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Abstract

Since the first Hodgkin and Huxley ion channel model was described in the 1950s, there
has been an explosion in mathematical models to describe ion channel function. As experi-
mental data has become richer, models have concomitantly been improved to better repre-
sent ion channel kinetic processes, although these improvements have generally resulted
in more model complexity and an increase in the number of parameters necessary to popu-
late the models. Models have also been developed to explicitly model drug interactions with
ion channels. Recent models of drug-channel interactions account for the discrete kinetics
of drug interaction with distinct ion channel state conformations, as it has become clear that
such interactions underlie complex emergent kinetics such as use-dependent block. Here,
we describe an approach for developing a model for ion channel drug interactions. The
method describes the process of extracting rate constants from experimental electrophysio-
logical function data to use as initial conditions for the model parameters. We then describe
implementation of a parameter optimization method to refine the model rate constants
describing ion channel drug kinetics. The algorithm takes advantage of readily available
parallel computing tools to speed up the optimization. Finally, we describe some potential
applications of the platform including the potential for gaining fundamental mechanistic
insights into ion channel function and applications to in silico drug screening and
development.

Introduction

As our understanding of ion channel biophysics has increased, so too have mathematical mod-
els been continually improved to better recapitulate experimentally observed kinetics. Ion
channel models have been used extensively to explain and predict normal channel behavior,
but also have been very useful to provide insights into aberrant function resulting from muta-
tions in genes encoding ion channels, as well as to predict drug interactions with ion channels.
This paper is meant as a tutorial for parameter optimization of ion channels that highlights
benefits and common pitfalls associated with computational modeling. We describe all the
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necessary steps in a process that includes experimental data extraction, implementation of an
automatic parameter optimization routine, and the use of parallel computing tools and a
multi-core chipsets found in most desktop computers. We present as an example, an overview
of the cardiac Na* channel and the development of a Markov-chain model, which allows for
explicit representation of conformational states and rates of transition between them. Using
the model, we then present an example application of the tool: development of a drug-channel
interaction model used for prediction of emergent pharmacology and safety testing.

Determination of channel model structure

The human cardiac voltage-gated Na* channel is a macromolecular complex that assumes dis-
tinct conformational changes in response to voltage perturbations (as occur during the action
potential) [1]. Early models of the Na™ channel consisted of 3 states: resting (closed), activated
(open), and inactivated [2]. As understanding of cardiac Na* channel structure and function
has been refined through increasingly available experimental data, models describing the car-
diac Na* channel [3-7] [8] have become more complex. We recently developed a model for the
cardiac Na* channel Nay 1.5 that includes 8 distinct states [3] to capture the complex features
of Na* channel kinetics, including time- and voltage-dependent activation [9], inactivation
(both open and closed state) [10], a multi-exponential recovery from inactivation (fast and
slow) [10], and channel mean open time [11].

In response to a voltage depolarization, the cardiac Na* channel transits from a noncon-
ducting closed state to a conducting open state. Soon after opening, the channel quickly inacti-
vates through a conformation change to a nonconducting absorbing state that is only relieved
by repolarization. Repolarization also promotes channel transit back to a resting closed state
[1,12]. The transitions between these states are voltage dependent [13]. The model we previ-
ously described [3] contains 11 independent rate constants (18 parameters), and one rate (2)
constrained by microscopic reversibility, a thermodynamic constraint that at equilibrium, for
any closed loop in the system, the product of the forward rate constants must equal the product
of the reverse rate constants [14].

The model structure in Fig 1 (and the corresponding rate constants in Table 1) is a state-
specific model that includes coupling between channel conformational states through voltage
dependent rate constants. This form differs from the Hodgkin-Huxley type model, which is
based on the assumption of independence between gates (i.e. activation, inactivation). The cou-
pled state-based model is an attempt to explicitly represent specific, experimentally determined
channel conformations and the movement between them [15]. This may be especially useful
for predicting behaviors that are state dependent, such as the effects of mutations and how ion
channels interact with drugs and toxins [16].

Brief overview of optimization methods

One of the major challenges of complex computational models is the large number of free
parameters that must be determined [20]. How best to fit these parameters to experimental
data has been the subject of many studies [21-25]. There have been multiple parameter optimi-
zation methods used for ion channel models including principal-axis fitting [26], maximum-
likelihood estimation [27,28], genetic algorithms [21,29,30], and the widely used empirical
“hand-tuning” of free parameters [6,21,31-33], whereby parameters were tweaked incremen-
tally to achieve a qualitatively acceptable fit to the data, as defined by the investigator. The
empirical adjustment method relies primarily on operator intuition, developed through analy-
sis and interpretation of many data sets. It is subjective, functionally slow, and does not satisfy
the increasingly stringent requirements for robustness and reproducibility.
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Fig 1. Schematic of the Wild-Type Na* Channel. The wild-type Na* channel formulation contains 8 states: 3 closed states (C3, C2, C1), 1 open state (O), a
fast- and slow-inactivated state (IF and IS, respectively), and two close-inactivated states (IC3, IC2). Included are cartoon representations of the gating
structure closely associated with the kinetic state of the channel. Note the movement of the S4 voltage sensors (red ovals around the channel pore) as the
channel traverses the closed states (C3 — C2 — C1 — O). Note also the fast inactivation gate (green ball), the llI-IV linker, occluding the channel pore on
movement from O — IFand C — IC, IF [17-19].

doi:10.1371/journal.pone.0150761.g001

In contrast to hand fitting, automatic parameter optimization procedures can survey a
much larger parameter space, determine quantitatively best fits to multiple voltage-clamp data-
sets simultaneously, are reproducible, are “operator intuition” independent, relatively easy to
implement, and if given the right constraints on the optimization criteria (e.g. positive rate con-
stants, topologically “allowed” transitions based on an understanding of channel structure and
gating etc.), can achieve a physiologically relevant parameter set. The disadvantage of
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Table 1. Parameters to be optimized in the drug free Na+ channel.

