rightarrow \infty with \Omega fixed recovers the leaky integrate-
and-fire model.2 With these parameters fixed, the equilibrium voltage and details of reset
determine the existence and properties of spiking in the model. If a trajectory starting from
the reset point x0 crosses the spiking threshold and is again reset, it forms a spiking limit
cycle corresponding to regular spiking, shown in Figure 2.1b and Figure 2.2. We explore more
detailed existence conditions in section 4.1, but a limit cycle will always exist for veq over the
spiking threshold just as in the integrate-and-fire model (large constant current input).

The regular spiking solution for the resonate-and-fire model is defined to start from the
reset point at time t = 0 and is valid for times up to the period T , when the trajectory crosses
threshold.3

(2.4)
\=v (t) = veq + r0e

 - \lambda t cos (t+ \theta 0) ,

\=w (t) = r0e
 - \lambda t sin (t+ \theta 0) ,

1Erchova et al. [32] fit subthreshold input-response data from cortical cells to a model of the form (2.2),
finding that a subset matched the resonate-and-fire assumptions. Relaxing the assumption of the single time
constant in our analysis (allowing distinct \lambda v and \lambda w) would create an additional parameter dependence for
the PRC amplitude and phase only; this adds another dimension of parameter space to the properties of the
interaction function, but the functional form of the dynamics, PRC, and interaction function remain the same.

2We also note that taking this limit in our phase-reduced model recovers known results for the phase
reduction of the leaky integrate-and-fire model [70].

3Note that although the spike is not explicit in the resonate-and-fire voltage trajectory, we draw in instanta-
neous spikes as an indicator of spike timing when plotting v (as in Figure 2.1b), a typical approach for visually
representing hybrid neural models.
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Figure 2.2. Effects of hard and soft reset maps on resonate-and-fire model spiking trajectories, shown in
the (v, w) phase plane. For the hard reset (left), perturbed trajectories (blue) converge to the limit cycle (red)
immediately following the reset, at the reset point xR. For the soft reset (right), the single perturbed trajectory
converges slowly over several cycles. Parameters: \lambda = 0.1, wR = 1, vR = 1, veq =  - 0.5. For the soft reset,
\Delta w = 2.025 was set to match the hard reset limit cycle, so that w0 = wR.

where (r0, \theta 0) are the polar coordinates of the reset point of the limit cycle relative to equi-
librium, such that (v0, w0) = (veq + r0 cos \theta 0, r0 sin \theta 0).

To build a network model of electrically coupled resonate-and-fire oscillators, we intro-
duce diffusive coupling of the voltage variables, i.e., make the coupling linear in the voltage
difference between the oscillators. Experiments have shown that electrical coupling current
is typically linear and symmetric over a wide range of voltages, particularly for the com-
mon channel type connexin-36 [101, 7, 19]. Thus, we include pairwise coupling current terms
Iij (xi, xj) = kij (vj  - vi) in the voltage dynamics, with coupling strengths kij = kji. However,
note that exceptions to this form can arise as a result of gap junction channel rectification or
asymmetry in cell properties. We briefly discuss the effects of asymmetry in section 6. We
also allow parameters of the intrinsic dynamics to vary across cells, introducing heterogeneity
that will oppose synchronization. The resulting network model is

(2.5)

dvi
dt

=  - \lambda i (vi  - veq) - \Omega iwi +
\sum 
j

Iij (xi, xj) ,

dwi

dt
=  - \lambda iwi +\Omega ivi.

We take the single-oscillator dynamics (2.3) with \Omega = 1 as the mean dynamics of the (un-
coupled) population, which is the focus of our analysis until we consider network structure in
section 5. To complete our definition of the electrically coupled resonate-and-fire model, we
need to fill in two details: the reset map in the two-dimensional phase space and the voltage
spike itself.
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2.4. Details of the reset map. In multiple dimensions, the reset map need not map all
trajectories crossing threshold to a single point as in (2.1). We distinguish a ``hard reset,""
which directly generalizes (2.1) by mapping to a single point xR [30, 9], from a ``soft reset,""
which allows perturbations to persist over multiple cycles [77, 92]. We consider both hard and
soft resets for the resonate-and-fire model. The resonate-and-fire hard reset rule specifies that
if the threshold vT = 0 is crossed from below, the state is instantaneously reset to the point
xR = (vR, wR).

4

(2.6) v
\bigl( 
t - 
\bigr) 
= vT ,

dv

dt

\bigl( 
t - 
\bigr) 
> 0 =\Rightarrow x

\bigl( 
t+
\bigr) 
= R

\bigl( 
x
\bigl( 
t - 
\bigr) \bigr) 

= xR.

Most examples of soft reset models, like the adaptive exponential integrate-and-fire model
[10], instead reset voltage to a fixed value while incrementing the adaptation variable. We
define the resonate-and-fire soft reset rule as follows, with a fixed increment of the adaptation
variable \Delta w:

(2.7) v
\bigl( 
t - 
\bigr) 
= vT ,

dv

dt

\bigl( 
t - 
\bigr) 
> 0 =\Rightarrow x

\bigl( 
t+
\bigr) 
= R

\bigl( 
x
\bigl( 
t - 
\bigr) \bigr) 

=
\bigl( 
vR, w

\bigl( 
t - 
\bigr) 
+\Delta w

\bigr) 
.

The contrasting modeling choices reflected by these two reset rules can be understood with
reference to ion channel gating variables in the Hodgkin--Huxley formalism, which approach
a sigmoidal function of voltage at steady state. Gating variables with fast time constants
during the spike approach their saturated limits as in the hard reset, whereas slow variables
are incremented by an approximately fixed amount that depends on their respective time
constants.

2.5. Details of voltage spikes. The definition of an integrate-and-fire model (2.3)--(2.7)
typically describes the subthreshold dynamics, threshold crossing, and post-spike reset, but
not the suprathreshold portion of the spike itself. Thus, in order to capture the full effects
of electrical coupling, with current transfer driven by fluctuations both during and between
spikes, we must supplement the model by a description of the effects of the spike. We focus on
narrow spikes and with minor assumptions are able to model the spike effects in a parsimonious
form that cleanly separates the subthreshold and spike effects in our analysis (section 4.3).
Our narrow spike limit is sufficient for most examples of fast sodium action potentials but
would need to be extended to account for broader calcium spikes or extremely high frequency
spiking.

We assume a cell is insensitive to input during and immediately following the spike, and
thus the spike has a characteristic waveform vspike (t) (0 < t < \tau spike), regardless of the state
of any coupled cells. This assumption reflects observations in experiments and biophysically
detailed models of a refractory period where perturbations typically have little to no effect,
due to the many ion channels open during an action potential significantly lowering the input
resistance of the cell [46].5

4We note that a reset vR = 0 (i.e., vR = vT ) will leave the cell in ``deadlock"" on the threshold, as its state
following reset still satisfies the reset condition. To resolve this special case, we add the condition that the
reset map cannot be applied twice in succession at the same time t.

5Note that it would be possible to consider a narrow spike limit of coupling effects without this assump-
tion, leading to slightly different predictions for the contribution of spikes to the electrical coupling effects
(section 5.3).
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If we also assume the voltage during the spike is significantly greater than the voltage of
any (nonspiking) coupled cells, the integrated current transfer from electrical coupling during
the spike is approximated by the constant

qspike =

\int \tau spike

0
k12 (vspike (t) - v2 (t)) dt \approx k12

\int \tau spike

0
vspike (t) dt \equiv k12M.

If the time interval of the spike is small relative to the period (\tau spike \ll T ), the effect of this
current on coupled cells is well approximated as an instantaneous transfer of electrical charge,
or increment of voltage by \Delta v = qspike [69, 89, 70]. We can equivalently represent this effect
as a \delta -function term in the coupling current for each time a coupled cell spikes (defining Sj

as the set of spike times of cell j):

(2.8) Iij (xi, xj , t) = kij (vj  - vi) + kij\Sigma ts\in SjM\delta (t - ts) .

2.6. Notation for general hybrid models. In order to illustrate the broad applicability
of our analysis techniques, we introduce our methods using general notation for an arbitrary
hybrid model. The threshold voltage vT becomes a threshold manifold \scrT , with an arbitrary
nonlinear reset map R : \scrT \mapsto \rightarrow \scrR mapping to a corresponding reset manifold \scrR . Although
a hybrid neuron model can in general consist of any number of dimensions with complex
threshold manifolds and reset maps [77], a two-dimensional model is sufficient to illustrate
the essential mathematical properties, so we restrict our analysis to models in two dimensions
x = (v, w).

dx

dt
=

d

dt

\biggl( 
v
w

\biggr) 
= f (x) , x

\bigl( 
t - 
\bigr) 
\in \scrT =\Rightarrow x

\bigl( 
t+
\bigr) 
= R

\bigl( 
x
\bigl( 
t - 
\bigr) \bigr) 

.(2.9)

Note that for the resonate-and-fire model, the threshold manifold and soft reset manifold
are both lines of constant voltage \scrT = \{ (v, w) : v = vT \} and \scrR = \{ (v, w) : v = vR\} , while the
reset manifold for hard reset is degenerate, a single point \scrR = \{ xR = (vR, wR)\} . We address
the possibility of arbitrary orientations and locations of the threshold and reset manifolds in
the resonate-and-fire model in section 4.2.

3. Phase reduction theory. We present a brief introduction in sections 3.1--3.3, followed
by an explanation of the aspects of the derivation unique to hybrid models in section 3.4.
Readers already familiar with the theory of weakly coupled oscillators can skip directly to
section 3.4.

3.1. Phase mapping for weakly coupled oscillators. The theory of weakly coupled os-
cillators is a method of model reduction with the goal of creating simpler models for the
dynamics of interacting limit-cycle oscillators. The state of each oscillator is mapped to a
single variable: the phase (or timing) of oscillations. This process is referred to as ``phase
reduction"" and the result as a ``phase model."" The oscillators' intrinsic dynamics and the
coupling between oscillators together determine the interaction function, which captures the
modulation of instantaneous frequency caused by coupling. This scalar function defines the
coupling between the phase oscillators and thus determines the dynamics of the coupled sys-
tem (together with any heterogeneity of intrinsic frequencies). Dynamical properties such as
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the stability of phase-locked states can be directly assessed from features of the interaction
function, as we will show in section 5. Although a formal derivation assumes weak coupling
and weak heterogeneity, predictions from the phase model often remain valid even at moderate
levels of coupling. Here we first provide a brief derivation of the phase model for a continuous
coupled oscillator system. We then explain the specific challenges presented by hybrid systems
and our approach to overcoming these challenges.

We note that the phase reduction approach can also be augmented by considering a
second coordinate to capture motion transverse to the limit cycle, following a construction
closely resembling that which we present here for phase [5, 107, 110, 98, 109], and which has
recently been extended to nonsmooth dynamics [108]. In the case of the simple models we
study here such a reduction would do little to simplify the dynamics, but in other cases a
second coordinate can allow reduction under fewer conditions and may generate more realistic
predictions.

The dynamics of a general system of coupled oscillators are described by

(3.1)
dxi
dt

= f (xi) + gi (xi) +
\sum 
j

kijIc (xi, xj) .

The state space of each individual oscillator is xi \in \BbbR n, where n is the dimension of the
oscillator model. The intrinsic dynamics of each oscillator are defined by f +gi, where f gives
an average of the intrinsic dynamics across all oscillators, and gi captures the heterogeneity of
the oscillators. We assume the average dynamics to have an asymptotically stable T -periodic
limit cycle \=x (t) defined by

(3.2)
d\=x

dt
= f (\=x) , \=x(t+ T ) = \=x (t) .

We have also restricted the pairwise coupling Iij (xi, xj) to a common functional form defined
by the coupling function Ic, which is weighted by connection strengths kij and summed over
all pairs to give the total coupling. The phase reduction requires the assumption of weak
coupling and weak heterogeneity, meaning that the heterogeneity gi and the total coupling
term must both be small compared to the average intrinsic dynamics f .

To reduce the model for this coupled system, we define a phase mapping \Theta : \BbbR n \mapsto \rightarrow S1,
from the state x to a scalar phase variable \theta , that uniquely identifies points on the limit cycle.
The dynamics of the coupled system are translated through this mapping to define the phase
model,

d\theta i
dt

= ωi +
\sum 
j

kijH (\theta j  - \theta i) .

The dynamics of this reduced system depend only on the interaction function H and the
heterogeneity of frequencies ωi. Below, we show how these are derived from the coupling Ic
and heterogeneity gi of the full model.

