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Abstract. We study the dynamics of a pair of intrinsically oscillating leaky integrate-and-fire neurons (identical
and noise-free) connected by combinations of electrical and inhibitory coupling. We use the theory of weakly coupled
oscillators to examine how synchronization patterns are influenced by cellular properties (intrinsic frequency and the
strength of spikes) and coupling parameters (speed of synapses and coupling strengths). We find that, when inhibitory
synapses are fast and the electrotonic effect of the suprathreshold portion of the spike is large, increasing the strength
of weak electrical coupling promotes synchrony. Conversely, when inhibitory synapses are slow and the electrotonic
effect of the suprathreshold portion of the spike is small, increasing the strength of weak electrical coupling promotes
antisynchrony (see Fig. 10). Furthermore, our results indicate that, given a fixed total coupling strength, either
electrical coupling alone or inhibition alone is better at enhancing neural synchrony than a combination of electrical
and inhibitory coupling. We also show that these results extend to moderate coupling strengths.
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1. Introduction

Synchronous oscillatory activity has been observed in
populations of cortical neurons, and it has been sug-
gested that this activity may be important for cogni-
tion and sensory information processing. However, the
functional significance of synchrony remains a subject
of debate (see reviews in Neuron vol. 24, 1999). Never-
theless, it behooves us to try to uncover the mechanisms
underlying these oscillations. An understanding of how
and when synchronous oscillations arise could provide
insight into their function.

GABAergic interneurons appear to be critically in-
volved in synchronous population activity that has
been observed both in vivo and in vitro (see McBain
and Fisahn, 2001; Ritz and Sejnowski, 1997; Buzsáki
and Chrobak, 1995). Although some rhythmic activ-

ity seems to rely on the interaction of inhibitory in-
terneurons and excitatory principle cells (Fisahn et al.,
1998; Buhl et al., 1998), synchronized spontaneous
activity has also been shown to exist in networks
formed exclusively of interneurons (Beierlein et al.,
2000; Whittington et al., 1995, 1997). This is consis-
tent with theoretical studies that have demonstrated
that, contrary to traditional dogma, inhibitory cou-
pling can act to synchronize the activity of oscil-
latory neurons under certain conditions, e.g. when
synapses are sufficiently slow (van Vreeswijk et al.,
1994; Wang and Buzsáki, 1996; Wang and Rinzel,
1992). Modeling work however has demonstrated that
mild heterogeneity can sometimes destroy the ability
of inhibition to produce synchronized activity (White
et al., 1998; Wang and Buzsáki, 1996; Golomb et al.,
1994).
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Recently investigations have revealed that many lo-
cal interneuronal networks throughout the brain display
electrical coupling through gap junctions (see Galarreta
and Hestrin, 2001a). There are different subpopula-
tions of interneurons, and it has been found that the
electrical coupling is predominantly between cells of
the same subpopulation (Gibson et al., 1999; Beierlein
et al., 2000; Amitai et al., 2002). This suggests that in-
terneurons could be organized into functional groups
of cells. Traditionally, electrical coupling has been
thought to promote synchrony, and indeed electrical
coupling seems to induce synchrony in some iso-
lated networks of cortical interneurons (Beierlein et al.,
2000; Michelson and Wong, 1994; Benardo, 1997;
Traub, 1995; Traub et al., 2001). However, weak elec-
trical coupling can sometimes foster antisynchronous
activity as well (Chow and Kopell, 2000; Skinner et al.,
1999; Han et al., 1995; Sherman and Rinzel, 1994).

Some interneuronal networks, such as networks of
fast-spiking interneurons, are extensively connected by
both inhibition and electrical coupling (Galarreta and
Hestrin, 1999; Gibson et al., 1999). An exact role for
combined electrical and inhibitory coupling is yet to be
determined. It has been suggested that the presence of
electrical coupling between interneurons could add ro-
bustness to inhibition-induced synchrony (White et al.,
1998; Traub et al., 2001). Cell-pair recordings have
lead to the suggestion that inhibition and electrical cou-
pling in interneuronal networks act synergistically to
enhance neuronal synchronization of fast-spiking in-
terneurons (Tamás et al., 2000). Furthermore, a mod-
eling study has shown that electrical coupling can sta-
bilize bursting activity in mutually inhibiting cell-pairs
(Skinner et al., 1999). However, as mentioned above,
electrical coupling can foster antisynchronous activity,
and recurrent inhibition leads to antisynchronous ac-
tivity when synaptic dynamics are sufficiently rapid.
Thus, a global picture of how the interaction of these
two coupling modes affect the network dynamics re-
mains elusive. It is unclear what circumstances allow
synchrony to arise, and what advantages, if any, com-
bined coupling has over either electrical or inhibitory
coupling alone.

Here, we study pairs of intrinsically oscillating leaky
integrate-and-fire (LIF) cells connected by reciprocal
inhibition and electrical coupling. Phase-locking pat-
terns in the cell-pairs are systematically examined over
a wide range of intrinsic frequencies and coupling pa-
rameters. The ultimate goal of our work is to build a
qualitative framework for understanding how combi-

nations of electrical and inhibitory coupling affect dy-
namics in neuronal networks. We focus on cell-pairs,
because in vitro cell-pair recordings (Gibson et al.,
1999; Galarreta and Hestrin, 1999; Tamás et al., 2000)
provide a direct experimental analog to our model (see
Discussion). We can therefore make experimentally
testable predictions using the two cell model.

In the section entitled “Leaky integrate-and-fire
model for coupled cells” (Section 2), we provide a
thorough description of the LIF cell-pair model and
describe the basic types of behavior that the model ex-
hibits. In “Weak coupling” (Section 3), we introduce
the basic concepts of the theory of weakly coupled
oscillators and apply the theory to obtain the phase-
locking properties of LIF cell-pairs with weak inhibi-
tion alone, weak electrical coupling alone and combi-
nations of two coupling modes. The principle results of
the paper are contained within Fig. 10. We show that the
results obtained for weak coupling extend to cell-pairs
with moderate coupling in “Beyond weak coupling”
(Section 4). Finally, in the Discussion (Section 5), we
summarize the results of the paper, discuss their impli-
cations, and make predictions for in vitro experiments
on cell-pairs connected by inhibitory and electrical
coupling.

2. Leaky Integrate-and-Fire (LIF) Model
for Coupled Cells

In this section, we describe the intrinsic dynamics and
the coupling terms of an LIF cell-pair model. The
model includes only the basic features of spiking neu-
rons and coupling dynamics. The simplicity of the
model allows for an extensive analysis of the phase-
locking properties of the system. This analysis provides
a theoretical framework with which to understand be-
havior of more complicated models and experimen-
tal preparations, as well as the in situ physiological
system.

2.1. Model Description

Consider two identical cells connected by electrical and
inhibitory coupling. The intrinsic dynamics of individ-
ual cells are described by single-compartment leaky
integrate-and-fire (LIF) neurons:

cm
dVj

dt
= −gm(Vj − Vr ) + Iapp, j = 1, 2. (1)
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where t is time, cm is the membrane capacitance, Vj is
the transmembrane potential of the j th cell ( j = 1, 2),
Vr is the resting potential of the cells (the reversal po-
tential of the leakage current), gm is the membrane
conductance of each cell, and Iapp is a constant cur-
rent applied to the cells. When Vj reaches a threshold
potential Vth, cell j “fires a spike” and Vj is reset to the
potential Vreset.

Given the initial condition of Vj = Vreset, Vj for
isolated cells increases according to the expression

Vj (t) = Vreset + Iapp + gm(Vr − Vreset)

gm
(1 − e−t gm/cm ).

If Iapp ≤ gm (Vth − Vr ), then the cell approaches a
steady state V ∗

j = Vr + Iapp/gm ≤ Vth and never fires. If
Iapp > gm (Vth − Vr ), then Vj increases exponentially
from Vreset until Vj = Vth < Vr + Iapp/gm at which
point the cell fires, Vj is reset to Vreset and the process
is repeated. Thus, the cell undergoes periodic firing at
a frequency

f =
[

cm

gm
ln

(
Iapp − gm (Vreset − Vr )

Iapp − gm (Vth − Vr )

)]−1

, (2)

i.e. the period is T0 = 1/ f . This relationship between
Iapp and f (or T0) implies that one can always identify
increases in the current applied to a cell Iapp with in-
creases in the cell’s intrinsic firing rate f , as we will
often do in what follows. An absolute refractory period
following spikes should only have significant effects on
firing patterns at very high frequencies and therefore is
not included in the model.

Coupling terms are included as additional current
terms on the right-hand side of Eq. (1).

Chemical synaptic coupling is modeled by alpha-
function current injection (in both theoretical work
(Neltner et al., 2000; van Vreeswijk et al., 1994) and
experimental studies (Oviedo and Reyes, 2002; Stuart
and Sakmann, 1995)). Each time cell k fires, a fixed in-
hibitory postsynaptic current is injected into cell j . This
current is taken to have the shape of an alpha-function

Isyn, jk(t) = −qs S jk(t) = −qsα
2 t e−αt ,

t ≥ 0, j = 1, 2, j �= k. (3)

The parameter α is the reciprocal of the synaptic time
constant and will be used as a measure of the speed of
the synaptic dynamics (units of 1/time). The parame-
ter qs is a measure of the synaptic strength (units of
charge). The alpha functions are normalized so that the

total charge injected with each inhibitory current in-
put equals −qs . During repetitive firing, the inhibitory
postsynaptic currents sum linearly. When cell k fires
T -periodically at times t = nT , one can find an an-
alytical form for the T -periodic total synaptic current
injected into cell j by summing the resulting geometric
series

Isyn, jk(t) = −
0∑

n=−∞
qs S jk(t − nT ),

= −qs
α2

(1 − e−αT )2
e−α(t−nT )

× [(t − nT )(1 − e−αT ) + T e−αT ],

= −qs ST (t − nT ). (4)

for t ∈ [nT, (n + 1)T ], n = −∞, 0.
The effect of electrical coupling on a cell is described

by two terms. The first term is the usual ohmic resis-
tance description. The current flowing from cell k to
cell j via electrical coupling is gc (Vk − Vj ), where gc

is the electrical coupling conductance (Gibson et al.,
1999; Galarreta and Hestrin, 1999; Chow and Kopell,
2000; Usher et al., 1999; Traub, 1995).

The second term in the description of electrical cou-
pling accounts for the effect of the suprathreshold por-
tion of the spike. Integrate-and-fire models usually do
not include this portion of spike explicitly, i.e. once
the transmembrane potential reaches threshold, it is re-
set to the more hyperpolarized value Vreset. However, it
was recently shown that the electrotonic effect of the
suprathreshold portion of spikes can be important in
determining phase-locking patterns (Chow and Kopell,
2000), and therefore it must be included in any adequate
model of electrically coupled cells. In our model, the
effect is accounted for by injecting a delta-function cur-
rent pulse gcβδ(t) into a cell each time a cell coupled to
it fires. This instantaneously kicks the membrane po-
tential of the cell towards threshold by a fixed amount,
gcβ. The scaling-factor β scales the total charge in-
jected with each delta-function current pulse. We will
use β as a measure of the magnitude of the spike effect.

This method of modeling the effect of the
suprathreshold portion of the spikes can be justified
as follows. Consider two cells, cell k and cell j , that
are electrically coupled with a coupling strength gc.
Spikes in a cell generally have a characteristic shape
and because membrane conductance is high during
a spike, weak to moderate coupling to another cell
should have a negligible effect on this characteris-
tic shape of the spikes. Therefore, we can take the
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membrane potential of the cells during a spike to be
Vspike(t). It is usually a reasonable assumption that
Vspike(t) � Vth ≥ Vj (t) ≥ Vreset during most of the spike.
This implies that if cell k fires while cell j is subthresh-
old, then coupling current flowing from cell k to cell
j is

Ispike(t) = gc [Vspike(t) − Vj (t)] ∼ gc [Vspike(t)].