IC3 —IC2, C3—C2 al1 =1/(@11_vi1*exp(-V/a1l_v2))
IC2—IF, C2—CA1 al2 = a12*ali

C1-0 al13 =a13*al1

IC2—IC3, C2—C3 B11 = 1/(b11_v1*exp(V/b11_v2))
IF—IC2, C1—C2 B12 = b12*B11

O0—C1 13 = b13*B11

IC3—C3, IC2—C2, IF—C1 a3 = a3 v1*exp(-V/a3_v2)
C3—IC3, C2—IC2, C1—IF B3 = b3_v1*exp(V/b3_v2)

IF—0O B2 = (a13* a2* a3)/(313* B3)
O—IF a2 = a2_v1*exp(V/a2_v2)
O0—IS ox = ax*a2

1IS—0 Bx = bx*a3

*Note, these parameters correspond to the labeled transition rates in Figs 1 and 2. The rates are in (ms™).
As mentioned in the text, there are 11 independent rate constants, with one constrained by microscopic
reversibility (82). Within the 11 independent rate constants, there are 16 free parameters to be optimized
(shown in italicized bold). A note on naming: “a11_v2” is a11 variable 1, and “a11_v2” is a11 variable 2.

doi:10.1371/journal.pone.0150761.1001

automated optimization is that the automatically derived parameter set may not necessarily
reflect known properties of channel gating [21]. For both automatic and “manual” optimiza-
tion, it is not always possible to definitively identify a unique global minimum; multiple local
minima may be identified that correspond to a parameter set that “fits” the data with suffi-
ciently meaningful precision (within the standard error of measurements). With appropriate
validation, a sufficiently detailed representation of channel gating that represents a local mini-
mum may be all that is required. As will be discussed, there are tradeoffs between efficiency,
parameter identifiability, ease of implementation, and results that are sufficient to answer the
scientific question. For a detailed review on parameter identifiability and necessary conditions
for unique parameter sets, see Fink and Noble [22] and Dokos and Lovell [23].

We have implemented a direct search simplex algorithm developed by Nelder and Mead
[34] that attempts to minimize a scalar-valued cost function of # real variables using only func-
tion values, without any derivative information [35]. Also called the “amoeba” method, the
algorithm crawls through parameter space creating ever-smaller simplexes until a local mini-
mum is found. We chose the Nelder Mead method as it is among the easiest to implement, rel-
atively robust and does not require derivative information of the cost function. The goal for the
method was accessibility, so that students, trainees and non-experts can apply the method to
models of interest.

Our implementation takes advantage of a multi-core chip architecture found in many desk-
tops and the Parallel Computing toolbox™ within MATLAB to speed up computation time.
The Parallel toolbox is an add-on package for MATLAB that is particularly suited to this type
of optimization problem, given the many independent tasks that can be run simultaneously. In
this fork-join method, the model code sends each “experiment” (a voltage clamp electrophysi-
ology protocol in a cell expression system) to be simulated to a separate “worker” (or MATLAB
computational engine running independently of the desktop MATLAB session) which can be
computed simultaneously and independent from the other experiments (a ‘fork’); the results
are then combined into a larger objective function (a ‘join’). One distinct advantage is that the
toolbox does not require CUDA™ or MPI programming knowledge, and is easy to implement
in pre-existing code.
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Methods
Extraction of rate constants from the experimental literature

We begin by describing as an example a method of rate constant extraction for the cardiac Na™
channel model [3]. Experimental function data suggest that the Na* channel transits through a
series of closed states upon activation to an open conducting state [1,12]. To assign each of the
kinetic transitions listed in Table 1 a rate, experimental function data designed to isolate spe-
cific transitions are gathered from expressed Na* channels in single cells.

The rates for activation (al11, @12, al3 corresponding to the states C3 —C2—Cl1—0), and
deactivation (B13, p12, 11 corresponding to O—C1—C2—C3 -see Fig 1) were based on a
single exponential for the main activation parameter, o, and main deactivation parameter
B11. The remaining two activation and deactivation rates were linear combinations of o,;; and
B11. Thus, the activation and deactivation rates were of the following form:

1
V) =
%u(V) all_vlxexp(—V/all_v2)
1,(V) = al2 oy,
0, (V) =al3*ay,
1

B (V) = b11 _vl-exp(V/bll_v2)
Pro(V) = b12° B,
B, (V) =b13* B,

The initial guesses for parameters of rates 011 and B11 (all_vl,all_v2,bl1_vl, bll_v2)
were taken from Mitsuiye and Noma [36]; the remaining parameters (a12, al3, b12, b13) were
initially set to 1 (thus equal to a11, B11 respectively). A note on nomenclature: the (_v1, _v2)
in the above variables (e.g. all_v1, all_v2), stand for ‘variable 1’, ‘variable 2). The rates that
are voltage dependent are denoted in the equations with “V” (capital V). Thus, ,;,(V) has two
independent variables to be optimized (all_v1, all_v2).

The recovery from inactivation rate constant (a3 corresponding to the states IC3, IC2, IC1
— C3, C2, C1 -see Fig 1) was from fitting recovery from inactivation at 3 different voltages
(-80mV, -100mV, -120mV) with a double exponential function of the form:

y=Cl— Al exp(—t/1,) — A2"exp(—t/1,)

The rate constant o is proportional to 1/t;. Using the methods of Colquohn and Hawkes
[37] to reduce the number of free parameters, a voltage dependent rate constant of the form
below was derived with two parameters for optimization (a, b) (see S1 Supplementary Infor-
mation):

(V) = a"exp(—V/b)

Closed state inactivation (B3 corresponding to C3, C2, C1 — IC3,IC2, IC1 -see Fig 1) was
from Goldman [38], and included two parameters for optimization (a, b) and was of the form:.