We first define the phase map for points on the limit cycle, giving a periodic ``time""
coordinate,

(3.3) \theta = \Theta (\=x (t)) \equiv t.
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Phase is unique modulo T , with \theta = 0 determined by our choice of initial condition \=x (0) for
the reference limit cycle. (Note that phase is sometimes rescaled to a period of 1 or 2\pi , but
we choose to keep the natural units of time.)

The phase map can then be extended beyond the limit cycle to give the ``asymptotic phase""
of all points in the basin of attraction. Trajectories that eventually converge are assigned the
same phase, i.e.,

(3.4) \Theta (x (t)) = \Theta (\=x (\theta )) = \theta iff lim
t\prime \rightarrow \infty 

\bigl[ 
x
\bigl( 
t+ t\prime 

\bigr) 
 - \=x

\bigl( 
\theta + t\prime 

\bigr) \bigr] 
= 0.

3.2. Phase response curve and the adjoint method. The full phase mapping is difficult
to find analytically in all but the simplest contexts. Fortunately, the weak coupling assumption
allows the phase reduction to proceed with a linear approximation of the mapping about the
limit cycle \=x (t), which is much easier to compute. For a trajectory close to the limit cycle,
phase can be approximated as linearly dependent on the deviation away from the limit cycle,
\Delta x (t).

(3.5) \Theta (x (t)) = \Theta (\=x (t) + \Delta x (t)) \approx \Theta (\=x (t)) +\nabla \Theta (\=x (t))T \Delta x (t) .

The infinitesimal phase response curve (iPRC or PRC, also called the ``phase sensitivity
function"") Z is defined as the proportional shift in phase caused by infinitesimal perturbations
to the limit cycle,

(3.6) Z (\theta ) = \nabla \Theta (\=x (\theta )) .

Note that the PRC is naturally defined as a vector-valued function, giving the effect of per-
turbations to each state variable. In the context of neural synchrony, however, the voltage
component is usually most important, because perturbations tend to be currents and thus
directly affect only the current balance equation for the dynamics of voltage.

A direct method to approximate the PRC either experimentally or computationally is
simply to measure phase shifts caused by many small but finite perturbations. We instead
follow the ``adjoint method,"" which derives and solves a differential equation for the PRC tied
to the limit-cycle dynamics. Below we provide a brief exposition that captures the essence of
this method and its proof.

From the definition of asymptotic phase (3.4), the phase difference between the limit
cycle \=x (t) and a nearby trajectory x (t) must be constant in time. That is, the separation
\Delta x (t) = x (t) - \=x (t) must satisfy

c = \Theta (\=x (t) + \Delta x (t)) - \Theta (\=x (t)) \approx Z (t)T \Delta x(t),

0 \approx d

dt

\Bigl( 
Z (t)T \Delta x(t)

\Bigr) 
.(3.7)

To first order, the deviation from the limit cycle \Delta x (t) evolves according to the Jacobian
matrix of derivatives of the system dynamics, Df , evaluated on the limit cycle given by (3.2).

d

dt
\Delta x (t) \approx Df (\=x (t))\Delta x (t) .
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Substituting this expression into (3.7), we obtain\Biggl( 
dZ(t)

dt

T

+ Z (t)T Df (\=x (t))

\Biggr) 
\Delta x(t) = 0.

Because this holds for any \Delta x, Z must satisfy the following T -periodic linear differential
equation known as the adjoint equation, defined by the adjoint of the linearized limit-cycle
dynamics,

(3.8)
dZ(t)

dt
+Df (\=x (t))T Z (t) = 0.

The PRC is the unique periodic solution of (3.8), given a normalization constraint that follows
from our definition of phase on the limit cycle (3.3).

(3.9) 1 =
d

dt
\Theta (\=x (t)) = Z (t)T f (\=x (t)) , t \in [0, T ] .

Note that if this constraint is satisfied at any single time, (3.8) ensures it will remain satisfied
for all time.

3.3. The phase model and interaction function. Using the PRC result derived via the
adjoint method, we can complete the derivation of the phase reduction of the coupled oscillator
system (3.1). The effect of any weak time-dependent perturbation on the phase of an oscillator,
including the effect of coupling, is governed by the PRC. Specifically, if the dynamics of the
limit cycle are weakly perturbed according to dx

dt = f (x) + \epsilon p (t) (for \epsilon \ll 1), the perturbed
phase \theta = \Theta (x (t)) satisfies

d\theta 

dt
= \nabla \Theta T dx

dt
\approx 1 + \epsilon Z (t)T p (t) .

Since the perturbation is weak, its effects occur on a slow timescale, O (\epsilon ), which can be
separated from the faster dynamics of unperturbed phase, d\theta 

dt = 1. If the perturbation is
also periodic with the intrinsic period T , this separation allows us to eliminate the explicit
time-dependence p (t) by averaging the slow effect of coupling over a full period of the fast
phase dynamics.

Because the perturbations that define the coupled population model (3.1) are close to
periodic, their effects can be approximated by the method of averaging.6 The heterogeneity
and coupling perturbations to an oscillator are functions of its own trajectory xi and those
of the other oscillators xj . Each trajectory is approximated by the T -periodic average limit
cycle, xi \approx \=x (\theta i) (where \theta i = \Theta (xi)); therefore, we can approximate these perturbations (to
order \epsilon ) as periodic functions of phase, gi (xi) \approx \~gi (\theta i) \equiv gi (\=x (\theta i)) and likewise for \~Ic.

dxi
dt

\approx f (xi) +

\epsilon p(t)\underbrace{}  \underbrace{}  \left(  \~gi (\theta i) +
\sum 
j

kij \~Ic (\theta i, \theta j)

\right)  .

6A more detailed explanation of the phase reduction can be derived from singular perturbation theory or
averaging theory [40, 96].
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The final result of the phase reduction is the phase model, i.e.,

(3.10)
d\theta i
dt

= ωi +
\sum 
j

kijH (\theta j  - \theta i) ,

where

(3.11) ωi = 1 +
1

T

\int T

0
Z (t)T \~gi (t) dt,

(3.12) H (\theta j  - \theta i) =
1

T

\int T

0
Z (t)T \~Ic (t, t+ \theta j  - \theta i) dt.

The frequency term ωi arises from the intrinsic heterogeneity in cellular properties, and the
interaction function H from the coupling. We note that the form of H as a function of phase
differences, \phi j - i = \theta j  - \theta i, arises from the application of averaging.

3.4. PRC for hybrid models. For hybrid models, the PRC as well as the trajectory may
be discontinuous at the threshold crossing. Without the periodicity constraint acting as a
boundary condition, the adjoint equation (3.8) with normalization (3.9) no longer has a unique
solution, and a naive application of the adjoint method fails to find the PRC. Intuitively, the
resolution is to find the appropriate ``reset"" map or boundary condition for the PRC. Shirasaka,
Kurebayashi, and Nakao [98] present a boundary condition linked to the saltation matrix, a
correction to the linearized dynamics of a hybrid system to account for discontinuity across a
boundary [8, 68, 3]. They prove that the solution to the adjoint problem with their boundary
condition gives the PRC for the asymptotic phase of hybrid systems. Related results have
been independently presented by Park et al. [87] for nonsmooth systems with discontinuous
boundaries but no reset map and by Ladenbauer et al. [64] for a specific hybrid neuron model.
We present a brief heuristic derivation for an equivalent adjoint boundary condition and show
that the condition has an intuitive form tied to the geometry of the threshold. We assume the
existence of a phase mapping in a neighborhood about the limit cycle which is differentiable
everywhere except in the transverse direction across the threshold and reset manifolds. This
is equivalent to assuming the existence of a well-defined PRC. For additional discussion of
this assumption, see [98].

Consider a limit cycle trajectory \=x (t), reaching the threshold manifold at \=x (T ) = xT =
(vT , wT ), as shown in Figure 3.1. The phase on this trajectory cannot change across the
instantaneous reset. That is, since \Theta (\=x (t)) must be continuous in t,

(3.13) \Theta (xT ) = lim
t\rightarrow T - 

\Theta (\=x (t)) = lim
t\rightarrow T+

\Theta (\=x (t)) = \Theta (R (xT )) ,

where the right limit of the reset discontinuity is given by the reset point R (xT ). We introduce
a unit tangent vector u along the threshold manifold \scrT at xT (Figure 3.1). Given the assumed
differentiability of the phase mapping, we can apply a directional derivative along this tangent
vector (Du) to both sides of (3.13).

Du\Theta (xT ) = Du\Theta (R (xT )) ,

\nabla \Theta (xT )
T u = \nabla \Theta (R (xT ))

T DuR (xT ) ,

Zu

\bigl( 
T - \bigr) = (DuR (xT ))

T Z
\bigl( 
0+
\bigr) 
.(3.14)
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Figure 3.1. Limit cycle trajectory \=x (t) evolves smoothly from initial condition x0 on the reset manifold \scrR 
to xT on the threshold manifold \scrT , and then is returned by the reset map R (x) to x0 = R (xT ). A perturbation
u along the threshold is mapped to a post-reset perturbation along the reset manifold.

This equation gives a boundary condition for the PRC, replacing the standard assumption
of periodicity. As long as the limit cycle is not tangent to the boundary (the transverse flow
condition of [87]), (3.14) is independent of the normalization condition (3.9), and together they
determine the unique solution to the adjoint problem for the discontinuous limit cycle of the
hybrid model. Note that the derivative of the reset map is only defined in directions tangent
to the threshold, so there is no corresponding constraint on the perpendicular component of
the PRC. In N dimensions the threshold manifold is (N  - 1)-dimensional, so rather than a
single vector u, we enforce (3.14) for each of N  - 1 vectors ui spanning the tangent space.7

This boundary condition expresses an intuitive fact about perturbations to the limit cycle:
the phase difference between the limit cycle and a trajectory perturbed along the threshold
(given by Zu (T

 - )) must be the same as the difference after both trajectories are reset. The
difference after reset is expressed by the PRC at the reset point, Z (0+), with the pertur-
bation transformed by the reset map to a distinct perturbation along the reset manifold,
approximated by DuR (Figure 3.1).

4. Phase reduction of the resonate-and-fire model.

4.1. Existence and stability of spiking limit cycles. Before applying the theory of phase
reduction to any model, we must ensure the system exhibits a stable limit cycle. We begin
our analysis of the resonate-and-fire model by finding the existence and stability conditions
for spiking limit cycles. These conditions define boundaries of the stable limit cycle regime in
parameter space, i.e., bifurcations of the resonate-and-fire model.

Hard reset. We first discuss the existence conditions of the spiking limit cycle with hard
reset, (2.6). The spiking limit cycle exists whenever a trajectory starting from the reset point
crosses the threshold. The limit cycle is lost in a ``grazing bifurcation"" when the trajectory
becomes tangent to and then fails to cross the firing threshold. Beyond this bifurcation, tra-
jectories show decaying subthreshold oscillations, approaching rest at the equilibrium voltage.

7By extending the reset map to a neighborhood of the boundary, Shirasaka, Kurebayashi, and Nakao [98]
instead present N conditions; the Nth condition missing from our analysis is redundant if the normalization
condition (3.9) is enforced at all times (see section A.2).



RESONATE-AND-FIRE NEURON SYNCHRONIZATION 1657

-2 -1 0 1

veq

-2

-1

0

1

2

vR = +1

Rest Spiking Depol.

block

-2 -1 0 1

veq

-2

-1

0

1

2

wR

vR = −1

Rest Spiking

Figure 4.1. Grazing bifurcations bounding the spiking regime in parameter space, for positive and negative
reset regimes of the hard reset resonate-and-fire model with \lambda = 0.1. In both rest and depolarization block
regimes, the system has a stable fixed point (quiescent state); this state is below threshold at rest and above
threshold for depolarization block.

The hard reset map ensures that the spiking limit cycle is always stable, as the reset erases
all effects of small perturbations to the cycle by projecting to the single reset point.

We can visualize the spiking regime boundaries in a two-dimensional parameter space that
captures the most important dimensions of variability of the model dynamics. We choose a
small decay parameter \lambda = 0.1 to give slowly decaying subthreshold oscillations. The dynam-
ics then depend on the reset parameters vR and wR as well as the equilibrium veq, but because
the model is invariant to uniform rescaling of the (v, w) phase space, we can rescale to | vR| = 1
without loss of generality. Therefore, in Figure 4.1 we explore two distinct two-dimensional
(veq, wR) parameter spaces for positive and negative reset voltage, fixed at vR = \pm 1 (see
Figure 2.1a). In both the negative and positive reset regimes, a single grazing bifurcation
occurs for low equilibrium voltage veq (negative tonic input current), below which the model
is quiescent (at rest). In the positive reset regime, a second grazing bifurcation occurs for high
veq, when the voltage fails to dip below threshold, corresponding to depolarization block. The
bifurcations shown in Figure 4.1 curve away from the origin because any increase in the mag-
nitude of the adaptation variable reset wR increases the radius of the orbit, moving the system
away from the bifurcation. We can express the tangency condition for the grazing bifurcation

in terms of the orientation of the trajectory when crossing threshold, \theta H = tan - 1
\Bigl( 

dw/dt(T )
dv/dt(T )

\Bigr) 
.