The total coupling current (i.e. charge) flowing from
cell k to cell j during the spike is obtained by integrat-
ing Ispike over the width of the spike (w)

Itot =
∫ w

0
Ispike(t) dt = gc

( ∫ w

0
Vspike(t) dt

)
= gcβ.

If the spike is sufficiently narrow, then this current is
delivered almost instantaneously. Thus, the coupling
current during a spike can be approximated by gcβδ(t).

It is useful to nondimensionalize the model equa-
tions. We rescale the membrane potential as v =
(V − Vreset)/(Vth − Vreset), so that vreset = 0 and
vth = 1, and we rescale time by the membrane time con-
stant cm/gm , t̄ = t/(cm/gm). After rescaling, we can
collect parameters into groups and name the groups:
ᾱ = α cm/gm , ḡs = qs/(cm (Vth −Vreset)), ḡc = gc/gm ,
β̄ = β/(Vth − Vreset), and I = (Iapp + gm (Vr −
Vreset))/(gm (Vth − Vreset)). Thus, the number of param-
eters is reduced from nine parameters to five dimen-
sionless parameters. It is important to note that when
we examine the dependence of phase-locking patterns
on I and the four coupling parameters (ḡs , ᾱ, ḡc, β̄),
the dependence of all nine dimensional parameters are
being studied, although this will not be explicitly stated
elsewhere.

For convenience, we drop the bars over the parame-
ters and time, i.e. in what follows, t , α, β, gs , gc corre-
spond to the dimensionless quantities.

The resulting dimensionless equations describing
the two-cell system are




dv1

dt
= −v1 + I − gs

0∑
n=−∞

s12(t − tn,2)

+ gc

[
(v2 − v1) + β

0∑
n=−∞

δ(t − tn,2)

]

dv2

dt
= −v2 + I − gs

0∑
n=−∞

s21(t − tn,1)

+ gc

[
(v1 − v2) + β

0∑
n=−∞

δ(t − tn,1)

]
(5)

where tn, j are the past firing times of the cell j and
gss jk(t − tn, j ) is the dimensionless inhibitory postsy-
naptic current injected into cell j when cell k fires at
time tn, j , with s jk(t) = α2te−αt . (Note that sT (t) is the
dimensionless version of ST (t) from Eq. (4)). The pa-
rameters gc and gs are the dimensionless strengths of
the electrical and inhibitory connections respectively;
α is a measure of the speed of the synapse, β scales the
effect of the suprathreshold portion of the spike and I
is the dimensionless applied current.

2.2. Basic Phase-Locking Behavior:
Numerical Simulations

The phase-locking properties (or synchronization prop-
erties) of this LIF model with either inhibitory or elec-
trical coupling alone follow behavior that has been pre-
viously described (van Vreeswijk et al., 1994; Chow
and Kopell, 2000). Traditionally, it has been assumed
that inhibitory synaptic coupling pushes neurons to-
wards antisynchrony. For sufficiently rapid synaptic
dynamics, this is usually the case. Figure 1 (left) shows
an example of this in a numerical simulation of the LIF
model with I = 1.1, α = 3, gs = 0.2 and gc = 0.0.
However, if the time scale of the synapses is sufficiently
slow with respect to the intrinsic oscillation period
of the individual cells, inhibition can act to synchro-
nize oscillatory activity (van Vreeswijk et al., 1994;
White et al., 1998). This is seen for the LIF model with
I = 1.6, α = 3, gs = 0.2 and gc = 0.0 in Fig. 1 (right),
i.e. the intrinsic frequency of the cells in Fig. 1 (right)
is higher than that in Fig. 1 (left)).

Electrical coupling is usually thought to synchro-
nize activity, however it has been shown that electri-
cal coupling can induce stable antisynchronous activ-
ity in some cases (Chow and Kopell, 2000; Han et al.,
1995; Sherman and Rinzel, 1994). Numerical simula-
tions demonstrate that stable synchronous and antisyn-
chronous states can exist in LIF cell-pairs with weak
or moderate electrical coupling as shown in Fig. 2. The
simulations suggest that synchrony occurs at high fre-
quency and antisynchronous is more prevalent at low
frequencies.

Simulated dynamics for the LIF model with com-
bined electrical and inhibitory coupling show qualita-
tively similar behavior to that with either type of cou-
pling alone: synchrony at sufficiently high frequency
and antisynchrony at sufficiently low frequency.

Our goal is to characterize how synchronization pat-
terns depend on the cells’ intrinsic frequency and the
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Figure 1. Response patterns of an LIF cell pair coupled by reciprocal inhibition alone: Simulated time courses of transmembrane potential (v)
and synaptic currents Isyn are shown for the LIF cell-pair model (Eqs. (5)) with “moderate” inhibitory coupling, gs = 0.2, α = 3. The black and
grey curves in the v vs time plots correspond to the membrane potentials of cell 1 and cell 2, v1 and v2, respectively. The black and grey curves
in the Isyn vs time plots correspond to the synaptic currents in cell 2 due to the firing of cell 1, Isyn,21, and the synaptic currents in cell 2 due to
the firing of cell 1, Isyn,12, respectively. Initial conditions are v1(0) = 0.4, v2(0) = 0.0, Isyn,12(0) = 0.0, Isyn,21(0) = 0.0. (left) When I = 1.1,
cells have a relatively low intrinsic frequency and the cells can exhibit stable antisynchronous activity. (right) When I = 1.6, there is a relatively
high intrinsic frequency and the system evolves to a synchronous state.

Figure 2. Response patterns of an LIF cell pair coupled by electrical coupling alone: Simulated time courses of transmembrane potential (v)
are shown for the LIF cell-pair model (Eqs. (5)) with “moderate” electrical coupling, β = 0.2, gc = 0.2. The black and grey curves correspond
to the membrane potentials of cell 1 and cell 2, v1 and v2, respectively. Initial conditions are v1(0) = 0.59, v2(0) = 0.0. (left) When I = 1.1,
cells fire at a relatively low intrinsic frequency and the cells can exhibit stable antisynchronous activity. (right) When I = 1.6, there is a relatively
high intrinsic frequency and the system evolves to a synchronous state.

coupling parameters, and ultimately how combined
electrical and inhibitory coupling influence these pat-
terns. Only a limited amount of information can be
obtained using direct numerical simulation of the full
LIF model (Eq. (5)). We therefore turn to the theory of
weakly coupled oscillators (Kuramoto, 1984).

3. Weak Coupling

The theory of weakly coupled oscillators has often
been used to analyze networks of neurons coupled by

chemical synapses, e.g. Kopell (1988), Ermentrout and
Kopell (1991), Grannan et al. (1993), Hansel et al.
(1995), Golomb et al. (2001), and Ermentrout and
Kleinfeld (2001). Using this theory enables one to
mathematically reduce equations describing a neuronal
network to a level that allows extensive analytical in-
sight. The theory shows that, in the limit of weak cou-
pling, the state of each oscillating cell is completely
described by its phase in the oscillation, and it yields
a system of equations that governs the evolution of
the phases in time. This system of equations, known
as a phase model, allows one to easily determine the
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phase-locked states of the coupled-cell network and the
stability of these states.

Although the results from the theory are quantita-
tively accurate only for sufficiently weak coupling, the
qualitative picture generated by the results very often
extends to moderate coupling. In Section 4, we will
show that this is indeed the case for the LIF model.
Moreover, we present our results in a general setting,
but our primary intention is to build a framework that
is applicable to pairs of cortical interneurons (Gibson
et al., 1999), and both electrical and inhibitory coupling
between individual cortical interneurons appear to be
weak (Gupta et al., 2000; Gibson et al., 1999; Galarreta
and Hestrin, 1999). Therefore, interneuron pairs in the
cortex lend themselves well to the application of the
theory of weakly coupled oscillators and one does not
need to push very far to get relevant results.

In Section 3.1, we give a brief, sometimes loose, but
hopefully instructive, description of how phase models
are obtained using the theory of weakly coupled oscil-
lators. (A similar intuitive description of the theory can
be found in Ermentrout and Kleinfeld (2001); for a de-
tailed treatment of the theory, see Kuramoto (1984)).
In Sections 3.2–3.6, we apply the theory to coupled
LIF cell-pairs, and we show how phase-locking prop-
erties of the LIF cell-pairs depend on parameters for
three different coupling conditions: inhibition alone,
electrical coupling alone, and a combination of these
two coupling modes.

Those familiar with the theory of weakly coupled os-
cillators and phase models may want to skip Section 3.1
and move directly to the subsequent sections.

3.1. Reduction to a Phase Model

Consider a pair of weakly coupled cells. Assume that
the uncoupled cells intrinsically oscillate with a pe-
riod T and that a strongly attracting limit cycle, vLC(t),
0 ≤ t ≤ T , underlies the oscillations. Because the cou-
pling is weak, the intrinsic dynamics of the cells dom-
inate the dynamics of the coupled-cell system. Each
coupled cell strongly adheres to its intrinsic limit cycle
vLC and has a period very close to its intrinsic period T .
The state of each cell is therefore well described solely
by its position or “phase” on the limit cycle, where the
phase of cell j is defined as [(t/T + φ j ) mod 1] with
0 ≤ t ≤ T, 0 ≤ φ j ≤ 1. Over each cycle of the oscilla-
tions, the weak interactions between the cells can pro-
duce small changes in the relative phases of the cells,
i.e. φ j = φ j (t). Although these changes are negligible

over a single cycle, these small effects can slowly accu-
mulate and, over many cycles, produce substantial ef-
fects on the relative firing times of the cells. Eventually,
the coupling interactions can lead to specific timing
relationships between the cells such as synchrony (in-
phase behavior) or antisynchrony (antiphase behavior).
In this subsection, we will derive an equation describ-
ing the slow dynamics of the phase difference between
coupled cells, φ j (t) − φk(t).

In order to understand how weak coupling interac-
tions affect the phases of the cells, let us first consider
the response of an isolated cell to an abrupt square cur-
rent pulse. In general, a perturbation of this sort can
cause an advance or a delay in the phase of the cell.
The magnitude and sign of this “phase shift” depends
on the amplitude A and the duration t̃ of the stimulus,
as well the time in the cycle at which the stimulus was
delivered, t̃ . The phase resetting curve quantifies this
relationship, giving the phase shift φ as a function of
t̃ for a fixed A and t̃ . For sufficiently small and brief
stimuli, the phase resetting curve depends linearly on
the amplitude and the duration of the stimulus. That is,
the phase shift is

φ = Z (t̃) A t̃, 0 ≤ t̃ < T (6)

where A t̃ is the total charge delivered to the cell by
the stimulus and Z (t̃) describes the proportional phase
shift as a function of stimulus timing, t̃ . The function
Z (t̃) is called the infinitesimal phase resetting curve; it
is also aptly known as the phase-dependent sensitivity
function.

Now let us return to the weakly coupled cells. As
stated above, weak coupling ensures that perturba-
tions due to the coupling are small. This implies that
the intrinsic dynamics of the cells dominate, therefore
v j (t) ∼ vLC (t +φ j T ) and cells fire at times (m +φ j ) T
with periods that are very close to T . The relative
phases of the cells are time-dependent (φ j = φ j (t)),
but they change on a much slower time scale than the
period T .

By simply substituting vLC (t + φ j T ) for v j (t) into
the coupling terms (see Eq. (5)), the amplitude of the
coupling current at time t̃ that cell j experiences due
its connection to cell k is found to be

P(t̃ + φ j T, t̃ + φk T )

= − gs sT (t̃ + φk T ) + gc[(vLC (t̃ + φk T )

− vLC (t̃ + φ j T )) + βδ(t̃ + φk T )].
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The presence of this coupling current for a brief time
t̃ (i.e. from t̃ and t̃ +t̃) will lead to a small advance
or delay in the timing of cell j . The magnitude of the
phase shift can be approximated simply by multiplying
the amplitude of the current, the duration of the current
and the sensitivity function Z (t̃) as in Eq. (6),

φ j = Z (t̃ + φ j T ) P(t̃ + φ j T, t̃ + φk T ) t̃ .