Bs(V) = a”exp(V/b)

Inactivation from the open state (a2 corresponding to O — IF-see Fig 1) was found by fit-
ting time constants of ensemble averaged current decay data from Yue and Marban [13] to an

PLOS ONE | DOI:10.1371/journal.pone.0150761 March 10, 2016 5/22



@' PLOS ‘ ONE

Cardiac lon Channel Parameter Optimization

exponential equation with two parameters for optimization (a, b) of the form:

o, (V) = a“exp(V/b)

Recovery from fast inactivation back to the open state (2 corresponding to IF — O-see Fig
1) was constrained by microscopic reversibility (as detailed above) and was of the form:

* *
Oy Oy Ol

ﬁz_ ﬁlfi*ﬂii

Slow inactivation from the open state (ox corresponding to O — IS-see Fig 1) was from
Lawrence et al. [39] which measured slow inactivation at -20 mV = 0.111/ms, corresponding to
~ 02/20. Recovery from slow inactivation (Bx corresponding to IS — O-see Fig 1) was initially
set at a3/45 (empirically). See S1 Supplementary Information for the derived initial condi-
tions, and the optimized parameters.

Overview of the optimization routine

Electrophysiological experiments that were used in the optimization procedure were chosen to
cover a wide range of channel gating kinetics over the range of physiologically relevant volt-
ages. At least one experimental protocol that attempted to isolate each transition in the model
was included in the optimization. For example, optimization of the wild-type Na™ channel
model includes experimental protocols that include steady-state availability, steady state activa-
tion, recovery from 1-pulse inactivation, recovery from multiple pulse inactivation, time con-
stant of current decay, and channel mean open time. Fink and Noble [22] suggest a unified
protocol to represent “the normal range of voltage-clamp steps used to characterize ion chan-
nel dynamics”. Although this would be ideal, most often models are built based on datasets
that derive from previously published works from different laboratories under different condi-
tions and measured by different “hands”. Our strategy derives from this reality and should
allow the modeler to build a modular framework that includes multiple separate experiments.
In some instances, it might be preferable to utilize data from varied sources so as not to build a
model of a particular data set, but rather something more representative of general behaviors
captured by many experimentalists. This should help to minimize any systematic errors in
measurement as well. The model may even, in some instances, be useful to reconcile or explain
disparate data sets.

Individual objective functions from each in silico experiment are defined as the sum of
squared errors between experiment and simulation, and normalized to the sampling rate of
each protocol. For example, steady state inactivation simulates channel availability at 9 differ-
ent voltages (9 data points), whereas mean open time simulates just 1 point. Normalizing to
this sampling rate ensures equal weighting between protocols such that no kinetic transition in
the model is disproportionately favored. Notably, sequential optimization constrains the model
to a particular parameter space, thereby implicitly weighting the first protocol optimized dis-
proportionately more than the later protocols. Thus, equal weighting is further accomplished
by optimizing each protocol in parallel rather than sequentially. Finally, individual, normalized
objective functions are summed to an overall objective function, which is ultimately passed to
the minimization routine.

The minimization routine requires specific inputs including (1) the optimization algorithm
(in our case the Nelder Mead algorithm); (2) a vector of initial guesses of the extracted rate con-
stants (see S1 Supplementary Information for initial rates vector); (3) a vector of specific
options for the algorithm to be used (e.g. tolerance, maximum number of function iterations
etc.); and (4) the overall objective function to be minimized. For simplicity, we chose a
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Fig 2. Schematic of the optimization procedure. The first step in the algorithm gathers the experimental data; experiments are then simulated. The
algorithm compares the difference, or error, between experiment and what the model predicts (see inset: red arrows indicate error, the simulated experiment
is denoted by the solid line, the experiment data are the dots). The total error is then summed. The routine perturbs the parameter set, and iterates again. This
routine finishes when the model agrees sufficiently well (defined as the change in cost function between iteration n and n+17) with the experiment. In other
words, when the error between what the model predicts and the actual experiment falls below a predefined value.

doi:10.1371/journal.pone.0150761.9002

bounded Nelder Mead optimization algorithm that only permits positive rate constants, and
does not require any derivative information. However, other optimization algorithms can be
substituted (e.g. Quasi-Newton, Interior-Point, Trust Region Reflective, Genetic Algorithm,
Simulated Annealing, among others). See Fig 2 for a general schematic of the optimization rou-
tine, and Table 2 for example code.

Results
Simulation of Na* channel kinetics: pre- and post-optimization

To capture multiple aspects of physiologic cardiac Na* channel gating, our optimization rou-
tine included 6 common protocols that capture the diverse voltage- and time-dependent
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Table 2. Example Code and Key Commands.

parpool(‘local',5);

mex main_SSA.cpp
mex main_ACT.cpp

Inputs = [

0.1027;

9.3;

0.250];
LB =1[0; 0;...; 0];
UB = [Inf; Inf;. . .; Inf];
options = optimset
(‘TolFun', 1e-2, 'Maxlter', 2);

Inputs_Final = fminsearchbnd (@ WT_CHANNEL,
Inputs,lb,ub, options);

parfor i = 1:n;
ifi==
main_SSA(Inputs);

end

ifi==2
main_ACT(Inputs);

end

end;

doi:10.1371/journal.pone.0150761.t002

Open a parallel pool of 5 MATLAB workers (independen
t MATLAB engines to send each experiment to)
Compile C++ files within MATLAB. Each file is

a separate experiment to be simulated (e.g. SSA-stead

y state availability, ACT-activation). If possible, the number of workers in ‘parpool’ should equal
the number of experiments to be simulated.

Provide a vector of initial guesses.