At the bifurcation, this orientation matches that of the threshold,

(4.1) \theta H = \theta 0 + T +
\pi 

2
+ tan - 1 \lambda = \pm \pi 

2
.

Soft reset. Although the subthreshold dynamics always lead to decay of perturbations,
the soft reset map can in some cases amplify perturbations, making the limit cycle unstable.
In addition to the grazing bifurcation boundaries, the stable spiking regime can also be lost
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in a saddle-node bifurcation of limit cycles, where the stable and unstable cycles collide and
annihilate. In addition, the dynamics with soft reset allow for limit cycles with multiple
spikes, and we will show that the spiking limit cycle can also lose stability in a period-doubling
bifurcation.

To determine existence and stability conditions for the soft reset limit cycles, we reduce
the dynamics to a Poincar\'e return map on the reset manifold (also referred to as an adaptation
map [104]). This map takes a value of the adaptation variable at the kth reset, wk, to the
value at the following reset, wk+1 = P (wk). A limit cycle corresponds to a fixed point of the
map, \=w = P ( \=w), and the cycle is asymptotically stable if the fixed point satisfies

\bigm| \bigm| dP
dw ( \=w)

\bigm| \bigm| < 1.
The derivative of the return map characterizes the degree of attraction to the limit cycle and
is therefore also tied to the validity of the asymptotic approximation of the phase reduction.
We begin by deriving the return map for a general reset map from the threshold (vT , w) to
R (w) = (vR, Rw (w)). We then evaluate the fixed points and their stability for the soft reset
map.

We define the flow of the resonate-and-fire system F (wk, t) = x (t) = (v (t) , w (t))T ,
where the trajectory x (t) satisfies the subthreshold dynamics from (2.3) starting from an
initial condition x (0) = (vR, wk)

T on the reset manifold. The flow evaluates to

(4.2) F (wk, t) =

\biggl( 
Fv

Fw

\biggr) 
= e - \lambda t

\biggl( 
cos t  - sin t
sin t cos t

\biggr) \biggl( 
vR
wk

\biggr) 
.

We then define the spike time map \tau (wk), giving the time it takes such a trajectory to reach
the threshold,

(4.3) \tau (wk) = min \{ t : Fv (wk, t) = vT \} .

A trajectory starting at wk crosses threshold at the point F (wk, \tau (wk)) and is reset to
R (Fw (wk, \tau (wk))). The w-component of this reset point, Rw, gives the desired return map,

(4.4) wk+1 = P (wk) = Rw (Fw (wk, \tau (wk))) .

A fixed point \=w = w0 of the return map corresponds to a limit cycle with period T = \tau (w0).
The stability of a limit cycle with soft reset is assessed by evaluating the derivative of the
return map for the soft reset rule Rw (w) = w +\Delta w (2.7).

dP

dw
(w0) =

dRw

dw
(wT )

\biggl( 
\partial Fw

\partial w
(w0, T ) +

\partial Fw

\partial t
(w0, T )

\partial \tau 

\partial w
(w0)

\biggr) 
=

\Biggl( 
\partial Fw

\partial w
(w0, T ) - 

dw

dt
(T )

\partial Fv
\partial w (w0, T )

dv
dt (T )

\Biggr) 
= e - \lambda T (cosT + tan \theta H sinT ) ,

where we recall the trajectory's orientation at threshold \theta H = \theta 0 + T + \pi 
2 + tan - 1 \lambda . For the

soft reset rule then, the limit cycle can be stable or unstable depending on the decay \lambda and
the geometry of the threshold and reset manifolds. Loss of stability occurs when

\pm 1 =
dP

dw
(w0) = e - \lambda T (cosT + tan \theta H sinT ) ,
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which implies that bifurcations occur in the full resonate-and-fire model when

tan \theta H =
\pm e\lambda T  - cosT

sinT
.(4.5)

The negative slope instability (at dP
dw =  - 1) corresponds to a subcritical period-doubling

bifurcation (proof not shown), where an unstable period-two limit cycle collides with a stable
period-one limit cycle. The positive slope instability corresponds to a saddle-node bifurcation
of limit cycles, with a stable cycle coalescing either with a finite unstable cycle or at infinity
(return map slope approaching unity as w0 \rightarrow  - \infty for finite parameter values).

In Figure 4.2, we plot the stability of the limit cycle dP
dw (w0) and the grazing bifurcations

for soft reset together in (veq, w0) parameter space. Since w0 corresponds to the parameter wR

for hard reset, the grazing bifurcations (solid lines in Figure 4.2) are identical to the hard reset
grazing bifurcations in (veq, wR) coordinates from Figure 4.1. The loss of stability bifurcations
and the grazing bifurcations form the two boundaries of a narrow unstable limit cycle regime.
These bifurcations are both related to threshold crossing and necessarily lie close together.
Perturbations are amplified by the reset map, causing instability, because of a mismatch
between the angles of incidence with the threshold and reset manifolds, which increases as the
trajectory approaches tangency to the threshold (the grazing bifurcation condition). We note
that, near the saddle-node bifurcations, the return map can have two fixed points, representing
stable and unstable cycles. The representation in Figure 4.2 unfolds the bifurcation so that
a single point in the parameter space (veq, \Delta w) corresponds to two points in (veq, w0) space,
stable and unstable cycles on opposite sides of the dashed bifurcation line.

4.2. Resonate-and-fire PRC. The first step in proceeding with the phase reduction of the
resonate-and-fire model is to evaluate its phase response curve (PRC), expressing the effect
of perturbations to the limit cycle as a proportional phase shift (section 3.2). In general,
the PRC can be evaluated either by direct calculation or by the adjoint method. Although
directly calculating the effect of perturbations typically must be carried out computationally,
the resonate-and-fire model with hard reset allows the PRC to be calculated directly from an
analytical expression for phase [80]. Since all points on the threshold are mapped onto the
single point xR, the threshold can serve as a reference point to define the phase map for all
trajectories. However, we choose instead to derive the PRC from the adjoint equation with a
general reset rule, following the theory described in section 3.4. This approach allows us to
see the hard reset as a special case and to capture the geometric intuition in the relationship
between the dynamics, the adjoint equation, and the reset rule.

We proceed by first evaluating the adjoint equation (3.8) for the subthreshold dynamics.
In general, the adjoint equation evaluates the dynamics linearized about the limit cycle. Since
the resonate-and-fire dynamics (2.3) are linear, the adjoint equation is simply defined by the
negative transpose of the time-independent linear operator,

(4.6)
dZ

dt
=  - Df (\=x)T Z =

\biggl( 
\lambda  - 1
1 \lambda 

\biggr) 
Z.
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Figure 4.2. Existence and stability of limit cycles for soft reset, for the negative reset (left), and positive
reset (right) regimes. Color gives the stability quantified as the derivative of the return map P . Dashed lines
show loss of stability, with blue-green the negative slope (period-doubling) and magenta the positive slope (saddle-
node) bifurcation. Solid red/blue indicates unstable cycles past the bifurcation; slopes

\bigm| \bigm| dP
dw

\bigm| \bigm| > 1. Black lines
show the grazing bifurcation of the unstable limit cycle. Parameters \lambda = 0.1 and vR = \pm 1 are fixed while
varying veq and \Delta w, plotted using w0 to facilitate comparison with hard reset parameter space.

The PRC solution exhibits exponentially growing oscillations:

(4.7)

Zv (t) =
A

r0
e\lambda t cos (t - T + \alpha ) ,

Zw (t) =
A

r0
e\lambda t sin (t - T + \alpha ) .

The PRC is defined as written for times 0 < t < T and extends periodically to all t modulo
T , with a discontinuity at t = 0 (due to the discontinuous reset map skipping over dynamics
during the spike). The amplitude A = 1\surd 

1+\lambda 2 \mathrm{c}\mathrm{o}\mathrm{s}(\theta H - \alpha )
is determined by the normalization

condition,

(4.8) Z (t) \cdot dx
dt

(t) = 1, t \in (0, T ) .

Based on the reset map, the boundary condition for the adjoint equation (3.14) links the
left and right limits of the discontinuity, determining the phase shift \alpha . Examples of the
v-component PRC for both positive and negative vR are shown in Figure 4.3.

The general form for the boundary condition from (3.14) simplifies given our assumption
that the threshold and reset manifolds are in the w-direction (constant v), with reset map
Rw (w),

(4.9) Zw

\bigl( 
T - \bigr) = dRw

dw
(wT )Zw

\bigl( 
0+
\bigr) 
.
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Figure 4.3. The v-component PRC Zv (t) (bottom), derived by the adjoint method for both soft and hard
reset, shown along with the limit cycle v (t) (top) for reference. Parameters: \lambda = 0.1, wR = w0 = 1, veq =  - 0.5.
For soft reset, \Delta w = 2.025 was set to match the hard reset limit cycle, so that w0 = wR.

For the hard reset (2.6), mapping to a constant reset point, the derivative of the reset map is
zero. Thus (4.9) reduces to the terminal condition Zw (T - ) = 0, corresponding to a phase \alpha =
0. This result is equivalent to the geometric constraint that the PRC must be perpendicular
to the threshold, or oriented in the v-direction at time T . That is, perturbations along the
threshold have no effect after the reset.

For the soft reset rule (2.7), an increment of w, the boundary condition (4.9) mandates
continuity of the w-component of the PRC, Zw (T - ) = Zw (0+) . Intuitively, this tells us that
a perturbation to w immediately before the spike has the same effect as a perturbation after
the spike; i.e., perturbations tangent to the threshold are unchanged by the soft reset map.
This continuity boundary condition leads to a phase shift of Zv,

(4.10) \alpha = arctan

\biggl( 
sinT

cosT  - e\lambda T

\biggr) 
.

This phase shift is typically small for positive vR but can grow more significant in parts of the
negative reset regime. (See an example in Figure 4.3 and the full calculation in section A.3.)

We note that in the more general case of a nonlinear reset map, the result depends on
dRw
dw , for which the hard and soft resets are the special cases dRw

dw = 0 and 1, respectively. A
nonlinear reset map with derivative close to either extreme would lead to small corrections to
the corresponding \alpha value. Similarly, small variations in the orientation of the threshold or
reset manifold lead to minor adjustments to (4.9) and to the resulting phase shift \alpha .

We also note that the amplitude A has a singularity when

(4.11) cos (\theta H  - \alpha ) = 0.
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This singularity is associated with the high sensitivity to perturbations near bifurcations of
the limit cycle. For the hard reset \alpha = 0, \theta H = \pm \pi 

2 is the grazing bifurcation condition (4.1).

For the soft reset, the singularity occurs when tan \theta H =  - cot\alpha = e\lambda T - \mathrm{c}\mathrm{o}\mathrm{s}T
\mathrm{s}\mathrm{i}\mathrm{n}T , which is condition

(4.5) for the saddle-node bifurcation of the limit cycle (positive slope instability of the return
map). Interestingly, the negative slope loss of stability (period-doubling bifurcation) is not
reflected in the PRC. It seems that in the positive slope instability, phase shifts continue
to accumulate progressively on each cycle, whereas in the negative slope case, positive and
negative phase shifts alternate as they grow, leading the PRC to reflect an averaged finite
phase shift that fails to capture the loss of stability.

4.3. Phase model of electrically coupled resonate-and-fire neurons. We now proceed to
construct the interaction function and phase model for electrically coupled resonate-and-fire
neurons. In the weak coupling regime, this reduced model with a single phase variable for the
state of each oscillator captures the full synchronization properties of the resonate-and-fire
network (2.5). We explore how the phase model changes as we vary the equilibrium voltage
and reset parameters, representing different cell types and classes of firing dynamics.

The interaction function H and heterogeneity ω of the phase model are calculated accord-
ing to (3.10), from the electrical coupling and heterogeneity of frequencies in the full model
along with the PRC from (4.7). The heterogeneity of frequencies in the phase model repre-
sents a combination of all parameter heterogeneity in the resonate-and-fire network model,
as described by the integral (3.11). We assume a fixed level of frequency heterogeneity (rel-
ative to the mean ω = 1) and thus focus on how parameter changes affect the interaction
function H.