Dividing the above equation by t̃ , and taking the limit
t̃ → 0, we get a differential equation describing the
evolution of φ j ,

dφ j

d t̃
= Z (t̃ + φ j T ) P(t̃ + φ j T, t̃ + φk T ).

This equation can be reduced further so that the explicit
time-dependence is eliminated. Because the changes in
φ j are much slower than the time scale of T , we can
average over the full period of oscillation T holding φ j

and φk fixed and obtain an equation describing the rate
of change in φ j on a slow time scale.

dφ j

dt
= 1

T

∫ T

0
Z (t̃ + φ j T ) P(t̃ + φ j T, t̃ + φk T ) dt̃

= 1

T

∫ T

0
Z (t̃) P(t̃, t̃ − (φ j − φk)T )) dt̃

= H (−(φ j − φk)) (7)

i.e. the relative phases φ j and φk are assumed to be
fixed with respect to the integral over T in t̃ , but they
vary in t . Note that this reduction is not valid when T
is of the same order of magnitude as the time scale for
changes due to the weak coupling interactions, however
an alternative reduction can be performed in this case
(Ermentrout, 1996).

By subtracting Eq. (7) for cell 2 from that for cell 1,
a single differential equation is obtained, which de-
scribes the evolution of the phase difference between
the two coupled cells, φ = φ1 − φ2.

dφ

dt
= H (−φ) − H (φ) = G(φ). (8)

The zeros of G(φ) are steady states φ∗ of Eq. (8).
When G(φ) > 0, φ will increase and when G(φ) < 0,
φ will decrease. Thus, it is easy to see that G ′(φ∗) < 0
and G ′(φ∗) > 0 imply that the steady state φ∗ is sta-
ble and unstable respectively. Each steady state φ∗

corresponds to a phase-locked state of the coupled-
cell system (Eqs. (5)) that has a phase difference φ∗.

Steady states at φ∗ = 0 or 1 correspond to a single
fully synchronous state, whereas φ∗ = 0.5 corresponds
to an antisynchronous state. Other values of φ∗ corre-
spond to asynchronous but non-antisynchronous states.
Stability of the phase-locked states of the coupled cell
system is simply given by the stability of corresponding
steady state φ∗ with respect to Eq. (8).

3.2. Phase Model for LIF Cell-Pairs

The theory of weakly coupled oscillators can be ex-
tended to large networks and weakly heterogeneous
cells (Kuramoto, 1984; Neltner et al., 2000; Golomb
et al., 2001; Ermentrout and Kleinfeld, 2001), but for
the present we will consider only pairs of identical cells.
Furthermore, although the theory can be applied to cell
models described by any number of variables (e.g. any
conductance-based model) with a stable limit cycle os-
cillation, we will only consider the linear LIF model for
which a phase model, dφ/dt = G(φ), can be obtained
analytically. This allows one to easily see how phase-
locking depends on intrinsic frequency and coupling
parameters and can help to develop general principles
along these lines.

The phase-dependent sensitivity function Z (t) for
the LIF model (Hansel et al., 1995; Neltner et al., 2000;
Golomb et al., 2001) is

Z (t) =



et

I T
, 0 < t < T

0, t = 0, T

A derivation of Z (t) for 0 < t < T is presented in the
appendix. During the spike-and-reset phase at t = 0, T ,
Z (t) is taken to be 0. This assumes that during the spike,
the cell is not affected by external perturbations (e.g.
due to coupling). This is a reasonable assumption, be-
cause the input conductance is extremely high during
spikes, rendering the cell insensitive to external per-
turbations. If one includes an absolute refractory pe-
riod after spikes in the LIF model, then the region over
which Z (t) = 0 would extend throughout the spike
and the refractory period. Short refractory periods have
very little effect on qualitative phase-locking dynam-
ics in the LIF model, and therefore we have chosen to
collapse the absolute refractory period to zero duration.

Outside the spike (and refractory period), Z (t) for
the LIF model is strictly positive, and therefore positive
currents will always phase advance the cell. This is a
characteristic of many neuronal oscillators, especially
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at low firing rates, and is sometimes referred to as type I
phase resetting (Hansel et al., 1995; Ermentrout, 1996).
The LIF phase resetting curve is an increasing function
and it is concave up. This implies that, as v increases
towards threshold, the cell is increasingly sensitive to
perturbations and the rate of this increasing sensitivity
is itself increasing.

In dimensionless form, the periodic oscillations of
the individual LIF cells are given by vLC(t) = I (1 −
e−t ), 0 < t < T . By plugging the expressions for Z (t),
vLC(t), Isyn(t) and the spike effect (see Section 2.1) into
the equations described in the previous subsection and
integrating, we get the G-function, G(φ), for the LIF
model. In the remainder of this section, we evaluate the
G-functions for mutual inhibition alone, for electrical
coupling alone and for combined coupling. We then
analyze them to show how phase-locked states depend
on parameters.

3.3. Mutual Inhibition

Using the above expression for Z (t) and the dimension-
less version of the expression for Isyn (Eq. (4)), we can
obtain the G-function for a pair of LIF cells connected
by reciprocal inhibition:

Gs(φ) = 1

T

∫ T

0
Z (t) [sT (t − φT ) − sT (t + φT )] dt

= −gs A

I T 2(1 − α)2

{
(e−αT [(T + B)(1 − α) − 1]

− [B(1 − α) − 1])
(
eφT − e(1−φ)T

)
+ (1 − e−T )

(
eφT e(1−α)(1−φ)T

× [((1 − φ)T + B)(1 − α) − 1]

− e(1−φ)T e(1−α)φT [(φT + B)(1 − α) − 1]
)}

,

(9)

where A = α2/(1−e−αT ), B = T e−αT /(1−e−αT ) and
T = ln(I/(I − 1)). Note that the coupling strength gs

simply scales Gs(φ), therefore it does not effect steady
states or their stability. It does however affect the rate
at which the system converges to or diverges from the
steady states.

Figure 3 shows examples of Gs(φ) for three differ-
ent values of the applied current I . Note that the G-
functions are symmetric around φ = 0.5. This holds for
all G-functions considered here. The symmetry arises
because the cells are identical.

For I = 1.2 (Fig. 3 top), the stable steady state at
φ∗ = 0.5 corresponds to a stable antisynchronous state,

Figure 3. G-functions (Gs (φ)) for LIF cell-pair connected by weak
inhibition alone (α = 4.0): Gs (φ) determines the phase-locked states
of the system in the weak coupling limit (Eq. (8)). φ is the phase
difference between the cells. When Gs (φ) > 0, φ increases; when
Gs (φ) < 0, φ decreases. The zeros of Gs (φ) at φ = φ∗ are steady
states of Eq. (8) and correspond to phase-locked states with phase
difference φ∗. If G ′

s (φ∗) < 0, then the corresponding phase-locked
state is stable. If G ′

s (φ∗) > 0, then the phase-locked state is unstable.
Examples of Gs (φ) for three different values of I are shown: (top)
I = 1.2; (middle) I = 1.4; (bottom) I = 1.6. Stable synchronous
states are indicated by filled diamonds. Stable antisynchronous states
are indicated by filled circles, whereas unstable antisynchronous and
asynchronous states are indicated by open circles.

and the stable steady states at φ∗ = 0 and φ∗ = 1 cor-
respond to a stable synchronous state. There are also
unstable steady states at φ∗ = 0.05 and φ∗ = 0.95.
Thus, the system is “bistable”, having both stable syn-
chronous and stable antisynchronous states for the
same values of I and α. However, although the syn-
chronous state is stable, there is only a 10% chance
that it will be realized given a random initial phase
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difference φ(0). Note that the unstable steady states act
as separatrices, i.e. points separating the basins of at-
traction of the synchronous and the antisynchronous
states. With this in mind, it is easy to see that almost
all initial phase differences (90%) will converge to the
antisynchronous state. Thus, antisynchrony is the dom-
inant state, which concurs with the traditional view that
recurrent inhibition tends to desynchronize activity in
cells.

When I is increased to 1.4 (Fig. 3 middle), all steady
states maintain the same stability, but the unstable
steady states are closer to φ = 0.5, creating a more
balanced bistability. The basins of attraction of each
state are of comparable sizes. Given a random initial
phase difference between the cells, there is about a 50%
chance of achieving synchrony and a 50% chance of
achieving antisynchrony.

When I is further increased to 1.6 (Fig. 3 bottom),
the G-function is qualitatively different from the previ-

Figure 4. Bifurcation diagram for LIF cell-pair weakly coupled with inhibition alone: phase differences of phase-locked states φ∗ vs applied
current I or equivalently φ∗ vs intrinsic frequency f (see Eq. (2)). α = 4.0. Solid and dashed lines indicate stable and unstable states respectively.
I ∗
s indicates the critical value of I at which the antisynchronous state φ∗ = 0.5 changes stability. For I > I ∗

s , only synchronous activity is stable
(white S region), whereas for I < I ∗

s , both synchronous and antisynchronous states are stable (grey AS/S region). The filled diamonds, filled
circles and open circles indicate the stable synchronous state, stable antisynchronous state and the unstable asynchronous states respectively for
I = 1.2 (Fig. 3 (top)).

ous two examples. Only the synchronous and antisyn-
chronous states exist. Furthermore, the synchronous
state (φ∗ = 0 and 1) is stable, but the antisynchronous
state (φ∗ = 0.5) is unstable. Thus, given any initial
phase differences between the mutually inhibiting
cells, the system always approaches a synchronous
state.

An efficient way of showing how phase-locked states
depend on parameters over a range of values is by us-
ing a bifurcation diagram. The bifurcation diagrams
that are included here plot the phase difference of the
steady states φ∗ in relation to the applied current I
(and intrinsic frequency). They show how the values of
φ∗ vary with changes in I ; they also show the stabil-
ity of the steady states and the critical values at which
there are qualitative changes in behavior, i.e. bifurca-
tion points. Figure 4 shows the bifurcation diagram
for the case of pure inhibitory coupling. At sufficiently
small I , the system behaves as shown in Fig. 3 (top) for
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I = 1.2 with bistability between the synchronous state,
φ∗ = 0, 1, and the antisynchronous state, φ∗ = 0.5.
For small values of I , the unstable steady states that
define the boundaries of the domain of attraction of
φ∗ = 0.5 lie close to φ∗ = 0 and φ∗ = 1. There-
fore, the domain of attraction of φ∗ = 0.5 is large and
the antisynchronous state dominates. As I increases,
the domain of attraction of the antisynchronous state
shrinks and the antisynchronous state loses its dom-
inance. As I increases further, the synchronous state
becomes dominant, and eventually a critical value I ∗

s is
reached where the unstable steady states coalesce with
the antisynchronous state. Above this point, the previ-
ously unstable steady states do not exist and φ∗ = 0.5
is unstable. This transition is referred to as a subcritical
pitchfork bifurcation. A qualitative change in behavior
occurs at the critical value I ∗

s : for 1 < I < I ∗
s , both

the synchronous and antisynchronous states are stable
(the AS/S region); for I > I ∗

s , only the synchronous
state is stable (the S region).

The bifurcation structure described above is simi-
lar to that presented in van Vreeswijk et al. (1994),
where bifurcation diagrams for φ∗ vs α were plotted
for fixed I . Only the synchronous state is stable for
sufficiently small α (slow synaptic kinetics), whereas
both the synchronous and the antisynchronous states
are stable when α is above a critical value. In the φ∗

vs I bifurcation diagram, the influence of α is man-
ifested in the dependence of I ∗

s on α. We can obtain
the relationship between I ∗

s and α using the equation
G ′

s(φ∗ = 0.5) = 0, which is a necessary condition for
a change in stability of the steady state φ∗ = 0.5. This
relationship is shown in Fig. 5, where the location of the
pitchfork bifurcation is plotted in α, I -parameter space
as a heavy dashed curve. The curve separates α, I -
parameter space into a region where only synchrony
is stable and a region where stable synchrony and an-
tisynchrony co-exist. As α increases, I ∗

s increases, im-
plying that when inhibitory synapses are fast relative to
the cells’ intrinsic frequency, antisynchronous behav-
ior is promoted, but when synapses are slower relative
to the cells’ intrinsic frequency, synchrony is promoted.