Provide bounds on the parameter values (e.g. strictl

y positive values: LB-lower bound, UB-upper bound)
Provide a list of options to the optimization algorithm
(e.g. Maximum iterations, tolerance on the function etc.)

Main function call to the minimization algorithm. Use the ‘fminsearchbnd’ (Bounded Nelder-
Mead) algorithm to compute the minimum of the function ‘WT_CHANNEL’, with initial
guesses provided by the ‘Inputs’ vector, bounded by ‘LB’, and ‘UB’, using the ‘options’
provided.

Create a parallel ‘for’ loop (‘parfor’) to send each
experimental protocol to a separate MATLAB worker.
This step simulates each protocol with the vector of
‘Inputs’

properties of the channel: steady state availability (SSA), steady state activation (ACT), recov-
ery from inactivation at -100 mV (RFI), recovery from use-dependent block (RUDB), time to
50% decay of Na* current (Tau50%), and mean open time at -30 mV (MOT).

Extraction of rate constants from the literature (described above) yielded initial fits to 6 pro-

tocols as shown in Fig 3 (blue traces). These initial fits are not surprising, as the rate constants
were extracted from different laboratories with different experimental conditions and proto-
cols, and ultimately serves to show the biological variability and noise from preparation to
preparation [23]. It also clear from the initial fits to the data that individual protocols do not
necessarily isolate one specific kinetic transition, but rather capture simultaneous gating pro-
cesses [22].

Optimized drug free Na* channel model

The drug free Na* channel model converged in 1235 iterations using convergence specifica-
tions of a tolerance of 0.01 for the change of the cost function, and 0.01 for the change in
parameters. As can be seen in Fig 3 (red traces), the optimized model effectively recapitulates
the experimentally measured kinetics. It is also notable that some transition rates changed only
a small amount during optimization. Nearly all of the optimized rate constants were within an
order of magnitude of the initial value. Notably b12 changed by a factor of 1000; this likely

PLOS ONE | DOI:10.1371/journal.pone.0150761
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Fig 3. Wild-type Na* channel kinetics—pre- and postoptimization. In each panel, the points are experiment, and the lines are simulation. Blue traces
indicate preoptimization using initial guesses as described in the text; red traces indicate the optimized parameters. The protocols are as follows: steady state
availability (or inactivation) (Panel A), steady state activation (Panel B), recovery from inactivation at -100 mV (Panel C), recovery from use-dependent block
(Panel D), and time to 50% decay of Na* current (Tau50%) (Panel E). The model was further constrained by mean open time at -30 mV. Data are from
[3,9,10]. Voltage protocols are shown as insets.

doi:10.1371/journal.pone.0150761.9003

suggests there is insufficient data to fully constrain this variable. Fig 4 shows the ratio of the
optimized parameter to the initial value of the parameter extracted from the literature.

These results suggest that while there is considerable variability between experimental data-
sets, optimization strategies can be used to formulate a model that broadly captures behaviors
in multiple datasets, and can be used to probe model structure, effectively discarding unneces-
sarily complicated models (too many states) in favor of the simplest gating scheme (done here)
that reasonably captures measured channel properties.

Robustness of the drug-free model, sensitivity and parameter identifiably

There is a diverse literature base on parameter optimization, including analysis of uniqueness
of fit, parameter identifiability etc. The reader is encouraged to review [22,23,25]. Briefly, a
model is considered identifiable with regards to given experimental data, if it can reproduce
that data using a unique set of parameters [25]. In practice, local (rather than global) identifia-
bility is considered sufficient, as it is difficult or impossible to ensure global identifiability in all
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Fig 4. Ratio of optimized parameter to initial value. As can be seen, many parameters needed minimal optimization to accurately fit the wealth of data
from multiple protocols. Some parameters, however, varied markedly from their initial value (e.g. b12). See Table 1 and S1 Supplementary Information for
the initial, and optimized parameter values.

doi:10.1371/journal.pone.0150761.9g004
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but the most simple of models. As noted by Fink [22], unidentifiable parameters make numeri-
cal optimization algorithms difficult, as optimized parameters become dependent on initial
conditions.

We loosely followed the methods of Fink et al. by ensuring that our model was not over-
parameterized and displayed no a priori unidentifiability (a condition whereby 1 parameter in
the model can be recast as a combination of other parameters).

Because the model formulation represents a highly nonlinear system with multiple degrees
of freedom and complex topology, we undertook a robustness testing strategy to determine if
the algorithm returned to the same “global” minimum with increasingly large perturbations
from the minimum starting point. We defined the results of the drug free optimization as our
true “global” minimum; in other words, simulating the aforementioned protocols with those
values would yield a cost function of zero.

The parameter values were systematically perturbed away from their optimum value (again,
defined as the optimized parameter values found as described above) by multiplying the
parameter by a random number generated that was + 5, 10, or 25% from the nominal value.
This was done 3 times for each percentage perturbation. The optimization algorithm was
restarted from the perturbed initial values and was assessed for how close it returned to the
“optimum” (initial) values. Fig 5 shows the ratio of the average normalized parameter after 3

2 -
ﬁ & 5% Deviation
3 =,[ 4 10% Deviation
2 15 1 5% Deviati
o o Deviation
% . I II]
Ny i [
2 1+ I I I 1
E, & 1 | I J [ I]
£ i L | -
£
8 05 -
& ..
o
o
>
S

0 -

A ¥ KV A QY @*00*0'\?) R, ZEC SRR s S o
&x/’b\"\,/ \0,»'\,/\0,\"\,/ ,g;/ rg)/ ‘0’)’/ ‘00)/ ,51,/ Q;\,/

Fig 5. Robustness Analysis of Optimized Parameters. An optimization routine was set up such that a “true” global minimum was defined as the optimized
parameters. The previously found optimized values were perturbed by a random number with a 5% (n = 3 runs), 10% (n = 3 runs), or 25% (n = 3 runs)
deviation. The deviated parameters were used as the initial guesses, and the optimization algorithm was restarted. The graph shows the averaged parameter
values from each set of runs, normalized to the optimized starting value. A value of 1 with no error bar would mean that the strategy found the exact optimized
value. The error bars show +1 standard deviation, normalized to the average value found from the runs. As can be seen, the algorithm performed best with
smaller deviations from the optimum value, and many parameters were sufficiently constrained, even with large (25%) perturbations.

doi:10.1371/journal.pone.0150761.9g005
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runs to the “global minimum” parameter, and the standard deviation, normalized to the aver-
age. Stated differently, this robustness test is a measure of how well the algorithm performs
when one knows the true global parameters, and how well the optimization strategy performs
if the initial values are perturbed by 5, 10, or 25% away from the optimum value.