The interaction functionH defines the nonlinear coupling between cells in the phase model.
It can be expressed as a convolution integral of the coupling current and the PRC, according to
(3.12). In the case of electrical coupling, the coupling function Ic = v (t+ \phi ) - v (t)+M\delta (t+ \phi )
(cf. (2.8)) contains terms for the subthreshold voltage difference and the spike of the coupled
cell. The resulting interaction function, depicted in Figure 4.4, is

H (\phi ) =
1

T

\int T

0
Zv (t) [v (t+ \phi ) - v (t) +M\delta (t+ \phi )] dt, \phi \in [0, T ] .(4.12)

Since the interaction function convolves the PRC and the coupling function, with a linear
dependence on both, we can additively separate the corresponding subthreshold and spiking
components, H = Hsub +Hspike:

Hsub (\phi ) =
1

T

\int T

0
Zv (t) [v (t+ \phi ) - v (t)] dt,

Hspike (\phi ) =
M

T

\int T

0
Zv (t) \delta (t+ \phi ) dt.

The spike (\delta -function) component of the coupling function determines the spike interac-
tion function Hspike, representing the effect of this voltage transient through the electrical
coupling. This is essentially a pulse-coupling interaction, as used in simple models of exci-
tatory chemical synapses [78, 63, 79]. In the narrow spike limit that we study, the effect is
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Figure 4.4. Interaction function H including both spike and subthreshold contributions (solid lines), as well
as subthreshold component Hsub (dashed), for the electrically coupled resonate-and-fire model with hard reset
(black) and soft reset (green). Parameters: \lambda = 0.1, wR = 1, \Delta w = 2.025, veq =  - 0.5, M = 0.2.

entirely determined by the PRC and the magnitude of the spike, and the spike interaction
function can be discontinuous at the origin, as shown in Figure 4.4. We return to the effects
of this interaction in section 5.3.

The subthreshold interaction function Hsub captures the effect of subthreshold fluctua-
tions of the limit cycle. Analysis of this component allows us to determine how the resonant
properties of the model contribute to synchronization. Each parameter of the model affects
synchronization both through its effect on the limit cycle and on the PRC, making the com-
bined effect (encoded by Hsub) potentially complex. The only general constraints on the
subthreshold interaction function are that it must be continuous and pass through the origin;
Hsub (0) = 0 because the gap junction coupling is diffusive, proportional to the difference of
voltages.

The interaction function integral for the subthreshold component results in a complex
expression, in part because the integral must be split due to the discontinuity of the orbit (full
calculation in section A.4). To simplify the analysis, we split the subthreshold interaction
function into three terms with distinct parameter dependence:

(4.13)

Hsub(\phi ) = AC1C1(\phi ) +AC2C2(\phi ) +ASS(\phi ),

C1(\phi ) = 1 - e - \lambda \phi 

T

\Bigl[ 
e\lambda T\phi cos (T  - \phi ) + (T  - \phi ) cos\phi 

\Bigr] 
,

C2(\phi ) =
e - \lambda \phi 

T

\Bigl[ 
e\lambda T sin\phi + sin (T  - \phi )

\Bigr] 
 - sinT

T
,

S(\phi ) =
e - \lambda \phi 

T

\Bigl[ 
 - e\lambda T\phi sin (T  - \phi ) + (T  - \phi ) sin\phi 

\Bigr] 
.

(4.14) AC1 =  - A

2
cos (\theta T  - \alpha ) , AC2 =

A

2
cos (\theta 0 + \alpha ) , AS =  - A

2
sin (\theta T  - \alpha ) ,

where \theta T = \theta 0+T is the angular coordinate of the trajectory at threshold. We note that the S-
function closely resembles sine, while the two C-functions resemble a vertically shifted cosine,
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Figure 4.5. Components of the subthreshold interaction function Hsub with approximate odd and even
symmetry, for the electrically coupled resonate-and-fire model with hard reset (black) and soft reset (green).
Parameters: \lambda = 0.1, vR = wR = 1, \Delta w = 2.025, veq =  - 0.5.

as shown in the example in Figure 4.5. This approximate odd and even symmetry about the
origin means they contribute in distinct ways to synchronization of simple networks. In the
following sections, we consider these effects by studying networks of two and three cells.

5. Synchronization of two electrically coupled resonate-and-fire neurons. Our primary
goal with the phase reduction of the resonate-and-fire model is to provide insight into the
synchronization of networks of electrically coupled resonant neurons. Even after phase re-
duction, the analysis of large systems with realistic network architecture is hindered by the
nonlinear phase coupling and number of degrees of freedom, and in general must be carried
out numerically. Therefore, we focus on minimal networks of two or three cells and save the
analysis of large-scale networks for future work. In this idealized context, we can explain
how the cellular properties of the resonate-and-fire oscillators determine network synchrony
through the distinct components of the interaction function (in terms of slopes, amplitudes,
and discontinuities). Although large networks cannot be completely understood by their two-
and three-cell subnetworks, in many cases the intuition built on these minimal networks holds
[2].

5.1. General considerations. We begin by examining the synchronization of a sym-
metrically coupled pair of oscillators, the simplest and most commonly analyzed network
[36, 62, 69, 74]. The assumption of symmetry implies that the equation governing the phase
difference between the oscillators (5.2) isolates a component of the interaction function with
odd symmetry, simplifying the analysis. Experiments have shown that electrical coupling is
often close to symmetric, especially when between the same cell type and formed by the com-
mon symmetric channel type connexin-36 [7]. Nonetheless, asymmetry can and does arise,
either from rectification (favoring current flow in one direction) in the gap junction channels
that make up the electrical synapse, or from asymmetries in size or gap junction location. We
will address the effects of asymmetry briefly in section 6.
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Figure 5.1. Phase locking of a coupled pair. (a) Phase-locked states are fixed points of (5.2), intersections
of 2KHodd (\phi ) (blue) with lines of constant frequency heterogeneity \Delta ω1 - 2 (red/green). Arrows give the flow of
relative phase \.\phi 1 - 2, indicating existence and stability of fixed points. The spiking component of Hodd provides
additional robustness (dashed line with spike, solid line without). (b) Simulations show phase-locked (green)
and phase walk-through (red) states corresponding to two levels of heterogeneity from A (subthreshold coupling
only). Parameters: Hard reset, \lambda = 0.1, wR = 1, vR = 1, veq =  - 0.5, M = 0, K = 0.1.

The phase model (3.10) for a pair of symmetrically coupled oscillators (k12 = k21 = K) is
given by

(5.1) \.\theta i = ωi +KH (\theta j  - \theta i) .

Expressed in terms of the phase difference \phi i - j = \theta i  - \theta j and frequency difference \Delta ω1 - 2,
we can rewrite (5.1) in terms of the odd component of the H function, Hodd(\phi ) = 1/2(H(\phi )
 - H( - \phi )) = H(\phi ) - Heven(\phi ), as follows:

(5.2) \.\phi 1 - 2 = \Delta ω1 - 2  - 2KHodd (\phi 1 - 2) .

(Some analyses refer to the G-function, G (\phi ) =  - 2Hodd (\phi ) [96]). Fixed points of (5.2)
correspond to phase-locked states of the coupled pair, the existence and stability of which are
determined by properties of Hodd, as depicted in Figure 5.1a and described below.

For identical oscillators (\Delta ω1 - 2 = 0), the odd symmetry of (5.2) implies a pair of fixed
points at \phi 1 - 2 = 0 and \phi 1 - 2 = T/2 for synchronous and antiphase states, respectively. If Hodd

has only a single local maximum, which is typical for the electrically coupled resonate-and-
fire model, only one of these two fixed points is stable and no additional fixed points exist.
The synchronous state is stable and the antiphase state unstable when the slope H \prime 

odd (0) is
positive, and the reverse holds for negative slope. (For simplicity, we shorten references to the
slope evaluated at the origin to ``slope."") For hybrid models, the slope of the full interaction
function H \prime (0) may be undefined, with different right and left limits, but the odd symmetry
forces H \prime 

odd (0) to always be well defined.
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We note that in larger networks a similar dependence on the slope exists. Typically, a
strong positive slope leads to global synchrony, while a negative slope leads to global incoher-
ence [2]. Nonetheless, in some cases global features of the interaction function H (\phi ) can have
significant effects of synchronization; the even component effects we discuss in section 6 are
one example.

As the frequency heterogeneity of the pair increases, the pair of fixed points shifts pro-
gressively in the relative phase of the oscillators. We refer to these states as near-synchronous
and near-antiphase. For small frequency heterogeneity \Delta ω1 - 2 > 0, the phase difference in the
near-synchronous state is approximately inversely proportional to the slope, \phi 1 - 2 \approx \Delta ω1 - 2

2KH\prime 
odd(0)

.

Note that this phase difference is in units of time, while to compare phase-locked states across
oscillators with different periods we should evaluate phase in radians. To account for this we
rescale both the phase and the slope H \prime 

odd,

\^\phi 1 - 2 = \phi 1 - 2
2\pi 

T
\approx \Delta ω1 - 2

2K \^H \prime 
odd (0)

, where \^H \prime 
odd (0) \equiv 

T

2\pi 
H \prime 

odd (0) .

(Note that here we use prime to denote the slope of both functions, so H \prime is a time derivative
and \^H \prime is a phase derivative.)

For larger heterogeneity, the phase difference continues to increase until \Delta ω1 - 2 is greater
than the amplitude of 2KHodd (red level in Figure 5.1a). At this point the fixed points of
(5.2) are lost in a saddle-node bifurcation, and the phase-locked state transitions to ``phase
walk-through,"" with the phases of the cells slipping past each other (red curve in Figure 5.1b
right).

We can thus quantify the robustness of synchrony to heterogeneity in two ways: for
fixed coupling K, the slope \^H \prime 

odd (0) gives the strength of synchrony for small heterogeneity,
while the amplitude of Hodd gives the critical heterogeneity at which the near-synchronous
state is lost. Due to the noise and heterogeneity present in biological systems, we consider
robustness to be an important criterion for synchronization in addition to the stability of the
synchronous state for identical oscillators. Below, we consider the robustness and stability of
near-synchronous phase-locking in more detail for the subthreshold and spiking components
of the interaction function for electrically coupled resonate-and-fire neurons.

5.2. Subthreshold contribution. For the analysis of synchrony in the electrically coupled
resonate-and-fire model, we begin by evaluating the contribution to the odd component of the
subthreshold interaction function Hsub and return to the spiking component in section 5.3.
For the subthreshold interaction function the odd component is typically dominated by the
first Fourier component \^Hodd(\^\phi ) \propto sin(\^\phi ), so its slope and amplitude, our two measures of
robustness, are roughly proportional (see section A.6). We first identify the condition for
stable synchrony (positive slope) and show that the subthreshold contribution is virtually
always synchronizing, with negative slope only possible along the spiking regime boundary.
We then explore the robustness of synchrony as measured by the magnitude of the positive
slope, identifying a dependence on the shape of the voltage trajectory through the reset voltage
vR.

We split the calculation of the slope of Hsub into components, following the decomposition
(4.13) of component functions with approximate symmetry (see Figure 4.5). We consider
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the limit of small decay (\lambda \ll 1) by expanding to first order in the decay parameter (see
calculation in section A.5).

(5.3)

2\pi \^C1
\prime 
odd(0) = \lambda T  - cosT sinh (\lambda T ) \approx \lambda T (1 - cosT ) > 0,

2\pi \^C2
\prime 
odd(0) = sinh(\lambda T ) - \lambda sinT \approx \lambda (T  - sinT ) > 0,

2\pi \^S\prime 
odd(0) = T  - sinT cosh (\lambda T ) \approx T  - sinT > 0.

The O (1) in \lambda contribution to \^H \prime 
odd (0) from S is the primary subthreshold factor determining

the strength and stability of synchrony (as shown in Figure 4.5). The sign of this slope is
determined by AS , the coefficient of the S component. Specifically, the condition for stable
synchrony is approximated to order \lambda by

AS =  - A

2
sin (\theta T  - \alpha ) =

A

2
cos
\Bigl( 
\theta T +

\pi 

2
 - \alpha 

\Bigr) 
> 0.

Note that the boundary of this stable region differs only to order \lambda from the PRC singularity
condition (4.11),

cos (\theta H  - \alpha ) = cos
\Bigl( 
\theta T +

\pi 

2
+ tan - 1 \lambda  - \alpha 

\Bigr) 
= 0,

which determines the location of both the grazing bifurcation for hard reset and the saddle-
node bifurcation for soft reset. Near these boundaries, a negative slope can result either from
AS < 0 or from AS \approx 0 and AC1 < 0 or AC2 < 0.

We show the slope \^H \prime 
odd (0) for the full parameter space in Figure 5.2, with the negative

slope region highlighted by zooming in near the spiking boundary (Figure 5.2b). Additionally,
because the slope \^H \prime 

odd scales with the diverging PRC amplitude A, both negative and positive
slopes near these boundaries can grow extremely large. We note, however, that this result
should be interpreted with caution, as the assumption of weak coupling also breaks down
approaching these boundaries.