Note that the zeros of G(φ) for excitatory synaptic
connections (gs < 0) are the same as those described
above for the inhibitory coupling case (gs > 0), how-
ever the slopes at these zeros are opposite to one an-
other. Therefore, the phase-locking structure for cells
connected by reciprocal excitatory synapses is identi-
cal to that described here except that the stability is
reversed. This situation for LIF cells coupled by exci-

Figure 5. Two parameter response diagram for LIF cell-pair cou-
pled with weak inhibition alone, I, α-parameter space: The dashed
line plots the location of the critical point I ∗

s in relation to α. (At
α = 4, I ∗

s = 1.48 as in Fig. 4). Above the curve, the synapses
are fast relative to the intrinsic frequency and both the synchronous
and antisynchronous states are stable (AS/S region, grey); Below the
curve, the synapses are slow relative to the intrinsic frequency and
only the synchronous state is stable (S region, white). As the speed
of the synapses (α) increases, I ∗

s increases, i.e. the antisynchronous
state is stable over a broader range of I for faster synapses.

tatory synapses was described by Hansel et al. (1995)
and van Vreeswijk et al. (1994).

3.4. Electrical Coupling

The G-function for electrical coupling alone is ob-
tained using the phase-dependent sensitivity function
Z (t) and the coupling current due to the electrical con-
nection between the cells (see Eq. (4)).

Gc(φ) = 1

T

∫ T

0
Z (t) gc [(vLC (t − φT ) − vLC (t + φT ))

+ βδ(t − φT ) − βδ(t + φT )] dt

=




gc
2

T
(φ sinh((1 − φ)T ) − (1 − φ)

× sinh(φT )) + gc
β

I T 2
(eφT − e(1−φ)T ),

0 < φ < 1,

0, φ = 0, 1.

(10)

Note that the coupling strength gc simply scales the G-
function. It does not affect the existence and stability
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of the phase-locked states; it only affects how fast the
system approaches or moves away from a phase-locked
state.

The term in Gc(φ) that is scaled by β accounts for
the effect of the suprathreshold portion of the spike.
This term, which is shown in Fig. 6(top), always tends
to synchronize the cells, i.e. it has a stabilizing effect
on φ∗ = 0, 1 and a destabilizing effect on φ∗ = 0.5.

Figure 6. G-functions (Gc(φ)) for LIF cell-pair coupled with weak
electrical coupling only: For all panels, dashed lines, solid lines and
dot-dashed lines correspond to I = 1.05, I = 1.15, and I = 1.3
respectively. Gc(φ) can be dissected into two parts as in Eq. (10). (top)
The portion of Gc(φ) accounting for the effect of the suprathreshold
portion of the spike with β = 0.1. This portion of the G-function
always tends to synchronize activity. (middle) The portion of Gc(φ)
accounting for the subthreshold activity (obtained by setting β =
0). This portion of the G-function always tends to desynchronize
activity. (bottom) The full G-function shown for β = 0.1 and I =
1.15. The filled diamonds, filled circles and open circles indicate
the stable synchronous state, stable antisynchronous state and the
unstable asynchronous states respectively.

The discontinuity at φ = 0, 1 is a result of the discon-
tinuity in Z (t) and the delta-function description of the
spike.

Setting β = 0 gives the G-functions for the case
when the effect of the suprathreshold portion of the
spike is omitted. G-functions with β = 0 are plotted in
Fig. 6 (middle). Counter-intuitively, the synchronous
state φ∗ = 0, 1 is unstable and the antisynchronous
state φ∗ = 0.5 is stable for all I in this case. This can
be understood in terms of the effect of the fast reset (re-
polarization) of the cells and the shape of their phase-
dependent sensitivity function Z (t). Consider two cou-
pled cells with a small phase difference. During the
slow depolarization towards threshold, the membrane
potential in the lagging cell is slightly less than that in
the leading cell. Consequently, there is a small posi-
tive (depolarizing) current in the lagging cell that flows
from the leading cell due to the electrical coupling. This
current speeds up the lagging cell and slows down the
leading cell, acting to synchronize the cells. However,
because the voltage differences are small, the electro-
tonic current is small and the synchronizing effect is
small. Once the leading cell reaches threshold, it is
immediately reset and the electrical coupling current
switches direction. Now coupling acts to retard the
progress to threshold in the lagging cell and to speed
up the leading cell. Because the potential difference be-
tween the cells is large and the sensitivity of the cells
is highest around threshold, the lagging cell is substan-
tially delayed before it fires. This effect is so strong that
it overcomes the previous advancing effect and causes
the net effect of coupling over an entire period to be
desynchronizing.

The full G-function for I = 1.15 and β = 0.1 is a
linear combination of the two corresponding curves in
Fig. 6 (top) and (middle), and it is shown in Fig. 6
(bottom). Both the synchronous and the antisyn-
chronous states are stable in this case, but if I is in-
creased above I = 1.5, only the synchronous state is
stable.

The bifurcation diagram φ∗ vs I for pure electrical
coupling with β = 0.1 is plotted in Fig. 7. Surpris-
ingly, it is qualitatively the same as that for inhibitory
coupling (Fig. 4). At high I , the only stable state is
the synchronous state, and at sufficiently low I , stable
synchronous and antisynchronous states coexist. The
antisynchronous state loses its stability via a subcriti-
cal pitchfork bifurcation at the critical value I ∗

c , which
depends upon β. By considering G ′

c(φ∗ = 0.5) = 0,
one can obtain the relationship between I ∗

c and β
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Figure 7. Bifurcation diagram for LIF cell-pair with weak electrical coupling alone: β = 0.1. Solid and dashed lines indicate stable and
unstable phase-locked states respectively. I ∗

c indicates the critical value of I at which the antisynchronous state φ∗ = 0.5 changes stability. For
I > I ∗

c , only synchronous activity is stable (white S region), whereas for I < I ∗
c , both synchronous and antisynchronous states are stable (grey

AS/S region). Note that the bifurcation diagram for electrical coupling alone is qualitatively similar to that for inhibition alone (Fig. 4).

analytically

β =
(

I ∗
c − 1

2

)
ln

(
I ∗
c

I ∗
c − 1

)
− 1. (11)

I ∗
c increases as β decreases, as is seen in Fig. 8 (dashed

line). This implies that, when the electrotonic effect of
the suprathreshold portion of spikes is weak, antisyn-
chrony persists for a larger range of intrinsic frequen-
cies. As the effect vanishes β → 0, the critical current
at which the antisynchronous state loses stability I ∗

c
goes to infinity and the unstable steady states approach
the synchronous state. This effectively leaves only the
antisynchronous state for all I (as mentioned above for
β = 0).

The bifurcation structure described in this subsec-
tion is equivalent to that described in Chow and Kopell
(2000) except in their limit of very high frequency.
Because we take the spike to be infinitely thin and
Chow and Kopell do not, our LIF model does not in-
clude the bifurcations at ultra-high intrinsic frequen-
cies, where the period is approximately twice the width

of the spikes, as seen by Chow and Kopell. This issue
is addressed further in the discussion.

3.5. Combined Electrical and Inhibitory Coupling

The electrical and inhibitory coupling currents in the
LIF model are two distinct terms in the model’s Eqs. (5).
Thus, the G-function for combined inhibition and elec-
trical coupling is simply the linear sum of the two
individual G-functions

Gsc(φ) = 1

T

∫ T

0
Z (t) (gs[sT (t − φT ) − sT (t + φT )]

+ gc[(vLC (t − φT ) − vLC (t + φT ))

+ βδ(t − φT ) − βδ(t + φT )]) dt

= Gs(φ) + Gc(φ). (12)

In the cases of either electrical coupling or inhibition
alone, the coupling strengths gc and gs do not play a role
in determining the phase-locked states or the stability
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Figure 8. Two parameter response diagram for LIF cell-pair con-
nected by weak electrical coupling alone, I, β-parameter space: The
dashed curve plots the critical value I ∗

c in relation to β (as in Eq. (11)).
For (I, β) values below the curve (AS/S region, grey), cells can
exhibit either stable synchrony or antisynchrony. For (I, β) values
above the curve (S region, white), cells can only exhibit stable syn-
chrony. As β increases, I ∗

c decreases. This implies that stronger ef-
fects of the suprathreshold portion of the spike promotes synchrony.

of these states. In the case of combined coupling, if
the coupling strengths are changed such that their ratio
remains fixed, then Gsc(φ) is only changed by a scalar
factor, and the phase-locked states and their stability
do not change. However, substantial effects can occur
when the relative coupling strengths. To study these
effects, we introduce the parameter ρ, which we define
to be the fraction of coupling due to electrical coupling,
ρ = gc/(gc + gs). ρ = 1 corresponds to the case of
electrical coupling alone and ρ = 0 corresponds to
inhibition alone.

The fact that the total G-function, Gsc(φ), is a linear
combination of the individual G-functions implies a lot
about the effects of combined electrical and inhibitory
coupling.

Because φ∗ = 0, 1 and φ∗ = 0.5 are zeros of both
individual G-functions, they are also zeros of the com-
bined G-function, and thus the synchronous and an-
tisynchronous states always exist for combined cou-
pling. The stability of these steady states are given by
G ′

sc(φ∗) = G ′
s(φ∗) + G ′

c(φ∗). Therefore, given fixed
values of I , α, and β, if the steady state φ∗ is stable for
both electrical coupling alone and inhibitory coupling
alone, then φ∗ must also be stable for all combinations
of electrical and inhibitory coupling (0 < ρ < 1), i.e.

G ′
c(φ∗) < 0 and G ′

s(φ∗) < 0 imply that G ′
sc(φ∗) < 0.

A similar argument holds for instability. This implies
that the synchronous state φ∗ = 0, 1 is always stable for
any combination of electrical and inhibitory coupling
as in the cases of the single coupling modes. It also
implies that, for any combination of coupling, the anti-
synchronous state φ∗ = 0.5 is unstable for sufficiently
large I and stable for sufficiently small I . Furthermore,
it can be shown that for fixed values of α and β and any
combination of coupling (0 < ρ < 1), I ∗

sc, the critical
value of I at which the antisynchronous state changes
stability, must lie between I ∗

c and I ∗
s , the critical values

for the cases of the single coupling modes. These char-
acteristics are seen in the bifurcation diagram in Fig. 9
with ρ = 0.5.

In Fig. 9, the unstable intermediate steady states
(φ∗ �= 0, 1 or 0.5) for combined coupling fall between
the unstable intermediate steady states for cases of the
single coupling modes. It can be shown that this prop-
erty necessarily holds for all 0 < ρ < 1. It is possi-
ble that the system with combined coupling could have
more than one intermediate steady state between the in-
termediate steady states of the the single coupling cases
for a fixed values of α, β and ρ. If indeed more than
one intermediate steady state exists, then there would
be an odd number of these states, some of which would
be stable. However, we have never observed this.

Various properties arising from the combination of
electrical and inhibitory coupling can be seen from in-
specting Fig. 10. Indeed, Fig. 10 summarize the prin-
ciple results of this paper.

Recall that I ∗
c depends on the speed of the synapse α

and that I ∗
s depends on the effect of the suprathreshold

portion of the spike β. When the spike effect is rela-
tively small and inhibition is relatively slow, I ∗

c > I ∗
s .