As can be seen in Fig 5, there are certain parameter values that are not well constrained by
the experimental data. Thus, it is possible to derive multiple parameter sets that yield accept-
able fits to the data, and of note, all runs of the optimization yielded parameter sets with an
acceptably low cost function. It can also be seen, that the larger the perturbation away from the
“global minimum?, the larger the discordance (variability) between the initial and ending
parameter (e.g. compare magnitude of error bars between the 5% deviation and the 25% devia-
tion). As new experimental data become available to further constrain the model, the optimiza-
tion procedure should tend towards the true global minimum.

Application of the procedure to drug blockade

One promising extension of state-dependent coupled ion channel models is for modeling the
interactions of drugs with discrete conformational states of the ion channel [3,40]. We next
describe the optimization process to tune parameters in an extended model of ion channel
interactions with a drug. We briefly detail construction of a model of the cardiac Na* channel
interaction with the class I antiarrhythmic drug flecainide.

The optimization procedure follows from the drug free Na* channel and makes use of mea-
sured pharmacokinetic properties of the drug to be simulated (e.g. diffusion rate, pKa for
charge distribution etc., therapeutically relevant drug concentrations). A wide variety of experi-
ments that capture features of drug blockade are used to constrain the model and include (1)
slow, tonic block, (2) use-dependent block (frequency and concentration dependence), (3)
steady-state availability in the presence of drug, and (4) recovery from drug bound states [3].

For example, the pKa of flecainide is 9.3 [10], yielding roughly 98% charged species at physi-
ological pH. Diffusion of flecainide was measured to be ~5830 M™ ms™ [41], which we esti-
mated as 5500 M"' ms™ in the computational model. The flecainide drug-channel model
parameters for the on and off rates are derived from experiments, where possible, or computed
from the available data. These include diffusion rates that indicate drug on rates “k,,” =
[drug]* D (diffusion rate) and affinities (Kd) to discrete conformations that determine drug off
rates “kog” = Kd*D (diffusion rate).

The model contains two binding schemes as described previously [3]: a charged, and a neu-
tral flecainide drug binding scheme. While the full details are beyond the scope of this manu-
script, the following is a brief summary on charge-state conformation specificity. The charged
fraction of flecainide does not readily access inactivated states. Open state affinity for the
charged form was derived from Kd values obtained from experiments measuring use-depen-
dent blocking (UDB) affinity, an estimate of affinity to the open state [11]. Measured affinities
(11.2 uM for flecainide) were defined as Kd, —the Kd at 0 mV. Closed state affinity of charged
drug was then calculated using Eyring rate theory for the voltage dependence of rate constants
(Kd = Kdy*e4 V' F®R™D)) [13]. For example, the Kd value at -100 mV for flecainide was com-
puted to be 175.8 uM, which estimates charged drug affinity for the closed state (see Fig 6A).

The state specific affinities of neutral flecainide to closed and inactivated states were mea-
sured as 794 UM and 5.32 pM, respectively [10]. We used 800 pM and 5.4 uM in the computa-
tional model. Affinity of neutral flecainide to the open state was fit to UDB data in [10], and
yielded a computed Kd of 400 uM.

The values noted above, and listed in Table 3 were fixed and not allowed to change during
the optimization procedure.
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Fig 6. Flecainide drug binding. In panel (A,) a computed Kd curve is generated from Kd = Kdgy*e V"R D) with Kd, _ 11.2 (Kd at 0 mV). Kd.10omv =
175.8 uM. See Table 3. Panel B and C are the results from optimization of neutral rate constants for flecainide using a neutral flecainide derivative (NUFL).
Panel (B) is use-dependent block at 10 Hz for 10 uM and 100 uM flecainide. Blue bars are experiment [10], and red bars are the result of the simulation.
Panel C is recovery from UDB with 100 uM NUFL. Panels (D-H) are the results of the optimization for charged flecainide under a variety of protocols: (D)—
steady state availability, (E)—tonic block (1-pulse block), (F)-use-dependent block (UDB), (G)—recovery from UDB, and (H)—frequency dependent use-
dependent block. Protocols are shown as insets.

doi:10.1371/journal.pone.0150761.9g006

For the drug block model, the same optimization procedure as outlined above for drug-free
channels was used. Five experimental protocols were used to constrain the model: steady state
availability (SSA), tonic block (TB), use-dependent block (UDB), recovery from UDB (RUDB),
and frequency-dependent UDB (FDUDB).

The computational model of flecainide contains 8 free charged drug rate constants (ox1,
Bx1, al3c, 022, B33, 033, 044, B44), and 8 free neutral drug rate constants (ox2, o13n, o._22,
B_33, a_44, B_44, ki_on, ki_oft); the rest of the drug rate constants are constrained by micro-
scopic reversibility. Each rate constant is a scalar value of the drug free parameter. For example,

ox1 = A*ax. The initial condition for the charged and neutral rates can be found in the S1 Sup-
plementary Information and S1 Fig.
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Table 3. Model State Specific Affinities of Drug to the Sodium Channel Flecainide.