The other significant trend in the slope, determining the robustness of synchrony, is the
difference between the positive and negative reset regimes. The slope is roughly unit magni-
tude in the positive reset regime, sharply contrasting with the negative reset regime where the
slope is uniformly small (Figure 5.2). By explicitly plotting the slope against the reset point
vR in Figure 5.3, we can see clearly the presence of two regimes with a distinct transition in
between. As shown in Figure 2.1a, these two regimes have characteristic voltage waveforms.
A large positive vR is characterized by a plateau potential in the voltage trajectory, while
large negative vR is characterized by after-hyperpolarization (AHP). We conclude that for the
resonate-and-fire model in the plateau potential regime, the subthreshold dynamics signifi-
cantly contribute to synchrony through electrical coupling. In the AHP regime, on the other
hand, synchrony is stable for identical intrinsic frequencies but minimally robust to hetero-
geneity. Because there is little to no subthreshold contribution to synchrony in this regime,
the model can only synchronize in the presence of moderate frequency heterogeneity through
the effect of the transmitted spike (see section 5.3).

We can further investigate this trend through our slope approximation (5.3), focusing on
the S component as the dominant slope contribution. As vR is increased, the coefficient AS
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(a) Full parameter space (b) Close-up of boundary

Figure 5.2. Stability and robustness of synchrony. (a) Slope of \^Hodd, the odd component of the subthreshold
interaction function, for \lambda = 0.1 as the equilibrium voltage (veq) and the reset coordinates (vR and wR or w0)
are varied. Magenta and cyan lines indicate stability boundaries of the limit cycle. (b) Expansion of left column
(negative reset regime) near the spiking boundary.
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Figure 5.3. Robustness of synchrony (as measured by the slope of \^Hodd) as the reset point vR is varied
between the AHP (negative extreme) and plateau potential (positive extreme) regimes. Hard reset shown in
black; soft reset in green. Parameters: \lambda = 0.1, wR = 1, \Delta w = 2.025, veq =  - 0.5.
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varies little, while \^S\prime 
odd \approx T  - sinT increases sharply with an increase in the period T . That

is, increasing the reset voltage vR increases the angular extent of the limit cycle as it covers
more of the (v, w) plane. Note that with \Omega = 1 fixed, T represents two distinct factors:
the extent of the cycle in radians and its duration. However, varying the duration alone by
simply rescaling time has no effect on the strength or robustness of synchrony. The effects
represented by Hodd are entirely due to the extent of the limit cycle covering a larger fraction
of a cycle of continuous oscillation.

5.3. Spike interaction function. The spiking component of the interaction function also
has a significant odd component and thus contributes to the synchronization of the coupled
pair. We show here that this contribution always promotes synchrony, reinforcing previous
results for excitatory pulse coupling of resonant neurons [47].

In the narrow spike limit implied by the \delta -function spike, the interaction function convo-
lution equation (3.12) has a simple form for the spiking component, namely a time-reversed
copy of the PRC.8

Hspike (\phi ) =
M

T

\int T

0
Zv (t) \delta (t+ \phi ) dt

=
M

T
Zv (T  - \phi )

=
MA

Tr0
e\lambda (T - \phi ) cos (\phi  - \alpha ) .

Since the spike interaction function is discontinuous at zero, its contribution to the stability
and robustness of the synchronous state depends primarily on the size and direction of the
discontinuity.9 The jump discontinuity can stabilize the fully synchronous state even with
nonzero heterogeneity if | \Delta ω1 - 2| < Hodd (0

+) = \Delta Hspike [28, 70, 98]. (For more in-depth
analysis of the limit approaching discontinuity in the interaction function, see [98, 52].) We
evaluate this discontinuity directly from the PRC:

\Delta Hspike = Hspike

\bigl( 
0+
\bigr) 
 - Hspike

\bigl( 
0 - 
\bigr) 

=
M

T

\bigl( 
Zv

\bigl( 
T - \bigr)  - Zv

\bigl( 
0+
\bigr) \bigr) 

,

\Delta Hspike =
MA

Tr0

\Bigl( 
e\lambda T cos\alpha  - cos (T  - \alpha )

\Bigr) 
.

The condition \Delta Hspike > 0 is always satisfied for stable spiking limit cycles in both hard and
soft reset conditions. Specifically, e\lambda T cos\alpha  - cos (T  - \alpha ) > 0 holds for both hard and soft
reset (\alpha = 0 and the phase shift (4.10), respectively), while the scaling factor A changes sign

8For spike shapes following any smooth function with compact support, the spike interaction function
Hspike will converge pointwise (for \phi \not = 0) to the Hspike resulting from a \delta -function in the small-width limit
if the charge transfer is held constant. While Hspike (0) is left undefined, this single point does not affect
synchronization.

9If the amplitude of Hspike is extremely large relative to Hsub, it can create multiple local maxima of the
interaction function, allowing multiple stable states. In this case, our analysis still applies to the synchronous
phase-locked state, while other locked states would require additional analysis.
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with cos (\theta H  - \alpha ) at the stability boundary (4.5). We evaluate the value of \Delta Hspike over the
full parameter space in section A.7. The spike interaction function thus always promotes the
stability of the synchronous state, potentially synchronizing heterogeneous oscillators even
when the subthreshold contribution is not synchronizing. As we showed above, the subthresh-
old contribution to the slope H \prime 

odd (0) is near zero or negative for a significant portion of the
parameter space, including most of the AHP regime, thus requiring this spike contribution in
order to synchronize.

We note that without the assumption that coupling effects are blocked during the spike
(discussed in section 2.5), the spike interaction function would have an additional constant
term from Zv (0), the sensitivity to the coupling current that leaves the cell during its spike.
The resulting constant offset to the interaction function would only affect synchronization in
asymmetrically coupled networks, shifting the effective frequency of each cell by an amount
proportional to the total strength of its connections.

6. Synchronization of a three-cell network: Effect of the even component. Due to
the symmetry of the coupled pair, the odd component of the interaction function alone de-
termines the evolution of the phase difference, and the even-symmetric component has no
effect on synchronization. However, the even component has the potential to strongly affect
synchronization in both larger resonate-and-fire model networks and actual biological net-
works. Although many studies of synchronization in model neurons ignore this possibility
by focusing on symmetrically coupled pairs, a few studies have described effects of the even
component on synchronization [44]. Additionally, mathematical studies of networks of phase
oscillators provide significant insight into the potentially complex effects of the even compo-
nent, typically in the context of large networks [2, 34, 37, 61, 93, 94, 86]. Here, we show that
similar effects can be seen in minimal networks, specifically asymmetrically coupled pairs and
three-cell networks, the study of which can help us understand the more complex properties
of larger networks.

We first provide intuition for the effects of the even component by revisiting the dynamics
of a coupled pair, relaxing the previous assumption of symmetric electrical coupling. We
express the dynamics of the pair in terms of the phase difference \phi 1 - 2, coupling asymmetry
\Delta k, and mean values of the phase \=\theta , frequency \=ω, and coupling \=k:

(6.1)

d\phi 1 - 2

dt
= \Delta ω1 - 2  - 2\=kHodd (\phi 1 - 2) + \Delta kHeven (\phi 1 - 2) ,

d\=\theta 

dt
= \=ω+ 2\=kHeven (\phi 1 - 2) .

In the symmetrically coupled pair (\Delta k = k12  - k21 = 0), the even component has no effect

on the phase difference, but it does shift the frequency d\=\theta 
dt of the phase-locked state. In the

case of asymmetric coupling strength k12 \not = k21, the term \Delta kHeven (\phi ) can be interpreted
as a differential shift in the instantaneous frequencies of the two oscillators. This effective
frequency shift can either promote or oppose synchrony depending on whether the sign of the
product adds to or cancels the intrinsic frequency heterogeneity \Delta ω1 - 2.

In a three-cell network, an even component term in the phase difference dynamics can
also arise from coupling to a third oscillator with a different intrinsic frequency, even if the
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coupling is fully symmetric. The phase difference equation for a symmetric three-cell network
with uniform coupling kij = K is

d\phi i - j

dt
= \Delta ωi - j +K

\left(   H ( - \phi i - j) - H (\phi i - j)\underbrace{}  \underbrace{}  
 - 2Hodd

+H ( - \phi i - k) - H (\phi i - j  - \phi i - k)

\right)   .

While the first two H terms partially cancel to isolate the odd component, the latter two
terms depend essentially on the even component. We will first demonstrate the effects of
these additional even component terms on phase-locking, along with the effective frequency
shifts from coupling asymmetry, in the context of three-cell networks. We will then return to
the electrically coupled resonate-and-fire model, investigating the size of the even component
of the subthreshold interaction function, its potential effects on neuronal networks, and its
origin in the model dynamics.

6.1. Phase-locking of three cells. A network of three cells is a minimal case that allows
network asymmetry (of coupling or frequency) to trigger an effect of the even component
even when the pairwise coupling is symmetric. In this context, the amplitude of the odd
component (relative to the heterogeneity) is still the primary factor determining the existence
of synchronous phase-locking, but the addition of an even component can modify the outcome
dramatically, especially when the amplitude of the even component is large relative to that of
the odd component.

The phase model for the three-cell network takes the general form of (3.10). We assume
pairwise symmetry of the coupling, kij = kji, and expand the phase difference equations for
the network,

(6.2)
\.\phi 1 - 3 = \Delta ω1 - 3 + k21H ( - \phi 1 - 2) + k31H ( - \phi 1 - 3) - k31H (\phi 1 - 3) - k23H (\phi 1 - 3  - \phi 1 - 2) ,

\.\phi 1 - 2 = \Delta ω1 - 2 + k31H ( - \phi 1 - 3) + k21H ( - \phi 1 - 2) - k21H (\phi 1 - 2) - k23H (\phi 1 - 2  - \phi 1 - 3) .

To simplify calculations in this analysis, we restrict the interaction function to its first Fourier
components,10

\^H
\Bigl( 
\^\phi 
\Bigr) 
= Aodd sin \^\phi +Aeven

\Bigl( 
1 - cos \^\phi 

\Bigr) 
,(6.3)

where \^\phi and \^H indicate phase in radians (note that we drop the hat notation below). We also
impose the constraint that the cosine be accompanied by a constant offset, Heven \propto 1 - cos\phi ,
from the diffusive coupling condition H (0) = 0. We parametrize the amplitude of the even
component by fixing the odd component and varying the amplitude ratio,

\beta = tan - 1 Aeven

Aodd
.

10For the electrically coupled resonate-and-fire subthreshold interaction function, higher modes of the Fourier
expansion contribute no more than 6\% of the variance of the interaction function for dynamics within the
parameter spaces shown (in Figure 5.2 and Figure 6.4, with \lambda = 0.1). This approximation may break down for
stronger decay.
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(a) Phase model nullclines
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Figure 6.1. Effect of a small even component on phase-locking of three-cell network. (a) Phase plane with
nullclines of phase model (blue for \phi 1 - 2; red for \phi 1 - 3) at the critical coupling for existence of phase-locking with
\beta = 0. The shift of nullclines eliminates the fixed point for negative \beta . Stable limit cycles and fixed points shown
in green. (b) Simulations of the resonate-and-fire model show loss of fixed point with negative even component.
Note that the phase-slipping oscillator (yellow) also misses a spike. Blue, red, and yellow denote oscillators 1,
2, and 3, respectively. Parameters: \Omega i = (1.067, 1.017, 0.917), kij = 0.09 (Aodd = 0.044), M = 0, \lambda = 0.1,
vR = 1. For \beta positive/negative, respectively, wR = (0, 0.49), veq = ( - 0.03,  - 0.3).

Examples of the two-dimensional phase plane from (6.2) are shown in Figure 6.1a for
the phase reduction of the electrically coupled resonate-and-fire model on a symmetric three-
cell network (approximated in the form (6.3)). The intersections of the nullclines are fixed
points of the system, corresponding to phase-locked states. For \beta = 0, the odd coupling
strength Aodd is set at the critical value for phase-locking of the network. Oscillators 1 and
2 are closely locked, while 1 and 3 are locked at \phi 1 - 3 \approx \pi 

2 . For small changes in the even
component, \beta > 0 shifts the nullclines together to promote phase-locking, while \beta < 0 shifts
them apart. Corresponding simulations of the full resonate-and-fire model network are shown
in Figure 6.1b. For \beta < 0, oscillators 1 and 2 remain entrained, but oscillator 3 slips past in
relative phase.

