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ABSTRACT

Most physical excitable media have regions of depressed excitability and in many
of these systems, the interaction of waves of excitation and these region is of the
utmost interest. In the heart, regions of this nature can disrupt the normal wave
of electrical excitation and trigger the onset of dangerous arrhythmias. In order to
get insight into the effects of regions of reduced excitability, we consider a model
in which the regions are idealized as nonexcitable. We show that the arrhythmia-
generating phenomena of propagation failure and reflection occur in the model and
attempt to elucidate the dynamical mechanisms underlying these behaviors.

We study propagation failure using the one-dimensional scalar bistable equation
with a passive “gap” region. By applying ordering principles for this type of
equation, the problem of finding conditions for block is reduced to finding conditions
for the existence of steady states solutions. We present a geometrical method that
allows one to easily compute the critical gap length above which a steady state
solution, and thus block, first occurs. The method also helps uncover the general
bifurcation structure of the problem including the stability of the steady state
solutions. In obtaining these results, we characterize the relationship between the
properties of the system and propagation failure.

Again, we consider wavefront propagation in the one-dimensional reaction diffu-
sion equation with a passive gap region; however we now include recovery dynamics.
We numerically explore the behavior of the system for various gap lengths and
discover exotic reflection behavior. We introduce a new one variable model for
excitable systems and by studying coupled cells described by these dynamics,
we demonstrate that reflection is associated with transient dynamics around an
unstable periodic orbit. This unstable periodic orbit is shown to be a continuation of

the antiphase orbit of coupled oscillators. Also, we suggest two ways that stable echo



oscillations can arise in spatially coupled excitable media and conjecture that some
tachycardias in the atrioventricular node could be explained by these oscillations.

Finally, we show simulations of activity in a two-dimensional excitable medium
with a region of passive diffusion and describe a novel mechanism for the gener-
ation of spiral waves that involves reflection. This mechanism appears to be the
most, physiologically viable mechanism for the induction of the potentially fatal

arrhythmias associated with spiral wave dynamics that has been proposed to date.
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CHAPTER 1

INTRODUCTION

1.1 The Gap Model

This thesis concerns wave propagation in excitable media that contain local re-

gions of reduced excitability. Specifically, we study the reaction diffusion equations

{ Uy = (D(Jf)uw)w + s(x)f(u,’LU), (1.1)

wy = s(x)g(u, w).

In this system of equations, u is a diffusing excitability variable and w (in general
a vector) is a slow recovery variable. The spatial inhomogeneity that will be
considered is an abrupt decrease in the magnitudes of the excitability reaction term
and diffusion coefficient followed by an abrupt return to the original magnitudes.

Specifically, the functions D and s are defined piecewise as follows:

D, 0<z<I,
D(x) = { 1, otherwise, (1.2)
and
0, 0<zxz<L,
s(z) = { 1, otherwise. (1.3)

We will often refer to the region of low excitability (0 < z < L) as the “gap” and
the full model as the “gap” model. For almost all cases considered, ¢ will be zero
corresponding to purely passive diffusion in the gap.

Local inhomogeneities such as the one described above occur in most physical
excitable systems and in many of these systems, the ability of waves of excita-

tion to be successfully transmitted over spatial regions with depressed excitability



and/or increased axial resistance is of the utmost interest. Examples appear in
neurophysiology [53, 18], calcium dynamics (CICR) of muscle cells [62], population
genetics [20], ecology and combustion dynamics [68]. Although the results presented
in this thesis are quite general, the motivating application comes from cardiac
electrophysiology. Regions of decreased excitability occur in the heart in both
sickness and health and it is suggested here that understanding the interaction of
waves of excitability with these regions is essential to understanding transitions

between normal and pathological electrical behavior in the heart.

1.2 Applications to Cardiac Electrophysiology
1.2.1 The heart as an excitable medium

Although there is no precise definition of excitable media, they can be charac-
terized by their behavior under external stimulation or perturbation [45]. When
a perturbation above a small but sufficient amplitude is delivered to an excitable
medium in a quiescent state, an autocatalytic process is activated that induces a
large excursion in the state variable(s) (i.e., variables describing the state of the
system). This is followed by a decay back to the quiescent state. If a smaller
perturbation is given, the system will remain close to the quiescent state. This
is known as threshold behavior, and reflects the nonlinearity of excitable systems.
In spatially distributed systems where the excitability variable can diffuse down its
gradient, local excitation can spread and waves of excitation can propagate through
the medium.

One of the most important features of most cardiac cells is that they are elec-
trically excitable. Another important feature is that cells are electrically coupled,
so that the electrical activity in one cell can spread to its neighbors via electrical
diffusion and lead to their excitation. These features imply that heart tissue is an
excitable reaction-diffusion system. In fact, when nondimensionalized, equations
describing the electrical activity of cardiac tissue, which can be derived by first
principles, are of the form of system (1.1). The variable u can be thought of as the

electrical potential across the cell membrane. The reaction term f would then be



the sum of the ionic currents that flow through the membrane and drive changes
in the transmembrane potential, and the variable w would describe the gating
dynamics that modulate the ionic currents.