When the spike effect is relatively large and inhibition
is relatively fast, I ∗

c < I ∗
s . As stated above, I ∗

sc must
fall in between I ∗

c and I ∗
s for all ρ. By further consid-

eration of G ′
sc(φ∗ = 0.5) = 0, it can also be proven

that I ∗
sc either monotonically increases or monotoni-

cally decreases with ρ. These monotonic relationships
are shown for the two cases by the heavy dashed lines
in Fig. 10.

The grey-scale in Fig. 10 indicates the level of dom-
inance of the synchronous state. Specifically, it shows
the probability that the cells will evolve to the syn-
chronous state given a random initial phase difference
between the cells. This probability is determined by the
phase differences of the unstable intermediate steady
states as previously described. For I > I ∗

sc, all initial
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Figure 9. Bifurcation diagram for LIF cell-pair with combined weak electrical coupling and weak inhibition: α = 5.0, β = 0.2 and ρ = 0.5,
where ρ is the fraction of electrical coupling, gc/(gc + gs ). Dark solid and dark dashed lines indicate stable and unstable states respectively.
I ∗
sc indicates the critical value of I at which the antisynchronous state φ∗ = 0.5 changes stability. Also, portions of the bifurcation diagrams for

electrical coupling alone (ρ = 1.0, β = 0.2) and inhibitory coupling alone (ρ = 0.0, α = 5.0) are shown as light curves; I ∗
s and I ∗

c are indicated
as well. I ∗

sc must always lie between I ∗
s and I ∗

c , however the ordering of I ∗
s and I ∗

c can be reversed.

phase differences will lead to the synchronous state.
Below I ∗

sc, the antisynchronous state becomes increas-
ingly dominant as I decreases with ρ fixed. This is also
seen in Fig. 9 for ρ = 0.5. Changing ρ, the fraction of
the total coupling due to electrical coupling, with I
fixed can have different effects in different situations.
Figure 10 (left) shows a case where inhibitory kinet-
ics are relatively fast and spike effect is large so that
I ∗
c < I ∗

s . In this case, if I ∗
c < I < I ∗

s , then the dom-
inance of the antisynchronous state decreases as ρ in-
creases (gc increases and/or gs decreases) and the cells
pair can switch from an antisynchronous state to a syn-
chronous state by increasing ρ. This implies that adding
electrical coupling to an inhibitory network would pro-
mote synchrony. Alternatively, Fig. 10 (right) shows a
case for which the spike effect is relatively small and
inhibitory kinetics are relatively slow so that I ∗

c > I ∗
s .

In this case, if I ∗
s < I < I ∗

c , then the dominance of
the synchronous state decreases as ρ is increased and
the cells can switch from an antisynchronous state to

a synchronous state by decreasing ρ. This implies that
synchrony would be hindered by adding electrical cou-
pling to an inhibitory network.

The above results imply that modulating the relative
strengths of electrical and inhibitory coupling can alter
the relative dominance of the synchronous and antisyn-
chronous states. However, it is important to note that
the results for the weak coupling limit imply that com-
bining electrical coupling and inhibition does not pro-
mote synchrony over either electrical coupling alone or
inhibitory coupling alone. That is, synchrony is most
dominant either when ρ = 1 (in the case of relatively
fast inhibitory synapses and large spike effect) or when
ρ = 0 (in the case of relatively slow inhibitory synapses
and a small spike effect) and never when 0 < ρ < 1.

3.6. ρ, α-Parameter Space

To further describe the effects of combined electrical
and inhibitory coupling and for comparison to work
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Figure 10. Two parameter response diagram for LIF cell-pair with combined electrical and inhibitory coupling, I, ρ-parameter space: This
figure summarizes the main results of the paper. I ∗

sc is the critical value of I above which only the synchronous state is stable (S) and below
which both the synchronous and antisynchronous states are stable (AS/S). The dashed lines plot the location of I ∗

sc as a function of ρ, the fraction
of total coupling due to electrical coupling. I ∗

sc = I ∗
s when ρ = 0 and I ∗

sc = I ∗
c when ρ = 1. I ∗

sc always changes monotonically with ρ. The
grey-scale indicates the dominance of the synchronous state, i.e. the probability of the cells evolving to the synchronous state given a random
initial phase difference between the cells. The panels depict two qualitatively different situations. (left) “Large” spike effect and “fast” inhibitory
synapses, I ∗

s > I ∗
c (β = 0.3, α = 4.0). In this case, increasing the strength of the weak electrical coupling (increasing ρ) promotes synchrony.

(right) “Small” spike effect and “slow” inhibitory synapses, I ∗
s < I ∗

c (β = 0.1, α = 1.5). In this case, increasing the strength of the weak
electrical coupling (increasing ρ) promotes antisynchrony.

done on cells with inhibitory coupling alone (see
Section 3.3 and van Vreeswijk et al. (1994)), it is useful
to examine regions of synchrony and antisynchrony in
the ρ, α-parameter space. Figure 11 plots the location
of the critical values of (ρ, α) at which there are changes
in stability of the antisynchronous state (heavy dashed
lines) for a fixed β and three values of I (increasing
from top to bottom). In grey AS/S regions, stable syn-
chronous and antisynchronous states coexist, whereas
in white S regions, only synchrony is stable. The overall
effect of increasing I is to increase the S regime. This is
consistent with the finding that synchronous activity is
promoted by increases in the cells’ intrinsic frequency
(described in earlier subsections).

For pure inhibitory coupling (ρ = 0), there is a sin-
gle critical value of α below which only synchrony
is stable and above which the synchronous and anti-
synchronous states are both stable. This critical value
of α for inhibitory coupling alone increases as I in-
creases (see Fig. 5). This suggests that cell-pairs can
only exhibit antisynchronous activity when inhibitory
synapses have kinetics faster than a critical speed (van
Vreeswijk et al., 1994). However, the top and mid-
dle panels of Fig. 11 reveal a rather counter-intuitive
behavior. As α decreases in the presence of electri-

cal coupling, the system goes from an AS/S region to
a S region and then back to an AS/S region. That is,
for sufficiently small I , electrical coupling allows sta-
ble antisynchronous activity to exist when inhibitory
synapses have very slow kinetics.

The explanation for this phenomenon is as follows.
Electrical coupling alone at I = 1.2 and β = 0.2 sup-
ports both stable antisynchronous and synchronous os-
cillations (see ρ = 1 in Figs. 11 and 8). If ρ is relatively
small, then the effects of inhibitory coupling will dom-
inate and electrical coupling will be negligible for most
values of α. However, decreases in α make the synap-
tic current smoother (more “tonic”), and although the
synchronizing effect of inhibition is still there, it is sub-
stantially weaker than at higher values of α when the
synaptic current is more “phasic” (White et al., 1998).
Therefore, for a given ρ and a sufficiently small α,
the influence of the electrical coupling effectively can
dominate, enabling the existence of a stable antisyn-
chronous state.

Above I ∼ 1.26, the antisynchronous state is un-
stable for electrical coupling alone. Because electri-
cal coupling does not promote antisynchrony for all I
above this value, there is no longer a transition from
the S region back to the AS/S region at small α. An
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Figure 11. Two parameter response diagram for LIF cell-pair with
combined electrical and inhibitory coupling, ρ, α-parameter space:
The dashed lines plot the location of the transition points with spike
effect held constant at β = 0.2. (top) I = 1.2, (middle) I = 1.25,
(bottom) I = 1.3. For (ρ, α) values in grey AS/S region, cells can
exhibit either stable synchrony or antisynchrony; for (ρ, α) values
in white S region, cells can only exhibit stable synchrony. Note that,
for I < I ∗

c (β = 0.2) = 1.28 and a range of ρ, as the speed of the
synapse α is decreased, the antisynchronous state can lose stability
and then regain stability at lower α (see top and middle panels). This
behavior cannot occur for inhibitory coupling alone, ρ = 0.

example of this is shown in Fig. 11 (bottom). In this
case, the curve of critical values of (ρ, α) monotoni-
cally increases, asymptoting to ρ = 1, with the AS/S
region existing below the curve and S region existing
above it.

The effects of varying the strength of the spike β with
other parameters held constant can be examined in a
similar fashion. However, it can be shown analytically
that increasing β always promotes synchrony in the
LIF model.

4. Beyond Weak Coupling

The theory of weak coupling is only exact in the limit
gc, gs → 0, but it yields a good quantitative approxi-
mation when coupling strengths are sufficiently small.
Furthermore, it is often found that the qualitative re-
sults from the weak coupling approximation persist for
a surprisingly wide range of coupling strengths, as we
demonstrate for the coupled LIF cells.

The full system, described by differential equa-
tions (5), is substantially harder to analyze than its weak
coupling approximation. One could solve the full sys-
tem numerically, but because the only nonlinearities in
the LIF system are the threshold nonlinearities, analyti-
cal methods can be used to construct special solutions.
When looking for phase-locked states, explicit solu-
tion formulae can be obtained for the activity between
firings and then they can be patched together across fir-
ings. This reduces the differential equation system to a
system of two algebraic equations for the unknown pe-
riod T and phase difference 0 ≤ φ ≤ 1 (van Vreeswijk
et al., 1994; Chow, 1998; Bressloff and Coombes, 2000;
Chow and Kopell, 2000).

Assume that the cells are firing periodically with
period T and that cell 1 fires at times t = nT while
cell 2 fires at times t = (n + φ)T (for any integer
n). This assumption imposes the following “matching”
conditions on the membrane potentials of cell 1 and
cell 2, v1 and v2. At time t = 0, v1 reaches threshold
vTH = 1, cell 1 fires and v1 is reset to 0. If v2 = u2 just
before cell 1 fires, then v2 = u2+gcβ immediately after
the spike in cell 1. Similarly, just before cell 2 fires at
t = φT , v2 is 1 and we can take v1 = u1. Immediately
following the spike of cell 2, cell 2 is reset to 0 and the
spike effect is added to cell 1 so that v1 = u1 + gcβ.
Finally, just before cell 1 fires at t = T , v1 is 1, and for
there to be a T -periodic solution, v2 = u2. In summary,

v1(0−) = 1, v2(0−) = u2,

v1(0+) = 0, v2(0+) = u2 + gcβ,

v1(φT −) = u1, v2(φT −) = 1,

v1(φT +) = u1 + gcβ, v2(φT +) = 0,

v1(T −) = 1, v2(T −) = u2.

Equations (5) can be integrated analytically to get
a general solution for v1(t) and v2(t) that is valid for
0 < t < φT and φT < t < T . It is convenient to
work with the transformed variables v+ = v1 + v2

and v− = v1 − v2. Using the general solution and the
matching conditions, we obtain a set of four algebraic
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equations for u1, u2, T and φ.




u1 − βgc + 1 = u2e−φT + 2I (1 − e−φT )

+ gs

[
e−T

∫ T

(1−φ)T
et sT (t) dt

+ e−φT

∫ φT

0
et sT (t) dt

]

u1 − βgc − 1 = −u2e−φT

+ gs

[
e−µT

∫ T

(1−φ)T
eµt sT (t) dt

− e−µφT

∫ φT

0
eµt sT (t) dt

]

1 + u2 − βgc = u1e−(1−φ)T + 2I
(
1 − e−(1−φ)T

)
+ gs

[
e−(1−φ)T

∫ (1−φ)T

0
et sT (t) dt

− e−T

∫ T

φT
et sT (t) dt

]

1 − u2 + βgc = u1e−µ(1−φ)T

+ gs

[
e−µ(1−φ)T

∫ (1−φ)T

0
eµt sT (t) dt

− e−µT

∫ T

φT
eµt sT (t)dt

]

where µ = 1+2gc. The integrals involving the periodic
synaptic current gssT (t) are easily evaluated analyti-
cally. Also, u1, u2 can be easily eliminated to produce
a set of two algebraic equations for T and φ.