In a general three-cell network with arbitrary connection weights, this shift of the nullclines
combines with the synchronizing effect of the odd component and with the effective hetero-
geneity from coupling asymmetry to determine the presence or absence of phase-locking. In
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the limit of small \beta , we can show analytically that the shift of the nullclines described above
is the generic first-order effect on symmetric networks and separates additively from the fre-
quency and coupling heterogeneity terms when both are present. To do this, we first simplify
the form of the nullclines by rewriting the coupling as a phase lag accompanied by an offset,

(6.4) H (\phi ) = Aodd (sin\phi + tan\beta (1 - cos\phi )) \approx Aodd (sin (\phi  - \beta ) + \beta ) .

Taking one of the nullcline equations from (6.2), we then combine all the coupling terms into a
single sine function, capturing parametric dependence of the nullcline in the offset, amplitude,
and phase of this effective interaction.

(6.5) 0 =
\Delta ω1 - 3

Aodd
+ωeff + fC + fA sin (\phi 1 - 3 + f\alpha ) ,

with the parameters approximated to order \beta as

ωeff \approx (k21  - k23)\beta ,

fC \approx  - k21 sin (\phi 1 - 2 + \beta ) ,

fA \approx  - 
\sqrt{} 
k223 + 4k231 + 4k23k31 cos (\phi 1 - 2 + \beta ),

f\alpha \approx arctan

\biggl( 
 - k23 sin (\phi 1 - 2 + \beta )

2k31 + k23 cos (\phi 1 - 2 + \beta )

\biggr) 
.

The amplitude of the odd component appears only in the term \Delta ω1 - 3

Aodd
, decreasing the effect

of the intrinsic frequency heterogeneity (i.e., larger coupling is equivalent to smaller hetero-
geneity). When the coupling asymmetry term is small, decreasing the frequency heterogeneity
term can be shown to increase the extent of the nullclines, promoting a fixed point as with
the coupled pair. The frequency shift term ωeff gives the effective heterogeneity from cou-
pling asymmetry. Similar to the asymmetrically coupled pair (6.1), this supports or opposes
phase-locking depending on its sign relative to the intrinsic heterogeneity \Delta ω1 - 3.

The remaining terms represent the additional effects of the even component through their
joint dependence on \beta and \phi 1 - 2, which for small \beta reduces to a dependence on the sum
(\phi 1 - 2 + \beta ). In a network with symmetric coupling (ωeff = 0), this dependence on (\phi 1 - 2 + \beta )
causes the \phi 1 - 3 nullcline to shift along the \phi 1 - 2 axis with a change in \beta (and likewise for the
\phi 1 - 2 nullcline with respect to \phi 1 - 3). In the absence of frequency heterogeneity, the nullclines
are straight lines \phi 1 - 3 = 0 and \phi 1 - 2 = 0 (see (6.2)) and thus are unaffected by these shifts.
For larger frequency heterogeneity, the nullclines form closed curves, and a phase-locked fixed
point can be lost in a saddle-node bifurcation if the shifts move the nullclines apart. This can
occur near the bifurcation for a small change in \beta of the proper sign (relative to the frequency
heterogeneity) as shown in Figure 6.1, or for larger changes in \beta regardless of sign. As \beta 
grows larger, the shift of the nullclines increases proportionally (accompanied by distortion
from higher order terms not included in (6.5)). An example where this larger shift eliminates
the synchronous fixed point regardless of the sign of \beta is shown in Figure 6.2.

We next investigate which effects of the even component occur generically for random
networks versus contingent on the specific coupling and frequencies. This may provide insight
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Figure 6.2. Effect of a large even component on phase-locking of three-cell network. Nullclines of phase
model (blue for \phi 1 - 2; red for \phi 1 - 3), at the critical coupling for existence of phase-locking with \beta = 0, are
dramatically shifted and distorted for both large positive and negative even components, eliminating the fixed
point in both cases. Stable limit cycles and fixed points shown in green: For \beta =  - 1 oscillators 1 and 2 are
entrained, and for \beta = 1 oscillators 2 and 3 are entrained at a 1:2 frequency ratio. Parameters as in Figure 6.1.

into larger network dynamics, to the extent that global synchrony of a large network can act
to average the synchrony of random subnetworks. In Figure 6.3 we plot the Kuramoto order
parameter R2 = 1

Nt

\sum 
t | 

1
Nj

\sum 
j e

i\phi j(t)| 2, a measure of the strength of synchrony, averaged over

time and over instantiations of random frequencies and coupling heterogeneity. Effects that
depend on the sign of \beta (relative to the frequency or coupling heterogeneity) are averaged out;
we see no effect for small \beta of either the nullcline shifts or the coupling asymmetry effects. For
sufficiently large \beta , we see a significant decrease in synchrony with both types of heterogeneity,
as the even component effects begin to dominate over the intrinsic frequency heterogeneity (as
in Figure 6.2). This result resembles analytical results for chains of oscillators with spatially
constrained coupling, where an increase in the critical coupling occurs for \beta \geq \pi 

4 [84, 111]. It
should be noted that in large networks the effect of the even component on synchronization
can depend dramatically on the probability distribution from which the frequencies are drawn
[83], whereas this dependence for random three-cell networks is minimal.

6.2. Even component of subthreshold interaction function. In the previous section we
showed that the even component of the interaction function can have significant effects on
phase-locking. We now proceed to assess the magnitude of the even component for the elec-
trically coupled resonate-and-fire oscillator. In Figure 6.4, we plot the amplitude ratio \beta of
the even component for the subthreshold interaction function. We note a dramatic difference
between the positive and negative reset regimes (as seen with the odd component slope in Fig-
ure 5.2). \beta is consistently large and negative in the negative reset regime (except for a small
positive region for soft reset where the odd component is negative) and varies significantly
across the positive reset regime. Although both the odd and even amplitudes decrease with
vR (towards vR =  - 1), the odd component remains smaller, explaining the large amplitude
ratio in the negative reset regime. However, since the overall amplitude of the subthreshold
interaction function is small, any effects of the even component here are likely to be dominated
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Figure 6.3. Average level of synchrony R2 for random three-cell networks decreases with increasing ampli-
tude of even component. Note that | \beta | = \pi 

2
is the limit of infinite even coupling. Dashed lines indicate both

frequency and coupling heterogeneity; solid lines indicate coupling only; dotted lines indicate frequency only.
Colors show level of heterogeneity. Frequencies are drawn from a Gaussian distribution (mean 0) and coupling
weights from a log-normal distribution (mean 1), both with standard deviation \sigma = 0, 1, 2 for blue, red, yellow,
respectively. Odd component of coupling fixed at Aodd = 1.

by the spike interaction, as discussed in section 5.3. In the positive reset regime, both the
overall and relative amplitudes can be significant. \beta increases from negative to positive with
increases in veq and is largest in magnitude at the spiking regime boundaries. This trend is
driven by the component function C1 from (4.13), for which the coefficient AC1 \approx A

2 veq (for
hard reset). The component function C2 also contributes to the even component, but to a
lesser degree.

Where the even component is small in magnitude (Figure 6.4, green region) the effects
depend on the sign of \beta and cancel when averaged over random networks. Small even compo-
nents are thus unlikely to significantly affect large biological networks. For the tuning of local
connection properties to overcome this averaging and support or oppose synchrony, the even
component of a connection would need to be tuned based on the frequencies and coupling
strengths of both coupled cells, a possibility that seems biologically unrealistic. However,
the even component is sufficiently large in a significant portion of the parameter space to
potentially oppose synchrony in random networks (as in Figure 6.3). In the neural context,
for systems in which synchrony supports biological function, cells may need to adapt their
dynamical properties to keep the even component small. This can occur most directly through
shifting the equilibrium veq, either by slower changes in conductances or synaptic weights, or
by faster shifts in the tonic input to the cell. This mechanism could potentially enable rapid
adaptive shifts (up or down) in the level of synchrony. Finally, it is possible that a large
even component could instead promote specific functional states, such as a chimera state [66],
rather than simply opposing synchrony.

6.3. Origin of the even component. Due to a predominant focus on odd component
effects and symmetric coupling contexts, the literature on neural synchrony has little discussion
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Figure 6.4. Relative amplitude \beta of even to odd components of the electrically coupled resonate-and-fire
subthreshold interaction function, from least-squares fit of H to the form (6.4) (for \lambda = 0.1, as the equilibrium
voltage (veq) and the reset coordinates (vR and wR or w0) are varied). Magenta and blue-green dashed lines
indicate stability boundaries of the limit cycle for positive and negative slope instabilities. Dotted line indicates
condition (6.6) for no reset-induced shear.

of the factors determining variation in the even component. Thus, with the goal of illuminating
this broader question, we present a brief analysis for the electrically coupled resonate-and-
fire model, explaining the origin of phase shifts of the interaction function relative to the
purely odd case. We consider an approximation in which the limit cycle, PRC, and resulting
interaction function are all sinusoidal, differing only in phase shifts. (This is strictly true only
in the small decay and large period limit.) The phase of the interaction function follows from
the relative phase of v and Zv, determined by the boundary condition (3.14) for the adjoint
equation. For the hard reset, if the limit cycle crosses the threshold at \theta T \approx 3\pi /2 (veq \approx 0), v
and Zv are out of phase by \approx \pi 

2 , resulting in an odd interaction function H \approx sin. Any phase
shift in the PRC away from this produces a corresponding shift of the interaction function,
introducing a nonzero even component. This can occur if veq shifts away from 0, or from the
soft reset boundary condition phase shift \alpha .

A more geometrical perspective on the relative phase of the limit cycle and PRC is through
the concept of dynamical shear, variation of angular velocity with radial displacement from a
limit cycle. In a model without shear, perturbations perpendicular to the cycle do not cause
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phase shifts, so the limit cycle is parallel to the (vector) PRC. This is close to the condition
that components of the limit cycle and PRC be \pi 

2 out of phase, and tends to lead to an odd
interaction function for diffusive coupling. For instance, in the Stuart--Landau oscillator, a
minimal model for shear about a limit cycle, the shear term in the dynamics directly scales a
cosine term in the interaction function [4]. In the resonate-and-fire model, although there is no
shear in the linear subthreshold dynamics, the effect of the threshold shifts the orientation of
the vector PRC relative to the limit cycle exactly like shear in the Stuart--Landau oscillator.
This effective ``reset-induced shear"" is caused by perturbed trajectories on one side of the
limit cycle crossing threshold earlier than those on the other side. In the soft reset case, this
effect also depends on the geometry of the reset manifold. We can assess the validity of this
explanation by evaluating a condition for no shear in the resonate-and-fire model. Radial
perturbations have no effect on phase when the PRC is perpendicular to the radial direction,
or parallel to the PRC,

(6.6) Z (t) \propto dx

dt
(t) .

In Figure 6.4, we show condition (6.6) for zero reset-induced shear as a dotted line. We see
that this intuition breaks down in the negative reset regime, where the odd component is
extremely small. Otherwise, the condition closely approximates \beta = 0, with small variations
that result from effects of the discontinuities in v and Zv not accounted for in this analysis.

7. Discussion. We applied the theory of weakly coupled oscillators to study the synchro-
nization of resonate-and-fire neurons coupled by electrical synapses. The use of a minimal
hybrid model to capture a range of post-spike subthreshold dynamics allowed many conclu-
sions to be established analytically. We calculated the phase reduction of the resonate-and-fire
model neuron using the adjoint method for the PRC of hybrid models, following Shirasaka,
Kurebayashi, and Nakao [98] and Park et al. [87]. We also presented a simplified derivation
of their technique. We found that the post-spike reset voltage determines a potentially strong
contribution of the resonant subthreshold fluctuations to synchronization, in addition to the
synchronizing effect of the spike. We also showed that, despite having no effect on coupled
pairs, effects arising from the reset (i.e., reset-induced shear) have the potential to impair
synchronization in certain network configurations.

7.1. Synchronization of electrically coupled resonate-and-fire oscillators. Our analysis
focused on the resonate-and-fire oscillator as an idealized model to study synchronization of
electrically coupled resonant neurons with a wide range of post-spike dynamics. The phase
reduction technique allowed us to separate the interaction function into components from
spiking and subthreshold voltage fluctuations, dissecting their distinct contributions to syn-
chronization. We focus primarily on the subthreshold contribution, which varies strongly with
the parameters of the reset. In coupled pairs and other networks with extensive symmetry,
synchronization is solely determined by the odd component of the interaction function. For
the electrically coupled resonate-and-fire model, the subthreshold contribution to this odd
component generally has a positive slope, promoting stable synchrony. This subthreshold
contribution is small when the reset voltage vR is strongly negative, corresponding to AHP.
A stronger synchronizing contribution occurs when vR is well above threshold, corresponding
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to a plateau potential. The only significant departures from this rule are strong subthreshold
effects near the boundaries of the spiking regime, including the small region with desynchro-
nizing effects. However, the assumption of weak coupling breaks down near these bifurcations,
so this conclusion should be verified by different methods of analysis.