Charged Neutral
Open state Kdo =11.2 uM [11,42] 400 uM [10]
Kd = Kdg*ed"V*F(R*T) [13]
Closed states Kd.100mv = 175.8 uM (computed) 800 uM [10]
Inactivated states N/A 5.4 uyM [10]

d = fractional electrical charge = 0.7; F = Faraday’s constant = 96485.3415; R = Universal gas
constant = 8314.472; T = Temperature (in K) = 295 for optimization; Kdo = Kd at 0OmV (measured affinity at
0 mV)

doi:10.1371/journal.pone.0150761.t003

To simplify the problem, we split the optimization into two parts: charged, and neutral fle-
cainide. To determine the neutral rate constants, we took advantage of a fully neutral analog of
flecainide and first optimized the 8 neutral rates with UDB data at 10 Hz for 10 pM and
100 uM NUFL (Fig 6B), as well as recovery from UDB with 100 uM NUFL (Fig 6C). The initial
values for the neutral rate constants were 1* drug free rate constant. After convergence, these
rates were held constant while the charged rate constants were optimized over the five proto-
cols listed above (SSA, TB, UDB, RUDB, FDUDB). For the charged fraction of flecainide, we
started with our previously published model parameters [3]. As shown in Fig 6D-6H, the
model achieved good fits to the experimental data. Further details on applications and predic-
tions can be found in [3].

Analysis of initial conditions

It is notable that the algorithm is not perfect, and has the potential to get stuck at local minima.
Given the direct search nature of the algorithm (as compared to global optimization routines),
it trades simplicity and speed for robustness. Starting from the converged neutral rates as noted
above, we examined the dependence of the charged flecainide optimization on initial parame-
ters. In addition to starting from our previously published results, we started the optimization
from 3 additional starting vectors of initial guesses: a sequential strategy, selected inputs based
on modeler intuition, and all 1’s (indicating that the drug bound rate = 1* drug free rate). Asa
reminder, drug binding rate is of the form: drug rate = parameter * drug free rate.

Our first trial implemented a sequential optimization in an attempt to “push” the system
into a more reasonable parameter space, and to assess the dependence of sequential optimiza-
tion on the final values. We started with four protocols-SSA, Block (including UDB and TB),
frequency dependent block (FDUDB), and recovery (RUDB), and sequentially optimized each
protocol for 100 iterations before adding in the second, third and fourth protocol. We imple-
mented a full factorial design and, accordingly, ran 24 (4!) different iterations. For example,
our first iteration started with SSA; after 100 iterations, RUDB was then added into the optimi-
zation routine (starting with the results after the 100 iterations of SSA). Iteration 101-200 opti-
mized SSA and RUDB in parallel. Frequency dependent block was then added, and for
iteration 201-300, SSA, RUDB, FDUDB were optimized in parallel. Finally, Block was included
for iteration 301-400. This was repeated for each possible combination. The combination SSA,
Block, RUDB, FDUDB gave the lowest value on the cost function, and thus we continued this
parameter set to convergence (Fig 7 —Black traces). This method gave acceptable fits to the
data, but as compared to the best fit, the objective function was ~65% higher (e.g. total error on
best fit was 165, vs. 272). See Table 4.
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Fig 7. Analysis of initial conditions in charged flecainide model. Shown are the results of 3 additional optimization routines for charged flecainide, all
starting from different initial conditions. The black trace is from a sequential design strategy of 400 initial iterations (100 each) of SSA, Block, RUDB, and
FDUDB. The optimization was then continued to convergence. Red inputs indicated an empirically derived (“hand tuned”) set of initial guesses (see Table 4).
Blue traces indicate an initial vector of all 1’'s—indicating that the drug bound rate constant = 1* the drug free rate constant. See text for further details.

doi:10.1371/journal.pone.0150761.g007

Our second trial relied on “operator intuition” through analysis and interpretation of many
data sets, and started with a vector of initial guesses that gave qualitatively good initial fits to
the data, using order of magnitude estimates. Initial guesses are shown in Table 4, and the opti-
mized model is shown in Fig 7 —Red traces). As can be seen qualitatively, and quantitatively,
this method gave nearly identical results our quantitatively “best” model (Fig 6). Notably, the
total error was only 4% worse than our “best fit”.

Lastly, when we start the charged flecainide optimization from an initial vector of all 1’s
(e.g. setting the drug bound rate equal to the drug free rate), the routine converges to a local
minimum with unacceptably poor fits (Fig 7 —Blue traces). The total error is almost 3x the
magnitude of the “best fit” error.

Discussion

Computer modeling and simulation of ion channels has become a widely used and largely
accepted approach to study ion channel function. Models are increasingly extended to include
the effects of perturbations such as the effects of mutations, regulation by intracellular signaling
components and pharmacology. We recently developed a coupled state-dependent model of
the cardiac Na* channel to predict the interactions of antiarrhythmic drugs [3]. This model
was the compilation of years of experimental research and development that suggested a multi-
state kinetic mechanism of gating [2,13,19,26,39,43,44]. We then surveyed the literature to find
voltage-clamp datasets that attempted to isolate specific molecular transitions and extracted
rate constants for those transitions. Implementing a simple and relatively robust direct search
numerical optimization strategy with no a priori weighting of protocols, we simultaneously fit
multiple voltage-clamp datasets. The optimized model recapitulated many features of physio-
logical gating, and was expanded for modeling drug-channel interactions.

Our strategy of parallel optimization of multiple datasets—so called ‘multi-objective fitting’
has been suggested to improve model outcome and credibility [24], parameter identifiability
[24,25], and specifically guards against a priori weighting of kinetic transitions. The method
proposed by Fink et al. [22,45] to create one single protocol for channel gating that is sufficient

Table 4. Summary data of charged flecainide parameters starting from different initial conditions.