Most solutions to this algebraic system correspond
to 1:1 phase-locked behavior of the coupled cell sys-
tem with phase difference φ. However, there are excep-
tions. Some solutions to the algebraic system require
that membrane potentials exceed the threshold for fir-
ing. These solutions do not correspond to “physical”
behaviors of the system, but they imply the existence
of the dynamical states of “spike-capture synchrony”
or suppression, which do not occur in the case of weak
coupling. Suppression (White et al., 1998) occurs when
inhibition is so strong that one cell’s repetitive firing
inhibits the other cell so much that the inhibited cell
never fires. “Spike-capture synchrony” occurs as fol-
lows. If a cell has a membrane potential of u such that
1 − gcβ < u < 1 immediately before the other cell
fires, the cell will be knocked above threshold by the

spike (u + gcβ > 1), and therefore the cells will im-
mediately synchronize.

Solutions to the algebraic system are nonphysical
when they have u1 or u2 > 1 − gcβ and φ �= 0, 1.
(Recall that u1 and u2 are membrane potentials of cell 1
and 2 immediately before spike effects are added). This
happens for low I (low intrinsic frequencies) where the
approach to threshold is slow and cells remain close to
threshold for a long time before firing. The range of I
over which spike-capture synchrony and suppression
occur in place of solutions to the algebraic system in-
crease as gcβ and gs increase, respectively. However,
the range of I over which this occurs is only substantial
when coupling strengths are quite large.

The depolarizing effect of the spike ensures that the
synchronous state for non-weak coupling is always sta-
ble. If initial conditions are close enough, then when
one cell fires the other will immediately fire and the
cells will be exactly synchronized, i.e. synchrony is
achieved by spike-capture synchrony mechanism. On
the other hand, when the effect of the suprathreshold
portion of the spike is not present (β = 0), the syn-
chronous state can lose stability. For inhibition alone,
this loss of stability is associated with a transition to
suppression; it occurs when inhibition is sufficiently
strong and slow and I is sufficiently small (Bressloff
and Coombes, 2000).

Using the spike response method (Gerstner, 1995)
or an equivalent method, the stability of phase-locked
states in the case of non-weak coupling can be found by
constructing an extension of the G-function that was
defined for the weak coupling limit (Chow and Kopell,
2000; Chow, 1998; van Vreeswijk et al.,1994). Also,
it may be possible to extend the work of Bressloff and
Coombes (2000) and investigate stability of the asyn-
chronous states by constructing a linearized map of
firing times and analyzing its spectrum. However, the
combination of the electrical and inhibitory coupling
makes both of these methods algebraically compli-
cated. We therefore choose to simply infer stability by
comparing with the weak coupling results and check-
ing stability for representative phase-locked states us-
ing numerical simulations.

Unlike the weak coupling case, it is hard to make
definitive statements regarding the dependence of
phase-locked states on parameters. Our approach is to
numerically solve the algebraic system for various pa-
rameter sets, look for trends, and compare results with
those for weak coupling. Fortunately, the only qual-
itative differences between the weak coupling theory
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Figure 12. Results without the weak coupling approximation: Bifurcation diagrams for LIF cell-pair with fixed total coupling strength gtot =
gs + gc = 0.1, α = 4.0, β = 0.2 and various ratios of electrical and inhibitory coupling. The overlaid bifurcation diagrams shift systematically
with ρ. From right to left, ρ = 0, 0.2, 0.4, 0.6, 0.8, 1. The “tines of the forks” in the bifurcation diagrams corresponding to asynchronous
phase-locked states cease to exist at low values of I . This is due to spike-capture synchrony or suppression. The values of I below which the
asynchronous states do not exist depend on ρ. This is seen on the tines corresponding to unstable asynchronous-non-antisynchronous states, but
it is obscured for antisynchronous state φ = 0.5 due to the overlaying of the bifurcation diagrams.

results and results beyond weak coupling are those
mentioned above, i.e. the presence of suppression and
spike-capture synchronization.

Figure 12 portrays overlaid bifurcation diagrams, φ

vs I , for solutions to the algebraic systems for vari-
ous values of ρ and with fixed values of α, β and total
coupling strength gtot = gc + gs . The non-physical
solutions are omitted. For all ρ, synchronous and an-
tisynchronous states exist at large values of I (high
intrinsic frequency), but only the synchronous state
is stable. As I decreases through a critical value, a
subcritical pitchfork bifurcation occurs where the an-
tisynchronous state becomes stable. Furthermore, the
critical values of I change monotonically with ρ and
remain between the critical values for electrical cou-
pling alone or inhibitory coupling alone. Qualitatively,
the phase-locking structure is the same as that given
by the weak coupling approximation. The sole quali-
tative difference is that the three “tines of the forks”
of the bifurcation diagrams corresponding to asyn-
chronous phase-locked states, including the stable an-

tisynchronous states, cease to exist at low values of I .
As explained above, this is due to spike-capture syn-
chrony or suppression. The values of I below which
the asynchronous states cease to exist depend on ρ.
This is seen on the branches corresponding to unsta-
ble asynchronous-non-antisynchronous states, but it is
obscured on the branches corresponding to antisyn-
chronous state due to the overlaying of several bifur-
cation diagrams.

Figure 13 shows how the phase-locking structure
depends on the strength of the coupling. This example
fixes ρ = 0.5 but the structure appears to be qualita-
tively similar for all ρ. As the total coupling strength
gtot = gc + gs increases, the bifurcation point shifts to
higher values of I and the stable antisynchronous state
persists for a larger I . This trend was also observed for
electrical coupling alone by Chow and Kopell (2000).
As gtot is increased, the effect of the spike is larger,
which increases the likelihood of spike-capture syn-
chrony, and tendency for suppression also increases.
This causes the tines of the forks in the bifurcation
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Figure 13. Results without the weak coupling approximation: Bifurcation diagrams for LIF cell-pair with various total coupling strength and
a fixed ratio of electrical and inhibitory coupling ρ = 0.5 (α = 2.0, β = 0.1). From left to right: the weak coupling limit, gtot = 0.1, 0.2, 0.3
and 0.4). The critical values of I and unstable states for the combined coupling case increase systematically as gtot is increased. As a result
of spike-capture synchrony and suppression, the “tines of the forks” in the bifurcation diagrams corresponding to asynchronous phase-locked
states cease to exist at low values of I . The values of I below which the asynchronous states do not exist depend on gtot . This dependence is
obscured for antisynchronous state φ = 0.5 due to the overlaying of the bifurcation diagrams.

diagram to get shorter, corresponding to an increase in
the range of I over which the unstable asynchronous
states and stable antisynchronous states cease to ex-
ist. Note that the effect is present for all three tines of
the forks in the bifurcation diagrams but the effect for
φ = 0.5 is hidden by the overlays for various ρ.

In the weak coupling limit, the period of oscilla-
tion of the coupled cells is always the same as the in-
trinsic period of the uncoupled cells. Away from this
limit, the period of the phase-locked states can differ
from the period of the uncoupled cells. Increasing the
strength of inhibition always increases the period of
synchronous and antisynchronous activity. Increasing
the strength of electrical coupling can either increase
or decrease the period of the antisynchronous state,
but it does not affect the period of the synchronous
state (Chow and Kopell, 2000). When both the anti-
synchronous and synchronous states exists, they can
sometimes have very different periods.

5. Discussion

In this paper, we study a model of two identical leaky
integrate-and-fire (LIF) cells connected by electrical
coupling and reciprocal inhibition. The idealized for-
mulation of the model has enabled us to begin to con-
struct a framework for understanding how the combi-
nation of electrical and inhibitory coupling affects syn-
chronization patterns in networks of spiking neurons.
The results of our study are summarized in Table 1 and
in the text.

5.1. Results for Weak Coupling

Most of our work on the two cell system is done in the
limit of weak coupling, where the theory of weakly cou-
pled oscillators allows extensive analysis over a broad
range of parameters. The analysis shows that the in-
trinsic frequency of the cells, which is controlled by
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Table 1. Summary of results for LIF model.

Parameter variation Effect

Increasing intrinsic frequency (↑ I) Promotes synchrony

Increasing fraction of coupling due to electrical coupling (↑ ρ), with

Fast synapses, large spike effect (I ∗
c > I ∗

s ) Promotes synchrony
Slow synapses, small spike effect (I ∗

c < I ∗
s ) Promotes antisynchrony

Increasing spike effect (↑ β) Promotes synchrony

Increasing speed of synapse (↑ α), with

Sufficiently high frequency (I > I ∗
c ) Promotes antisynchrony

Sufficiently low frequency (I < I ∗
c ) Can promote synchrony when

synapses are sufficiently slow

Increasing total coupling strength (↑ gtot) Promotes synchrony or suppression;
can promote antisynchrony around
the critical frequency

the level of applied constant current, has a character-
istic influence on synchronization properties. For elec-
trical coupling alone or inhibitory coupling alone, only
synchronous behavior is stable when the intrinsic fre-
quency is high. Below a critical frequency, the coupled-
cell system supports both stable synchronous and an-
tisynchronous activity. This bistability persists for all
intrinsic frequencies below the critical frequency, but
synchronous behavior dominates close to the critical
frequency and antisynchrony increases in dominance as
intrinsic frequency decreases. That is, given a random
initial phase difference between the cells, the probabil-
ity that the system evolves to the synchronous state is
approximately one when the intrinsic frequency of the
cells is close to the critical frequency, and this proba-
bility decreases as the intrinsic frequency is decreased,
eventually becoming close to zero. Thus, for the LIF
model, both inhibition alone and electrical coupling
alone promote synchrony when the intrinsic firing rate
of cells is high, antisynchrony when the firing fre-
quency is low, and bistability in an intermediate fre-
quency range (Figs. 4 and 7).

For combinations of electrical and inhibitory cou-
pling, the effects of the two coupling modes add linearly
in the weak coupling limit. Because the phase-locking
behaviors of the two coupling modes are qualitatively
the same, the general trends for combined coupling are
the same as those for the cases of either coupling mode
alone: synchrony is promoted at high intrinsic frequen-
cies and antisynchrony or bistability is promoted at
lower frequencies.

For a small spike effect and relatively slow synapses,
the critical frequency for inhibition alone is smaller

than that for electrical coupling alone. For a large
spike effect and relatively fast synapses, the critical fre-
quency for inhibition alone is greater than that for elec-
trical coupling alone. The critical frequencies for com-
bined coupling are necessarily intermediate to those
for the single coupling modes alone. In fact, there is a
monotonic relationship between critical frequency and
ρ, the fraction of coupling due to electrical coupling.
(see Figs. 9 and 10). This is also the case for the rela-
tive dominance of antisynchrony and synchrony in the
bistable regime (Figs. 9 and 10). For a fixed intrinsic
frequency, the probability of synchrony changes mono-
tonically as ρ increases. Increasing electrical coupling
promotes synchrony when synapses are relatively fast
and the spike effect is sufficiently large, but it promotes
antisynchrony when synapses are relatively slow and
the spike effect is sufficiently small.

The above observations imply that electrical cou-
pling and inhibitory coupling do not act synergistically
to promote synchrony. Either electrical coupling alone
or inhibitory coupling alone, not a combination of the
two, is best for promoting synchronous activity. The
same is true for promoting antisynchrony. Note that
these statements are in a specific context, where “pro-
moting synchrony” is defined as “increasing the proba-
bility of synchronous activity given random initial con-
ditions.” Also, because we deal with identical cell-pairs
without noise, our results will hold for cases where cells
are sufficiently homogeneous and noise is sufficiently
small. However, the results are inconclusive for cases
with large heterogeneity and large amounts of noise.

For mutual inhibition alone, the critical value
of the intrinsic frequency where stability of the



Neurons Connected by Inhibitory and Electrical Coupling 303

antisynchronous state changes depends on the speed of
the inhibitory synapses, α: Faster synapses move the
critical frequency to higher values, allowing antisyn-
chrony to persist over a broader range of frequencies
(Fig. 5). For electrical coupling alone, the critical value
changes with the magnitude of the direct electrotonic
effect of the spikes, β: When the spike effect increases,
the critical frequency decreases, extending the range of
frequencies over which only synchronous activity ex-
ists. (Fig. 8). For any fixed combination of inhibitory
and electrical coupling, increasing the strength of the
spike effect always decreases the critical frequency,
thus stronger spikes always promote synchrony. In-
creasing the speed of the synapses promotes antisyn-
chrony at sufficiently high intrinsic frequencies. How-
ever, when frequencies are sufficiently low, increasing
the speed of the synapse can actually promote syn-
chrony (Fig. 11).