In our analysis of the resonate-and-fire model spike contribution, we showed that the
effect of a fast voltage spike transmitted through electrical coupling is always synchronizing,
reinforcing previous work on pulse coupling of resonant neurons [47, 64, 33, 102]. Where
the spike and subthreshold synchronizing effects oppose one another, our model predicts that
the net effect will depend linearly on the relative magnitude of the subthreshold fluctuations
and the spike. Although our model does not explore the factors determining spike size, a
more quantitative analysis of the resonate-and-fire spike effects could integrate spike size
measurements obtained from experiments or from detailed biophysical models.

Finally, we showed that in networks with sufficient asymmetry, significant reset-induced
effects on synchronization can appear. The even component of the interaction function is
often ignored in the neural context, both because analyses focus on symmetrically coupled
pairs (e.g., [70]) and because, as observed by Sakaguchi, Shinomoto, and Kuramoto [94], it
has complex ``ambivalent effects on mutual entrainment."" (However, see [61, 86].) We ana-
lyze three-cell networks of generic phase oscillators to show how the even component has the
potential to oppose synchrony, especially when large enough to dominate over intrinsic fre-
quency heterogeneity. In the electrically coupled resonate-and-fire model, the even component
varies strongly with the equilibrium voltage or applied current, potentially interfering with
the subthreshold synchronizing effect in parts of the positive reset regime. In general, any
phase shift of the interaction function will introduce an even component; our derivation of
the adjoint method for hybrid model PRCs clarifies a mechanism for such phase shifts linked
to the post-spike reset. The boundary condition for the hybrid PRC determines the phase
shift, dependent on the reset map (hard or soft reset) and on the geometry of the trajectory,
threshold, and reset manifold. We characterize this effect as ``reset-induced shear"": a phase
shift results when trajectories on one side of the limit cycle cross threshold and are reset ahead
of the limit cycle trajectory.

7.2. Comparison of resonator and integrator neurons. Taken as a whole, our results
show that subthreshold resonance of model neurons can have a significant synchronizing effect
in electrically coupled networks, by enabling significant post-spike voltage fluctuations not
typically found in integrator neuron dynamics. Previous work on single-variable integrate-
and-fire models has found that the subthreshold effect of electrical coupling tends to oppose
synchrony [69, 89]. Because the reset voltage must be below threshold, the effect of the
reset is desynchronizing [70] and tends to dominate the small synchronizing effects of other
subthreshold fluctuations. Thus, in simple integrator models synchronization must rely on
transmission of the spike only, as with the resonate-and-fire model in the more integrator-like
AHP regime. The observation that electrically coupled resonator neurons may additionally
rely on continuous subthreshold coupling to synchronize may help explain the loose correlation
across brain regions between resonant properties of neurons and the prevalence of electrical
synapses found in experiments [51, 88].

We found that the subthreshold contribution to synchrony is strongest in the plateau po-
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tential regime. Since the PRC is not dramatically different between the plateau and AHP
regimes, our analysis suggests that the subthreshold synchronizing effect of resonance is me-
diated primarily by the temporal extent of the voltage fluctuations. In the plateau regime
the subthreshold voltage waveform extends close to a full sinusoidal cycle, providing greater
opportunity for exchange of current. This synchronizing effect likely extends beyond our
resonate-and-fire analysis to the electrical coupling of other resonator neurons. Experimen-
tal results show plateau potentials in resonant neurons with widespread electrical coupling
in the inferior olive [72, 75], suggesting a potential synchronizing effect of the plateau. Syn-
chronization of subthreshold oscillations in the absence of spiking [71] may also rely on a
similar mechanism. Our predictions concerning resonance and subthreshold effects are di-
rectly testable experimentally, using pharmacological manipulation of resonant properties or
dynamic clamp techniques to perturb and test single neurons and circuits.

We note, however, that integrator versus resonator is not a strict classification and does
not always correspond directly with synchronization properties, despite the general trends
observed. Although type I excitability (associated with a saddle-node on invariant circle
(SNIC) bifurcation), type I PRCs (Zv strictly positive), and the integration of input are
often taken as loosely equivalent properties, Ermentrout, Glass, and Oldeman [39] clarified
that systems near a SNIC bifurcation can have type II PRCs, with strong negative lobes.
Additionally, Dodla and Wilson [28], analyzing synchrony based only on the shapes of the PRC
and voltage fluctuations, emphasize that the type of PRC alone is insufficient to determine the
synchronization of electrically coupled oscillators. Our work reinforces these results, showing
that a resonator model can in certain regimes have integrator-like properties, both in the PRC
and in the interaction function and synchrony.

7.3. Synchronization of hybrid model neurons. The shift in perspective to discontin-
uous hybrid model dynamics enables insights not possible with biophysical models, cleanly
separating distinct components of the electrical coupling effects. However, relating these re-
sults back to phenomena in more realistic models is critical for understanding the broader
implications, especially where the two representations seem to diverge. The discontinuous
hybrid model PRC leads to a spike interaction function that is discontinuous at the origin,
whereas estimates of the (infinitesimal) PRCs from real neurons or biophysical models are
continuous and approximately zero at the instant of spiking. However, if we smooth a hybrid
neuron PRC (or measure the finite-perturbation direct PRC; see Figure A.1a), the negative
jump translates to a continuous peak skewed ``rightward,"" to the latter portion of the PRC
closely preceding the spike [70]. Realistic PRCs generally show this rightward skew, which
gives a synchronizing positive slope to the interaction function, matching the synchronizing
effect of the positive resonate-and-fire discontinuity. The skew of the PRC has been shown to
vary with adaptation in a range of models and experiments [33], including in hybrid models
[89, 64], related to the effects of resonance and reset on the discontinuity in our study. Future
work can bridge the gap between hybrid and continuous models by further exploring shared
features such as skew in the PRC, as well as considering the effects of wider spikes along with
the hybrid model dynamics. To accomplish this will require a careful treatment of the small
spike width and instantaneous reset limits. Our assumption of no current exchange during the
spike, for example, could be replaced by the more realistic case of low susceptibility following
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from the model dynamics.
For the subthreshold effects of electrical coupling, the interaction function depends on

both the PRC and the limit cycle, allowing for significant variation in both odd and even
components to be captured in the simple resonate-and-fire model. Our work reinforces ob-
servations that subthreshold electrical coupling effects can vary widely based on intrinsic
properties in both hybrid [89, 23] and biophysical models [59, 18, 74], and also emphasizes
additional variability in the even component through the reset-induced shear effect. Although
the hard versus soft reset distinction does not have a direct analogue in biophysical models,
the fact that our resonate-and-fire results are unchanged for these two limiting cases suggests
that they hold for other reset maps in this range---even nonlinear reset maps. Our analysis
techniques could be directly extended to explore these general reset properties in more depth,
potentially linking them back to features of biophysical models in scenarios where they do
have direct effects.

Given the many advantages of hybrid models for both analytical understanding and com-
putational efficiency, knowing their limits is critical, but attempts at derivations from more
complex biophysical models are challenging and typically give results only for narrow cases
[58, 52]. Several studies instead address direct validation of dynamic properties, comparing
input response [100, 11], spiking transitions [31], or network spiking dynamics [48] between
hybrid and biophysical models. Phase reduction can also provide a locus for such compari-
son, since detailed models can be phase-reduced computationally, translating them into the
same ``language"" as our study of the resonate-and-fire model. Our separation of spike, sub-
threshold, and reset effects can also provide insight into biophysically derived phase mod-
els, in terms of sets of ion channels that tend to be active in specific segments of the limit
cycle, e.g., sodium and potassium for spiking dynamics, slow potassium currents and the
hyperpolarization-activated HCN channel for subthreshold dynamics, and calcium-activated
currents (KCa or CAN) for post-spike reset dynamics. Our conclusions regarding the syn-
chronization of resonant neurons can thus be verified and extended by comparisons with the
computational phase reduction of detailed biophysical models and with the empirical phase
response analysis of real neurons.

Appendix A. Supplementary analysis and figures.

A.1. Resonate-and-fire and biophysical model PRC comparison. Here we provide ad-
ditional comparison between the resonate-and-fire model with varying reset parameters and
a range of biophysical models exhibiting distinct post-spike dynamics. A corresponding com-
parison of voltage trajectories is shown in Figure 2.1. We calculate the PRCs and electrical
coupling interaction functions of all models, illustrating that the resonate-and-fire model cap-
tures the essential synchronization properties of the more detailed models. The results are
shown in Figure A.1. The cortical cell type models analyzed (left and center) were introduced
by [90] to capture general electrophysiological classes observed across many different cortical
and thalamic cell types, including electrically coupled networks of inhibitory cortical interneu-
rons [45] and of thalamic reticular cells [43]. The plateau potential example shown (right) is
a model from the inferior olive, which also shows widespread electrical coupling [24].

The results in Figure A.1 illustrate that the resonate-and-fire model captures a wide
range of post-spike and subthreshold dynamics along with the essential trends in the PRC
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Figure A.1. Comparison of phase reduction between resonate-and-fire and biophysical models. Models
correspond to cortical cells of fast-spiking (left) and bursting (center) electrophysiological classes, and inferior
olive neurons (right). (a), (c) Resonate-and-fire model PRCs Zv (t) (solid), along with finite-perturbation direct
PRC (dashed), and interaction functions H (\phi ). (b), (d) Biophysically detailed model (finite-perturbation) PRCs
and interaction functions. Resonate-and-fire model parameters (veq, v0, w0) from left to right: ( - 1,  - 1,  - 1.2),
(0, 0, 1), (2, 0, 1). \lambda = 0.1 for all.
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that accompany these changes. Specifically, although details of relative amplitude are not
perfectly matched for all examples, note that the trends in the relative size of the positive
and negative lobes of the PRC match closely. The H-functions match extremely well for all
examples, showing that the features missed by the PRC of the resonate-and-fire model are
not essential in determining synchronization in the weak coupling regime.

Computational methods for biophysical comparison. The code for cortical models [90] was
obtained from ModelDB [76] (accession number 123623) and simulated in NEURON [16, 50].
Parameters were set as specified for fast-spiking interneurons (IN), with 0.5 nA current input
(left); and repetitive bursting (IBR), with 0.15 nA current input (center). The olivary model
was implemented and simulated in MATLAB (R2016a) according to the equations and default
parameters from [24].

Finite-perturbation phase response curves were calculated following the direct method as

ZV (t) =
\tau (\=x (t)) - \tau (\=x (t) + \Delta V )

\Delta V
,

where \tau (x) indicates the time to spiking for a trajectory starting in state x, with the dif-
ference evaluated between the regular spiking limit cycle \=x (t) and a trajectory perturbed at
time t by an amount \Delta V . For the resonate-and-fire model, perturbations were direct shifts in
voltage, while for biophysical models, perturbations were implemented as current pulses of 1
ms duration. Spike times were recorded at each upward crossing of a 0 mV threshold. Inter-
action functions for the biophysical models were computed using the direct PRCs, according
to (3.12), assuming linear voltage coupling with a fixed conductance.

A.2. Connection to Shirasaka, Kurebayashi, and Nakao [98]. Here we will demonstrate
that the boundary condition (3.14) for the hybrid model PRC across the reset discontinuity,
which we derived in section 3.4, matches the result derived by Shirasaka, Kurebayashi, and
Nakao [98] following techniques from nonsmooth dynamical systems theory. The primary
difference between the two results is that we present N  - 1 boundary conditions for a reset
map R defined on the (N  - 1)-dimensional threshold manifold, while Shirasaka, Kurebayashi,
and Nakao defined a reset map \Phi in N dimensions (on an open neighborhood of the threshold)
and presented N distinct boundary conditions for the adjoint problem. We show here that the
N  - 1 conditions corresponding to our result match exactly, and that the remaining condition
simply enforces the normalization (3.9) (regardless of the definition of \Phi off the threshold
manifold).

Their result is formulated in terms of the saltation matrix C,

(A.1) Z
\bigl( 
T - \bigr) = CTZ

\bigl( 
T+
\bigr) 
,

(A.2) C = D\Phi  - M.

This definition is further expanded in terms of the monodromy matrix M ,

M =
\bigl( 
D\Phi f

\bigl( 
T - \bigr)  - f

\bigl( 
T+
\bigr) \bigr) \^vT

fv (T - )
,
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where fv is the v-component of the dynamics, \^v is a v-direction unit vector, and T - and T+

are the left and right limits of the boundary crossing. The Jacobian D\Phi corresponds to our
directional derivatives DuR along the threshold manifold. The row space of matrix M is the \^v
direction only (perpendicular to the threshold), so for any component Zi along the threshold,
M does not contribute to the boundary condition and (A.1) reduces to our result (3.14).