Parameter Best Fit

ax1
bx1
al3c
a22
b33
a33
ad4
b44

Total
Error

Iterartion

Initial
5.7839E-05
1.6689E-08
3.6324E-03
1.4847E+03
1.7352E-06
6.7505E-05
2.4135E+00
4.9001E-02

Best Fit

Converged
1.0836E-05
4.2106E-08
2.4824E-03
1.2663E+02
4.8810E-06
1.8309E-04
2.5183E+00
4.6378E-02
1.6500E+02

432

doi:10.1371/journal.pone.0150761.1004

Ones Ones Sequential Sequential Selected Selected
Initial Converged Initial Converged Initial Converged
1 2.4481E+00 1.9541E-02 1.5090E-02 1.0000E+00 1.4439E-01
1 1.7709E-02 4.3132E-04 1.2162E-09 1.0000E-04 3.6637E-04
1 3.6791E+00 1.6732E+02 5.6531E+02 1.0000E+00  3.4583E-03
1 3.0744E-01 1.3239E-02 1.4486E-02 1.0000E+00  2.1129E+00
1 5.2879E-01 2.7360E-02 2.3675E-02 1.0000E-04 4.8304E-08
1 1.5913E+00 5.6535E-04 5.3763E-04 1.0000E-04 2.6205E-04
1 4.6704E-09 7.7744E+00 9.9942E-02 1.0000E+00  2.3428E+00
1 1.0091E+00 1.6783E+00 3.7766E+00 1.0000E+00  1.0219E-02
4.8000E+02 2.7200E+02 1.7200E+02
256 311 388
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to capture the most essential gating kinetics is of course ideal. However, in practice, the mod-
eler finds herself with multiple distinct datasets from different laboratories. Multi-objective fit-
ting can be used to “meld together” a wide range of data from the experimental literature into a
cohesive computational framework that summarizes decades of experiment and understanding
[18]. Lastly, by optimizing multiple datasets in parallel (e.g. activation, inactivation, recovery),
no specific transition is favored in the optimization process. While Menon et al. derive an inge-
nious state mutating genetic algorithm to optimize both topology and kinetic parameters, their
sequential goal-programming technique defines an implicit hierarchy to certain kinetic transi-
tions [21].

With regards to local and global identifiability, our implementation of the Nelder Mead
method likely finds a local minimum, and it is virtually impossible to prove a global minimum
[23,25]. It has been shown that multiple optimization strategies, and even multiple iterations of
the same optimization strategy do not yield exactly the same results, indicating a non-unique
parameter set (especially if the model is over-parameterized). However, we [3], and others [24],
have previously shown that multiple parameter sets that accurately fit the data do not necessar-
ily affect the robust output of the model, but then parameter sets and model behaviors need to
be subject to sensitivity analysis. As noted by Hui et al. [25], identifiability must be balanced
against convergence rate and total number of model evaluations to find the least complex
model that is sufficiently predictive for a given application.

Additional data designed to measure specific kinetic transitions in the model will likely be
useful to increasingly constrain the model parameters to a truly unique solution, but only if the
experiment is truly isolating a specific kinetic transition. Our analysis suggests that pure isola-
tion of specific kinetic processes by electrophysiological techniques for channels is far from
perfect [22,46]. For example, recovery from inactivation time course likely represents addi-
tional processes—channels opening for the first time, inactivating and recovering, channels
deactivating and then reactivating again etc. Although the time-course may be dominated by
one kinetic transition, the full time course may more likely be a mix of multiple processes [11].
One possibility is that new techniques that enable more sensitive measurements of individual
transitions of proteins—especially those that don’t produce distinct ionic currents (i.e. deactiva-
tion, activation, recovery)-will allow for better constraints of individual rate constants.

An additional point that warrants discussion is the robustness of the model to predict emer-
gent pharmacology given uncertainty of initial parameters. In addition to the analysis described
above, one strategy that we [3], and others have utilized is a sensitivity analysis of the model
input parameters to a well-defined model output, namely ionic current. We have shown previ-
ously that the model is not overly sensitive to nominal inputs. One area of future research is
extending a sensitivity analysis of both model input (parameters) and output at each space and
time scale (e.g. ionic current, cellular membrane potential, and tissue dynamics). For example,
Yang [47] simulated a population of single cells by varying all model parameters randomly by
20% of their nominal values and ascertained action potential duration at 90% repolarization
(APDy,) as the model test output for the simulated population. This simulation reflects an effi-
cient way to observe responses in a population of action potentials with varying parameters.
Lastly, Yang et al. [47] induced beat-to-beat APD variability by adding noise currents to the
total membrane potential throughout the simulated time course, and was able to determine the
sensitivity of the model output to an applied perturbation. Thus, predictive models should
undergo a thorough sensitivity analysis at each stage of development to ensure that the predic-
tions of the model are valid and applicable.

Finally, our results are consistent with the notion that final parameters exhibit an important
dependence on initial guesses; this likely results from either an incompletely constrained
model, an over-determined system, or insufficient data to constrain the model. The closer the
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initial guesses are to the “correct” parameters, the more robust the optimization. In the absence
of reasonably “good” initial guesses, the investigator might consider utilizing multiple ran-
domly generated initial parameters to allow statistical tests of goodness of fit to the data. The
initial condition sets that result in a predetermined user defined cost-function cutoff can be
subjected to additional optimization tests, examined for sensitivity, and used in simulations
that can be subject to validation tests with additional data sets in order to choose the final
parameter set.