In this paper, current-based α-synapses are explicitly
used rather than conductance-based α-synapses. Spike-
triggered postsynaptic currents of conductance-based
α-synapses are described by

Isyn, jk = gsynα
2t e−αt (Vj − Vsyn),

where gsyn scales the synaptic conductance and Vsyn

is the reversal potential of the synaptic current.
Conductance-based α-synapses are often considered
more realistic than the current-based α-synapses. How-
ever, for the LIF model in the weak coupling limit,
the G-functions for cells coupled by conductance-
based α-synapses differ from those for cells coupled
by current-based α-synapses only by the scaling factor
gsyn/qs(Vsyn − I ). Thus, phase-locked states for cells
coupled by conductance-based α-synapses are identi-
cal to those discussed in this paper. Note that shunting
inhibition (Vsyn ∼ resting potential) is not a special sit-
uation in the case of weakly coupled oscillating LIF
cells.

5.2. Effects of Coupling Strength

The results for weak coupling are quantitatively accu-
rate for sufficiently small coupling strengths (gc and
gs), but the qualitative results extend over a wide range
of coupling strengths. In the limit of weak coupling,
changes in gc and gs can change the phase-locking be-
havior, but only if there are changes in ρ, the ratio of
gc to gtot = gc + gs . Otherwise, the strengths of the
coupling do not play roles in determining the phase-

locked states or the linear stability of these states (as
is true for cells connected by a single coupling mode).
The coupling strengths do however effect the speed
at which cells converge to or diverge from the phase-
locked states. The rate at which weakly coupled oscilla-
tors converge to phase-locked states is inherently slow.
The rate of convergence is of the order gtot/T . That
is, the cells take on the order of 1/gtot cycles to appear
phase-locked. Thus, if gtot ∼ 0.01, then hundreds of cy-
cles are needed to attain synchrony or antisynchrony,
but if gtot ∼ 0.1, only tens of cycles are required (see
Figs. 1 and 2).

For moderate coupling strengths (i.e. away from the
limit of weak coupling), coupled cell systems are more
difficult to study, but some analytical results can still
be obtained for LIF cells (see Section 4, van Vreeswijk
et al., 1994; Chow, 1998; Chow and Kopell, 2000;
Bressloff and Coombes, 2000). When coupling is not
weak, the strengths of the coupling, gc and gs , have
some effect on the phase-locking structure. As cou-
pling strength increases, there is a rightward shift in
the bifurcation diagrams that extends the range of fre-
quency over which a stable antisynchronous state exists
(see Fig. 13). Qualitatively, however, the locking struc-
ture remains the same except for a few minor features.
When inhibition or electrical coupling is sufficiently
strong, suppression or spike-capture synchronization
can occur. The effects of these phenomena on the phase-
locking structure are seen at low frequencies and are
minimal unless coupling is quite strong.

5.3. Direct Effect of the Spikes

The results presented here and the previous results of
Chow and Kopell (2000) show that spikes can play a
large role in determining the existence and the stability
of phase-locked states when cells are electrically cou-
pled. However, the effects of spikes in the two studies
are modeled in different ways. Chow and Kopell (2000)
model the action potential by imposing a brief inward
current on a cell when it reaches a threshold potential.
This inward current is applied for a specified duration
(the spike width) and is followed by an infinitely fast
reset to a reset potential. We model the effect of the
suprathreshold portion of a spike by lumping all elec-
trotonic current flowing from a spiking cell to a sub-
threshold cell into a δ-function current. An important
condition for this to be a reasonable approximation is
that the width of a spike is much smaller than the period
of the oscillations.
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Our model makes analytical calculations less com-
plicated than those for the formulation of Chow and
Kopell, and it captures the phase-locking structure and
its dependence on parameters seen by Chow and Kopell
for all but ultra-high frequencies, i.e. when the period
of the oscillations is less than twice the spike width.
At ultra-high frequencies, Chow and Kopell found
that synchrony can become unstable and asynchronous
states can become stable. Chow and Kopell confirmed
that changes in stability occur at high frequencies in
two conductance-based neuronal models (White et al.,
1998; Ermentrout and Kopell, 1998). These findings of
Chow and Kopell could be important in understanding
200 Hz ripple activity in hippocampus (Ylinen et al.,
1995). The only concern is that the phase-locked states
seen at high frequencies may not be robust to noise and
heterogeneities (as will be explained below).

The models presented here and in Chow and Kopell
are single-compartment models, and they neglect the
filtering effects of dendrites on phase-locking (Crook
et al., 1998; Bressloff and Coombes, 1997). Prelimi-
nary evidence suggests that gap junctions between cor-
tical interneurons are located on somata and proximal
dendrites (Tamás et al., 2000). Based on this evidence,
it is likely that dendritic effects can be neglected. How-
ever, if electrical coupling were sufficiently far out on
the dendrites, then the current that one cell experiences
due to a spike in the other cell could be broadened
enough to substantially alter the stability of phase-
locked states, and therefore synchrony could become
unstable and asynchronous states could become sta-
ble when the period of the oscillations is considerably
greater than the spike width, i.e not only at ultra-high
frequencies. Indeed, Alvarez et al. (2002) studied a
model in which pairs of cells were electrically coupled
via dendrites and showed that a transition from stable
synchrony to stable antisynchrony can occur when in-
trinsic frequency is increased. They also showed that
this could be applicable to electrically coupled cells in
the locus coeruleus.

5.4. Cortical Interneurons

Although the population of cortical interneurons is ex-
tremely diverse (Gupta et al., 2000), they have been di-
vided into two major groups, fast-spiking (FS) cells and
low-threshold spiking (LTS) cells (Gibson et al., 1999).
FS cells have narrow action potentials each with a deep,
brief after-hyperpolarization, and they can fire at high
frequencies with little or no spike-frequency adapta-

tion (Gibson et al., 1999; Galarreta and Hestrin, 1999;
Erisir et al., 1999); LTS cells have slightly broader ac-
tion potentials, shallower after-hyperpolarization and
pronounced spike-frequency adaptation (Gibson et al.,
1999; Beierlein et al., 2000).

Recently, experimentalists have used in vitro paired-
cell recordings to assess the connectivity between corti-
cal neurons (Gibson et al., 1999; Galarreta and Hestrin,
1999; Amitai et al., 2002). (See Fig. 1 in Beierlein et al.
(2000) for a schematic connectivity diagram.) Results
indicate that there is a high degree of inhibitory con-
nectivity between FS cells, whereas inhibitory connec-
tions between LTS cells are rare. Furthermore, FS cells
display extensive electrical coupling between one an-
other. The same is true for LTS cells. However, there
is very little electrical connectivity between FS cells
and LTS cells. This suggests that interneurons could
be separated into at least two functional inhibitory net-
works. The different functions of these networks re-
main unclear, but the different intrinsic properties and
connectivities of the networks are likely to be tuned to
perform these functions. It therefore is important to ex-
amine how these aspects influence network dynamics.

Paired-cell recordings in brain slice preparations
provide a simple way to begin studying the dynami-
cal interactions between interneurons. There is usually
very little spontaneous activity in resting neocortical
slices. A cell in the slice fires only when a sufficient
amount of depolarizing current is applied to it. Cells in
a cell-pair may be electrically connected to other cells
in the network (Amitai et al., 2002). However, because
coupling is fairly weak and unstimulated cells are far
below threshold, the coupling current due to the load of
these unstimulated cells should act like an extra leak-
age current with a reversal potential equal to the resting
membrane potential of the unstimulated cells. Further-
more, inhibitory synaptic interactions do not lead to
any feedback input from outside the cell pair. There-
fore, the cell-pair is effectively isolated from the rest of
the network, and thus the paired-cell system is a direct
experimental analog for the two-cell model considered
in this paper.

Despite the LIF model being idealized, we expect
that the qualitative results described here will carry
over to FS and LTS cell-pairs and conductance-based
models of these cell-pairs. The results for the LIF
model predict that connected cells will fire antisyn-
chronously at low levels of applied constant current,
and they will display synchronous activity at high ap-
plied current. A region of bistability is predicted to exist
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in an intermediate range of applied constant current. We
also predict that modulating the relative strengths of
electrical coupling and inhibition can cause changes in
phase-locking states in certain frequency ranges. How-
ever, determining exactly where FS or LTS cells fit
into our LIF-based framework may not be a straight-
forward task. Unlike the LIF model, FS and LTS cells
cannot fire at arbitrarily high frequencies in response
to applied constant currents, and FS cells cannot fire at
arbitrarily low frequencies (Erisir et al., 1999). There-
fore, coupled cells do not necessarily exhibit all of the
qualitative behavior that LIF cell-pairs exhibit.

When injected with constant current, many neurons,
including LTS interneurons, can fire at arbitrarily low
frequencies. These neurons are said to have type-I ex-
citability (Rinzel and Ermentrout, 1998; Ermentrout,
1996). All real neurons and conductance-based models
have maximal firing frequencies. If a pair of LTS cells
or any other type I neurons exhibits only synchronous
activity at their maximal frequency, we would expect
to see a transition to antisynchrony at lower frequen-
cies. On the other hand, if inhibitory synapses are suffi-
ciently fast or the direct effect of the spike is sufficiently
small, then it is possible that the antisynchronous state
would dominate over the entire frequency range.

Some neurons are not capable of firing at arbitrarily
low frequencies in response to constant applied cur-
rent. Instead, the cells have a characteristic minimal
frequency for a critical current amplitude, and below
this critical current amplitude, they do not fire. Neu-
rons that display this behavior, such as FS cells (Erisir
et al., 1999), are said to have type-II excitability (Rinzel
and Ermentrout, 1998). Type-II cell-pairs could exhibit
the same types of behavior described in the previous
paragraph for the type-I cell-pairs. However, if a type-II
cell-pair with fixed coupling exhibits only synchronous
activity at the minimal frequency, then we would pre-
dict that synchrony would prevail over the entire fre-
quency range. Theoretically, this behavior cannot oc-
cur in type-I neurons for sufficiently weak coupling.
Because type-I cells can fire at very low frequencies,
they should always be able to exhibit antisynchronous
activity over some range of low I . Note however that
for strong coupling, suppression or synchrony via the
spike-capture mechanism could wipe out this regime
of antisynchrony.

As of yet, no experimental study has systematically
examined the dependence of phase-locked patterns of
cell-pairs on intrinsic frequency or other cell proper-
ties or network parameters. We expect that the results

presented here will be applicable to FS and LTS cell
pairs. The LIF model may provide a better represen-
tation of FS cells than of LTS cells, because FS cells
have especially thin spikes. Preliminary results using a
conductance-based model of FS cells and in vitro cell-
pair recordings agree with those presented here (Lewis
et al., 2001).

In vitro FS cells have membrane time constants in the
range of 5–10 ms. Let us suppose that the membrane
time constant is 8 ms. The dimensionless frequency
range shown in our figures (0–1.44) would then cor-
respond to 0–180 Hz. For inhibitory coupling alone, if
the time constant of the α-function postsynaptic current
is ∼4 ms, then our results predict that the critical fre-
quency for stability of the antisynchronous state would
be ∼70 Hz. This agrees with the initial experimen-
tal studies (Lewis et al., 2001). Electrically coupled
FS cells appear to exhibit only synchronous activity
at their minimal frequencies (Lewis et al., 2001). Ac-
cording to our results, adding electrical coupling to a
cell-pair connected by inhibition should therefore de-
crease the critical frequency and promote synchrony.
This also agrees with the initial experimental findings
(Lewis et al., 2001). In vitro FS cell-pairs appear to fit
into the framework for cells with a strong spike effect
and relatively fast synapses, displaying activity similar
to those depicted in Fig. 10 (left).