(A.3) Zi

\bigl( 
T - \bigr) = Di\Phi 

TZ
\bigl( 
T+
\bigr) 
= DiR

TZ
\bigl( 
T+
\bigr) 
.

The remaining v-component boundary condition from (A.1) can be shown to simply en-
force the normalization condition (3.9). We first evaluate this final component,

Zv

\bigl( 
T - \bigr) = 1

fv (T - )

\Bigl( 
fv
\bigl( 
T - \bigr) Dv\Phi  - D\Phi \cdot f

\bigl( 
T - \bigr) + f

\bigl( 
T+
\bigr) \Bigr) 

\cdot Z
\bigl( 
T+
\bigr) 
.

We then expand (D\Phi f (T - )) \cdot Z (T+) as a sum over components \Sigma N
i=1fi (T

 - )Di\Phi \cdot Z (T+).
If the Nth term is the v-component fv (T

 - )Dv\Phi \cdot Z (T+), the remaining N  - 1 components
along the threshold reduce to \Sigma N - 1

i=1 fi (T
 - )Zi (T

 - ) according to (A.3).

fv
\bigl( 
T - \bigr) Zv

\bigl( 
T - \bigr) = \Bigl( fv \bigl( T - \bigr) Dv\Phi  - fv

\bigl( 
T - \bigr) Dv\Phi  - \Sigma N - 1

i=1

\bigl( 
fi
\bigl( 
T - \bigr) Di\Phi 

\bigr) 
+ f

\bigl( 
T+
\bigr) \Bigr) 

\cdot Z
\bigl( 
T+
\bigr) 
,

fv
\bigl( 
T - \bigr) Zv

\bigl( 
T - \bigr) =  - \Sigma N - 1

i=1 fi
\bigl( 
T - \bigr) Zi

\bigl( 
T - \bigr) + f

\bigl( 
T+
\bigr) 
\cdot Z
\bigl( 
T+
\bigr) 
,

f
\bigl( 
T - \bigr) \cdot Z \bigl( T - \bigr) = f

\bigl( 
T+
\bigr) 
\cdot Z
\bigl( 
T+
\bigr) 
.

Thus, we see that the final boundary condition does not depend on the specific definition
of the reset map \Phi off the threshold manifold and simply enforces that the normalization
condition f \cdot Z = 1 holds across the reset.

A.3. PRC phase shift for soft reset. The general form of the resonate-and-fire PRC is

Zv (t) =
A

r0
e\lambda t cos (t - T + \alpha ) , Zw (t) =

A

r0
e\lambda t sin (t - T + \alpha ) .

The soft reset boundary condition determines the phase shift \alpha as follows:

Zw

\bigl( 
T - \bigr) = Zw

\bigl( 
0+
\bigr) 
,

e\lambda T sin (\alpha ) = sin (\alpha  - T ) ,

sinT cos\alpha =
\Bigl( 
cosT  - e\lambda T

\Bigr) 
sin\alpha ,

\alpha = arctan

\biggl( 
sinT

cosT  - e\lambda T

\biggr) 
.

We show the phase shift evaluated over the full resonate-and-fire parameter space in Fig-
ure A.2.

A.4. Subthreshold interaction function (\bfitH \bfits \bfitu \bfitb ). We present here a brief outline of the
integral for the subthreshold component interaction function,

Hsub (\phi ) =
1

T

\int T

0
Zv (t) (v (t+ \phi ) - v (t)) dt,
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Figure A.2. Phase shift \alpha of the soft reset PRC Zv for \lambda = 0.1. (Note that \alpha = 0 for hard reset.)
Magenta and blue-green dashed lines indicate stability boundaries of the limit cycle for positive and negative
slope instabilities, respectively.

with the subthreshold voltage limit cycle v from (2.4) and PRC from (4.7). To simplify this
expression, we define vd = v - veq = r0e

 - \lambda t cos (t+ \theta 0) . Because the limit cycle is discontinuous
at the threshold crossing, we must split the integral into two terms around the discontinuity,
t+ \phi < T and t+ \phi > T . The latter term is evaluated using v (t+ \phi ) = v (t+ \phi  - T ), due to
the periodicity of the limit cycle. For compactness, we also separate evaluation of the constant
term C = 1

T

\int T
0 Zv (t) vd (t) dt.

Hsub (\phi ) =
1

T

\int T - \phi 

0
Zv (t) vd (t+ \phi ) dt+

1

T

\int T

T - \phi 
Zv (t) vd (t+ \phi  - T ) dt - C

=
A

T
e - \lambda \phi 

\biggl[ \int T - \phi 

0
cos (t - T + \alpha ) cos (t+ \phi + \theta 0) dt

+ e\lambda T
\int T

T - \phi 
cos (t - T + \alpha ) cos (t+ \phi  - T + \theta 0) dt

\biggr] 
 - C

=
A

2T
e - \lambda \phi 

\biggl[ \int T - \phi 

0
(cos (\phi + \theta T  - \alpha ) + cos (2t+ \phi  - T + \theta 0 + \alpha )) dt

+ e\lambda T
\int T

T - \phi 
(cos (\phi + \theta 0  - \alpha ) + cos (2t+ \phi  - 2T + \theta 0 + \alpha )) dt

\biggr] 
 - C,

Hsub(\phi ) =
A

2T
e - \lambda \phi [(T  - \phi ) cos(\phi + \theta T  - \alpha ) + cos(\theta 0 + \alpha ) sin(T  - \phi )

+\phi e\lambda T cos(\phi + \theta 0  - \alpha ) + e\lambda T cos(\theta 0 + \alpha ) sin\phi ] - C

C =
1

T

\int T

0
Zv (t) vd (t) dt =

A

2T
(T cos (\theta T  - \alpha ) + cos (\theta 0 + \alpha ) sinT ) .
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We then simplify this expression and separate into component functions with distinct
parameter dependence.

Hsub(\phi ) =
A

2T

\Bigl[ 
cos(\theta 0 + \alpha )

\Bigl( 
e - \lambda \phi 

\Bigl[ 
e\lambda T sin\phi + sin(T  - \phi )

\Bigr] 
 - sinT

\Bigr) 
 - T cos(\theta T  - \alpha )

+e - \lambda \phi (T  - \phi )[cos\phi cos(\theta T  - \alpha ) - sin\phi sin(\theta T  - \alpha )]

+e - \lambda \phi e\lambda T\phi [cos(T  - \phi ) cos(\theta T  - \alpha ) + sin(T  - \phi ) sin(\theta T  - \alpha )]
\Bigr] 
,

Hsub(\phi ) =
A

2T

\Bigl[ 
cos (\theta 0 + \alpha )

\Bigl( 
e - \lambda \phi 

\Bigl[ 
e\lambda T sin\phi + sin (T  - \phi )

\Bigr] 
 - sinT

\Bigr) 
+cos (\theta T  - \alpha )

\Bigl( 
e - \lambda \phi 

\Bigl[ 
(T  - \phi ) cos\phi + e\lambda T\phi cos (T  - \phi )

\Bigr] 
 - T

\Bigr) 
+sin (\theta T  - \alpha ) e - \lambda \phi 

\Bigl[ 
 - (T  - \phi ) sin\phi + e\lambda T\phi sin (T  - \phi )

\Bigr] \Bigr] 
.

A.5. Slope of interaction function components. Here we evaluate the slope of each
component of the resonate-and-fire interaction function and its contribution to the slope of
the odd component of the interaction function. We expand the final result to first order in
the decay parameter \lambda . The contributions to the total slope from each component function
are scaled by the coefficients

AC1 =  - A

2
cos (\theta T  - \alpha ) , AC2 =

A

2
cos (\theta 0 + \alpha ) , AS =  - A

2
sin (\theta T  - \alpha ) .

In the calculations below, we use the following result for the slope of the odd component:

fodd (\phi ) =
1

2
(f (\phi ) - f (T  - \phi )),

f \prime 
odd (\phi ) =

1

2

\bigl( 
f \prime (\phi ) + f \prime (T  - \phi )

\bigr) 
.

C1(\phi ) = 1 - 1

T
e - \lambda \phi 

\Bigl[ 
e\lambda T\phi cos (T  - \phi ) + (T  - \phi ) cos\phi 

\Bigr] 
,

C1\prime (\phi ) =
1

T
e - \lambda \phi 

\Bigl[ 
 - e\lambda T cos (T  - \phi ) - e\lambda T\phi sin (T  - \phi ) + \lambda e\lambda T\phi cos (T  - \phi )

+ cos\phi + (T  - \phi ) sin\phi + \lambda (T  - \phi ) cos\phi 
\Bigr] 
,

C1\prime (0) =
1

T

\Bigl( 
 - e\lambda T cosT + 1 + \lambda T

\Bigr) 
,

C1\prime (T ) =
1

T

\Bigl( 
 - 1 + \lambda T + e - \lambda T cosT

\Bigr) 
,

C1\prime odd(0) = \lambda  - 1

T
cosT sinh (\lambda T ) \approx \lambda (1 - cosT ) ,
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C2(\phi ) =
1

T
e - \lambda \phi 

\Bigl[ 
e\lambda T sin\phi + sin (T  - \phi )

\Bigr] 
 - sinT

T
,

C2\prime (\phi ) =
1

T
e - \lambda \phi 

\Bigl[ 
e\lambda T cos\phi  - \lambda e\lambda T sin\phi  - cos (T  - \phi ) - \lambda sin (T  - \phi )

\Bigr] 
,

C2\prime (0) =
1

T

\Bigl( 
e\lambda T  - cosT  - \lambda sinT

\Bigr) 
,

C2\prime (T ) =
1

T

\Bigl( 
cosT  - \lambda sinT  - e - \lambda T

\Bigr) 
,

C2\prime odd(0) =
1

T
(sinh(\lambda T ) - \lambda sinT ) \approx \lambda 

\biggl( 
1 - sinT

T

\biggr) 
,

S(\phi ) =
1

T
e - \lambda \phi 

\Bigl[ 
 - e\lambda T\phi sin (T  - \phi ) + (T  - \phi ) sin\phi 

\Bigr] 
,

S\prime (\phi ) =
1

T
e - \lambda \phi 

\Bigl[ 
 - e\lambda T sin (T  - \phi ) + e\lambda T\phi cos (T  - \phi ) - \lambda e\lambda T\phi sin (T  - \phi )

 - sin\phi + (T  - \phi ) cos\phi  - \lambda (T  - \phi ) sin\phi 
\Bigr] 
,

S\prime (0) =
1

T

\Bigl( 
 - e\lambda T sinT + T

\Bigr) 
,

S\prime (T ) =
1

T

\Bigl( 
T  - e - \lambda T sinT

\Bigr) 
,

S\prime 
odd(0) = 1 - sinT

T
cosh (\lambda T ) \approx 1 - sinT

T
.

A.6. Amplitude of \bfitH \bfito \bfitd \bfitd . Here we evaluate the signed amplitude,

SA (Hodd) = sign
\bigl( 
H \prime 

odd (0)
\bigr) 
max | Hodd| = Hodd (\phi max) ,

where \phi max = arg max
0\leq \phi \leq T/2

| Hodd (\phi )| .

Just as with the slope H \prime 
odd (0), a larger positive signed amplitude implies more robust near-

synchronous phase-locking. We plot the signed amplitude of the resonate-and-fire interaction
function in Figure A.3; for comparison, see the slope of the interaction function in Figure 5.2.
The slope and amplitude are approximately equal, SA (Hodd) \approx \^H \prime 

odd (0) = T
2\pi H

\prime 
odd (0), as

expected from the Fourier approximation \^Hodd(\^\phi ) \propto sin(\^\phi ).

A.7. Spike interaction function effect \Delta \bfitH \bfits \bfitp \bfiti \bfitk \bfite . Here we assess the discontinuity of
the spike interaction function, \Delta Hspike = Hspike (0

+)  - Hspike (0
 - ) (section 5.3). We show

the spike component discontinuity evaluated over the full resonate-and-fire parameter space
in Figure A.4. We see that the discontinuity is positive and relatively constant over the
full parameter space, increasing significantly only along the boundaries of the stable spiking
regime.
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Figure A.3. Signed amplitude of Hodd, the odd component of the subthreshold interaction function, for
\lambda = 0.1. Magenta and cyan lines indicate stability boundaries of the limit cycle for positive and negative slope
instabilities.
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Figure A.4. Discontinuity of Hspike, the spike component of the interaction function. Magenta and cyan
lines indicate stability boundaries of the limit cycle for positive and negative slope instabilities. Parameters
\lambda = 0.1, M = 0.2.
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