Limitations

The approach we describe in the paper is not without limitations; while the Nelder Mead
method is relatively easy to implement, it suffers from being relatively “slow”, requiring many
iterations to converge (in the drug free Na™ channel described here, over 1250 iterations
required upwards of 30 hours of computational time on an Intel Xeon 3.0 GHZ 8-core Mac
Pro desktop computer). Because it is a direct search algorithm, there is potential for the routine
to get stuck at a local minimum far from an acceptably optimized parameter set. We have iden-
tified a few strategies to help overcome this pitfall. One can restart the simulation after it hits a
local minimum by perturbing the parameters at that point in the optimization (e.g. a random
perturbation of each parameter by + 10%), and then restarting the simulation. This can serve
to “kick-start” the simulation and potentially overcome the local minimum. In addition, the
appropriate selection of experimental protocols that focus on as few molecular transitions as
possible, yielding initial guesses of parameters that are relatively close to the optimized value
help to achieve an acceptable parameter set. It is also possible to use a “hybrid” strategy using
empirically derived initial values that start the optimization qualitatively closer to an acceptable
fit, and then use parameter optimization to achieve a quantitatively best fit. This strategy can
help the modeler to derive a robust model that recapitulates the known experimental data.

There are other numerical strategies to avoid local minima-namely utilizing more robust
“global” optimization methods such as genetic algorithm, multi-start algorithms, and simu-
lated annealing, for example. While these methods are fairly easy to implement for the expert
user (especially utilizing the built-in functionality within the Global Optimization™ and Parallel
Computing™ toolboxes), they may not be accessible to non-experts and require tremendous
increases in computational power. For example, the genetic algorithm implementation in
MATLAB starts with a default generation value of 100" number of parameters, and 200 for
an initial population size. With our model, this would require cloud or cluster computing
functionality.

It is also important to note that modeling is by definition, a simplified representation of the
underlying physiology. Connection to the protein structure is not an emergent property of the
modeling but dependent on the modeler’s definition of the model topology [22]. There is also
the possibility that model structure does not reflect molecular reality (e.g. the Na™ channel
model by Menon requires that recovery into a closed state necessitating a transition through an
open state [21]). Thus, careful application of the model with knowledge of the experimental
biophysical data, and the conclusions drawn from model predictions must be realized with
these limitations.

Lastly, the results of this study suggest that optimization is just one tool in the arsenal of
simulation of drug function. To date, there is no “silver-bullet”, nor single best approach to
deriving an ion channel model. Each model, and application thereof, requires careful analysis
and consideration of the potential limitations implicit within its construction. The model
needs to be as complex as is required for the problem of interest, but ideally, not more complex,
nor simpler.
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Conclusions

Here, we present a detailed approach to a numerical optimization strategy to derive functional
models of ion channels from experimental function data, and extend the framework to focus
on a clinical application of pharmacokinetic modeling—ion channel drug interaction. We have
previously used a comparable model in a multiscale framework to predict antiarrhythmic drug
action and safety [3,40]. Since efficient methods for preclinical proarrhythmia assessment of
candidate compounds affecting cardiac ion channels are currently lacking, modeling and simu-
lation approaches that extend the types of model frameworks described here may comprise a
plausible first screening step [48]. The approach has also been used to understand common
mechanisms of inherited and acquired arrhythmia, with exploitation of common pathways for
therapeutic drug targeting [40]. While the state-dependent ion channel model framework has
focused on cardiac ion channel blockade, the methodology is potentially applicable in other
diseases of excitability, disturbed ion channel function, and predictive pharmacology such as in
epilepsy and pain.

The advent of novel, high-throughput electrophysiology [49], when combined with in-silico
predictive models also has the potential to dramatically shorten the drug development cycle by
providing early predictions for which agents merit further testing in higher dimensions and
with experiments. It is hoped that a hybrid strategy can be scaled for high throughput screening
and high sensitivity, which will be able to dramatically reduce costs by discarding compounds
with unforeseen side effects much earlier in development.

Finally, as our understanding of cardiac physiology and the drug channel interaction
becomes further refined, it may be possible to use this model framework to “reverse engineer”
an “ideal” compound with specific biophysical properties that will be predicted to behave and
produce specific antiarrhythmic effects. In-silico combinatorial approaches can then be used to
guide synthesis of those compounds to validate model predictions.

Supporting Information

S1 Fig. Model schematic of the drug-channel interaction. Functional interactions of a local
anesthetic with the cardiac Na channel are complex and determined by drug charge, channel
conformation specific binding, gating kinetics of drug bound channel, and time and voltage
dependence of recovery from drug block. Panel (A) shows a schematic indicating model
assumptions of drug accessibility. Local anesthetics have two forms at physiological pH: neutral
and protonated. Neutral drug diffuses through the membrane and may migrate into the recep-
tor via a hydrophobic pathway. Neutral drug binds to all conformational states, with low affin-
ity to closed and open states and markedly higher affinity for inactivated states (see State
Specific Affinities in Table 2). Charged drugs obtain binding site access from inside only
(hydrophilic pathway). Charged drug exhibits high voltage dependent affinity to the open
state, low affinity to closed states and does not readily access inactivated states (see Table 2).
Panel (B) is the Markovian model representation of the drug Na channel interaction. The drug
free channel has 8 distinct states (top two rows of states shown in black), any of which can exist
as a drug-bound conformation. There are two modes of drug bound channel states-red lines
indicate entry or egress from a mode of charged drug bound states denoted by a red D+. Green
lines indicate entry or egress from neutral drug-bound states denoted by a green D. Gating
transitions that occur subsequent to drug binding may be affected by presence of drug. The fle-
cainide model includes an additional inactivated, trapped state (DIT) [50]. Transition arrows
were omitted from IC3—DIC3, IC2—DIC2, IF—DIF for clarity (blue box). Figure reproduced
from [3].

(EPS)
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S1 Supplementary Information. This file contains rate constant derivations, vectors of ini-
tial guesses and optimized parameters, as well as brief explanation of the optimization
code found within S1 Optimization Code.

(DOCX)

S1 Optimization Code. This .zip file contains all of the optimization code used in the arti-
cle.
(Z1P)
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