5.5. The Role of Combined Coupling

Recently, Tamás et al. (2000) presented experimental
evidence that suggests that the inhibition and electrical
coupling in interneuronal networks could act syner-
gistically to promote neuronal synchronization. They
studied gamma-frequency (∼40 Hz) phase-locking
in pairs of interneurons in vitro. They found that
unitary GABAergic connections were ineffective for
phase-locking and electrical coupling produced phase-
locking with substantial phase-lags, whereas combined
electrical and GABAergic synaptic coupling synchro-
nized cells with no apparent phase-lag.

In the context of our definition of “promoting” syn-
chrony, the results of Tamas et al. appear to contra-
dict the results that we present here. However, although
both studies consider pairs of oscillating cells with ei-
ther inhibitory coupling alone, electrical coupling alone
or combinations of the two coupling modes, there are
fundamental differences between the system that we
consider and the system that Tamás et al. considered.
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Firstly, the inhibitory coupling between cell-pairs in
the Tamas et al. study was only one-way, whereas our
model has reciprocal inhibition. Secondly, using cur-
rent injection, the cells in the study of Tamas et al. were
made to fire with widely desperate intrinsic frequen-
cies. The presynaptic cell was made to intrinsically fire
at ∼40 Hz and the postsynaptic cell was made to intrin-
sically fire at ∼5 Hz. The interaction between the cells
either reduced or increased the frequency of the postsy-
naptic cell only slightly. Thus, the synchrony that they
refer to could be classified as ∼10 : 1 phase-locking, i.e.
on average, the postsynaptic cell fires only once for ev-
ery 10 spikes in the presynaptic cell. Our reciprocally
inhibited cells fire with similar or the same intrinsic
frequencies; the rhythms that we consider are 1 : 1 (or
1 : 0) phase-locked rhythms.

Together the results of Tamas et al. and our results
imply that it may be possible that combined coupling
enhances synchrony in certain situation, but this ap-
pears not to be a general rule (see Fig. 11). More work
needs to be done to extend our framework to include
strongly heterogeneous intrinsic properties and cou-
pling properties. This work would include the situation
studied in Tamas et al. as a special case.

Throughout the paper, we have defined “promoting
synchrony” as “increasing the probability that the cells
will evolve to a synchronous state given random initial
conditions.” This is perhaps the only reasonable defini-
tion for the homogeneous deterministic system that we
consider. However, neuronal networks are inherently
noisy and have heterogeneous connectivity and cellu-
lar properties. These features can lead to the destruc-
tion of synchrony or other phase-locked states. There-
fore, a definition of “promoting synchrony” should
also include reference to “increasing the robustness of
synchrony.”

The effect of heterogeneity in intrinsic frequency has
been studied in models of large neuronal networks with
inhibitory coupling alone (White et al., 1998; Wang and
Buzsáki, 1996). These studies have shown that syn-
chrony is fragile even in the presence of mild hetero-
geneity when the frequency is sufficiently high or low
with respect to the speed of the inhibitory synapses.
At low frequencies, this lack of robustness could be
due to the presence of the stable antisynchronous state
or subharmonic phase-locked states or due to the pres-
ence of suppression for sufficiently strong inhibition
(White et al., 1998). At high frequencies, the net in-
hibitory current is effectively smoothed out (i.e. it is
more “tonic”), and therefore synchronizing forces are

low, and synchrony is less robust to the heterogeneity
(White et al., 1998). Similar results should hold for
the addition of membrane noise instead of or on top of
heterogeneity.

Increasing the inhibitory coupling strength, gs , will
initially increase the robustness of inhibition-induced
synchrony. This is easy to see in the weak coupling
limit. Sufficiently weak heterogeneities and noise can
be accounted for by additional terms on the right-hand
side of the differential equation for φ involving Gs(φ)
(Eq. (8)). The magnitude of Gs(φ) measures the overall
strength of the dynamics of the homogeneous noiseless
system. That is, it not only determines the rate at which
the system converges to the phase-locked states, but it
also determines how large perturbations to the system
(due to heterogeneities or noise) must be in order to
substantially affect the dynamics. If the magnitude of
Gs(φ) is large, then large amounts of noise or high
degrees of heterogeneities are needed to destroy phase-
locked behavior. However, if the magnitude of Gs(φ)
is small, then phase-locked states can be destroyed by
mild heterogeneity and small amounts of noise. Note
that gs scales the magnitude of Gs(φ). This implies that
the robustness of phase-locked states increases with
synaptic strength just as long as it is not strong enough
to induce suppression.

It has been suggested that the presence of elec-
trical coupling in inhibitory networks could help to
make synchronous activity more robust (White et al.,
1998; Chow and Kopell, 2000; Traub et al., 2001). At
low frequencies, whether this holds or not depends on
the intrinsic dynamics of the cells, which determine
whether or not electrical coupling has a synchroniz-
ing or desynchronizing effect. At higher frequencies,
electrical coupling tends to synchronize, and therefore
adding electrical coupling should increase the robust-
ness of synchronous activity. However, because inhi-
bition acts to synchronize activity at high frequencies,
increasing the strength of the weak inhibitory coupling
can do this as well.

Above a certain frequency, increases in the intrinsic
frequency of the cells lead to decreases in the magni-
tude of Gs(φ). This implies that phase-locked states
in inhibitory networks can be fragile at high frequen-
cies and can be destroyed relatively easily by mild
heterogeneity or low levels of noise, which is consis-
tent with the modeling results mentioned above (White
et al., 1998; Wang and Buzsáki, 1996). A similar result
holds for electrically coupled cells. At high enough
frequency, Gc(φ) decreases with increased intrinsic
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frequency, and therefore synchrony mediated by elec-
trical coupling at high frequency is fragile. Because
the G-function for combined electrical and inhibitory
coupling is simply the sum of Gc(φ) and Gs(φ), syn-
chrony mediated by combined coupling has the same
property.

Recently, Traub and colleagues (2001) have simu-
lated the activity of large networks of physiologically-
realistic model interneurons, studying their synchro-
nization properties at ∼40 Hz. They found that there
was a sharp threshold for electrical coupling strength
above which cells in the network synchronize their ac-
tivity but below which cells fire asynchronously. This
is what would be predicted from the results here if there
are fixed initial conditions. At ∼40 Hz, the interneurons
do not synchronize. As electrical coupling strength is
increased, ρ increases. The asynchronous activity is
maintained until a critical value of ρ at which point the
initial condition switches from the basin of attraction
of the asynchronous state to the basin of attraction of
the synchronous state. The cells in the network would
synchronize for ρ above this critical value. We would
predict that the critical value of ρ would vary with the
set of initial conditions used.

Other roles for combinations of electrical and in-
hibitory coupling in neuronal networks have been sug-
gested. One hypothesis is that it serves to generate sta-
ble bursting patterns (Skinner et al., 1999). Also, mod-
eling work on inhibitory networks of cells with broad
plateau potentials has demonstrated that the presence
of strong electrical coupling in the embryonic lobster
stomatogastric nervous system could serve to mask the
large amplitude antisynchronous activity that is seen in
adults (Bem et al., 2002). The LIF model considered
here cannot address these issues specifically, because
the LIF cells have no plateau potentials and there are
no mechanisms for bursting in the model.

In this study, we have assumed that interneurons are
in an oscillatory mode. It is possible that combined
coupling plays a larger role in processing transient
or randomly fluctuating input (Galarreta and Hestrin,
2001b; Swadlow et al., 1998). Because electrical cou-
pling is subthreshold coupling (as well as suprathresh-
old coupling), it could promote strong synchronous fir-
ing when input to the cells is correlated and dimin-
ished responses when input is decorrelated (via mutual
shunting) (Galarreta and Hestrin, 1999; Galarreta and
Hestrin, 2001b; Usher et al., 1999). The recurrent inhi-
bition is only suprathreshold coupling and would only
be induced after the cells fire. Thus, inhibition could be

present simply to abruptly quench activity in the net-
work or it could act to sharpen the above effect of the
electrical coupling by further diminishing the response
to decorrelated input.

The work presented here begins to construct a frame-
work for understanding how the combination of elec-
trical and inhibitory coupling can shape the activity in
a neuronal network. All results in the paper were ob-
tained using a model with leaky integrate-and-fire cells
and idealized coupling. Thus, in order to solidify the
applicability of the results, it is essential to perform fur-
ther systematic experiments in brain slice preparations,
as well as carry out extensive numerical simulations on
conductance-based models with more realistic synap-
tic dynamics. Also, this work should be extended to
include large networks, explicitly studying the effects
of connectivity structure, heterogeneities and noise and
eventually the interactions with excitatory cells and dif-
ferent subpopulations of interneurons. In this way, the
mechanisms underlying rhythms in the cortex will be
uncovered; this in turn should provide further insight
into the functions of cortical networks.

Appendix: The Infinitesimal Phase Resetting
Curve Z(t)

The intrinsic dynamics of an LIF cell are governed by
the differential equation

dv

dt
= −v + I,

which has the general solution

v(t) = v(t0)e−(t−t0) + I
(
1 − e−(t−t0)

)
,

and the condition that when v reaches a threshold of
1, it is reset to v = 0. Assuming that I > 1, the cell
undergoes periodic oscillations with a period of T =
(ln(I/(I −1)))−1. If the membrane potential of the cell
starts out at v(0) = 0, then the evolution of v(t) for
0 ≤ t < t̃ < T is given by

v(t) = I (1 − e−t ).

Suppose that a small δ-function perturbation of strength
(area) ε was delivered to the cell at a phase in the os-
cillation corresponding to t = t̃ . This would instanta-
neously knock v from I (1 − e−t̃ ) to I (1 − e−t̃ ) + ε,
advancing the phase of the oscillation. To evaluate
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the magnitude of the phase advance φ, simply use
v(t̃) = I (1 − e−t̃ ) + ε as the initial condition and solve
for the time that the cell reaches threshold v = 1.

1 = v(T − T φ) = v(t̃)e−(T −T φ−t̃)

+ I
(
1 − e−(T −T φ−t̃)

)
= (I (1 − e−t̃ ) + ε)e−(T −T φ−t̃)

+ I
(
1 − e−(T −T φ−t̃)

)
,

which yields the firing time

T − T φ = ln
I − εet̃

I − 1
.

The phase advance is

φ(t̃) = 1

T

(
ln

I

I − 1
− ln

I − εet̃

I − 1

)

= 1

T
ln

I

I − εet̃
.

This is the phase resetting curve for δ-function per-
turbations of area ε at t̃ < ln(I/(I − 1 + ε)) <

T = ln(I/(I − 1)). For t̃ ≥ ln(I/(I − 1 + ε)), the
perturbation immediately knocks the cell over thresh-
old and v gets reset to 0. Therefore, φ falls lin-
early from ln((I − 1)/(I + ε(I/(I − 1 + ε))))/T at
t̃ = ln(I/(I − 1 + ε)) to 0 at t̃ = T

Expanding φ around the small parameter ε,

φ(t̃) = et̃

T I
ε + O(ε2).

Thus, the infinitesimal phase resetting curve (the phase
dependent sensitivity function) is

Z (t̃) = et̃

T I
.

The above derivation uses the method described in
the main portion of the text, however it should be noted
that are alternative ways to obtain the phase-dependent
sensitivity function Z (t̃). Up to a proportionality con-
stant, Z (t̃) can be found by solving the adjoint equa-
tion for the isolated cell linearized about the limit cycle
vLC (t). The proportionality constant is chosen such that
〈dvLC/dt, TZ〉L2(0,T ) = 1. This method is usually used
to calculate Z (t̃) for complicated models. Also, for any
single-variable integrate-and-fire model, the phase sen-
sitivity function Z (t̃) is simply 1/(T dvLC/dt).
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