Because heart tissue is excitable, it exhibits the threshold behavior described
above. At rest, cardiac tissue is polarized, however when electrically perturbed, the
cells undergo a large change in transmembrane potential. This change is driven by
an autocatalytic activation of excitability currents that rapidly depolarize the cell
membrane. These depolarizing currents then turn off and recovery currents (of the
opposite sign) take over and repolarize the membrane. In electrophysiology, the full
process is called an action potential. Normally, about once per second, an action
potential propagates as a wave of excitation through the entire heart in an orderly
fashion. This leads to the contraction of the cardiac muscle tissue (myocardium)

and the pumping of blood.

1.2.2 The normal activation sequence in the heart

The ability of the heart to pump blood to the body relies on the rhythmic and
staggered, but well-timed, contractions of the atrial and ventricular myocardium.
A contraction is a result of electrical excitation spreading through the heart in a
coordinated manner. The normal sequence of activation (i.e., electrical excitation)
begins at the sino-atrial (SA) node, which is located high in the right atrium. The
SA node acts as a pacemaker: it spontaneously depolarizes in a periodic fashion,
and thus initiates the wave of cardiac excitation. From the SA node, the excitation
spreads through the right atrium to the left atrium (both of which contract, and
pump blood into the relaxed ventricles) and to the atrioventricular (AV) node.
The AV node is the sole electrical link between the atria and the ventricles and
exhibits slow conduction. Following this slow conduction through the AV node,
the wave of excitation reaches the top of a highly ramified specialized conduction
system. The initial branch of this system is called the bundle of His and the
subsequent branching structure is composed of tissue called Purkinje fibers. The

wave of excitation rapidly propagates through the multiple branching generations of



the His-Purkinje system, which generally line the surface of and are embedded in the
ventricular endocardium. Excitation then spreads to the ventricular endocardium
and propagates through the myocardium to the epicardium, causing a ventricular
contraction that pumps blood to the body. Disruptions of this normal spread
of excitation can result in cardiac arrhythmias that encompass a wide variety of
complex behavior. Some of these cardiac arrhythmias can be benign, while others

can be fatal.

1.2.3 Where’s the gap?

When a person has a heart attack, a coronary artery is occluded. Occlusions
substantially reduce or entirely cut off blood flow to a region of cardiac tissue, and
thus this tissue becomes ischemic (sick) and begins to die. One of the properties of
ischemic tissue is that there is an accumulation of extracellular potassium resulting
in the decrease in the normal polarization of the cell membrane of the tissue in the
ischemic region. This, in turn, causes an increase in the resting level of inactivation
of the sodium current, the primary current for excitation, and thus leads to a
reduction in excitability. If the region remains cut off from its blood flow for an
extended period of time, the tissue will die and scar tissue known as an infarct will
form. Infarcted regions have very little, if any, viable excitable tissue and cells are
largely electrically decoupled from one another. It is thought that current is only
allowed to flow passively through the extracellular space in the region. Generally,
ischemic and infarcted regions are surrounded by healthy tissue, and thus both
situations fall into the framework of our gap model. In fact, the fibrous structure
of heart muscle and the truly cable-like structure of the Purkinje fibres makes the
one spatial dimension in the model a good approximation in many situations.

Also, the gap model is a good simple model to study dynamics of wave prop-
agation through the atrioventricular (AV) node. The slow conduction in the AV
node is a manifestation of high resistivity (small D) and low excitability, which
can become even lower under conditions such as increased heart rate, increased

parasympathetic (vagal) tone, etc. On the other hand, the atrial tissue on the



proximal side of the AV node and the tissue in the bundle of His on the distal side

of the AV node are highly excitable, thus the framework agrees with the gap model.

1.2.4 Effects of gaps

The main reason the systems mentioned above are of extreme interest is that
inhomogeneities can disrupt waves of activation in heart tissue. In fact, the inter-
actions of incoming waves of excitation and local inhomogeneities are thought to
be involved in wave block and the induction of cardiac arrythmias.

In pathological situations, the AV node only lets a fraction of waves of excitation
through to the ventricles (e.g., Wenckebach rhythms) and thus the cardiac output
can drop substantially. In fact, sometimes all signals stemming from the SA node
are blocked resulting in a behavior known as AV dissociation. In this case, a region
below the AV node must become spontaneously active and take over the pacemaking
responsibility. When this happens, the heart rate is extremely low, there is little
or no nervous control of heart rate, and there is no coordination between the atrial
contractions and ventricular contractions. This, of course, results in a very low
cardiac output, which changes little in response to increased oxygen demand and
other metabolic variations.

The effects of the interaction of waves of excitation and ischemic or infarcted
regions of tissue following a heart attack can be even worse than AV nodal ar-
rhythmias. Although the exact mechanism is unresolved, it is thought that this
interaction results in the induction of persistent disorganized reentrant rhythms
known as tachycardia and fibrillation. When this behavior occurs in the ventricles,
it causes nonsynchronous contraction of the ventricular muscle and very little blood
can be pumped into the circulatory system. If these rhythms are not terminated,

the death of the victim can occur within minutes.

1.2.5 An experimental gap model
It should be noted that the AV node and infarcted and ischemic tissue are quite
heterogeneous in themselves; however the gap model seems to be a simple, yet

reasonable, model to study in order to gain insight to the dynamics of the much



more complicated physiological systems. A more direct application of the gap model
to systems in cardiac electrophysiology is found when the model is compared to an
experimental preparation known as the sucrose gap experiment [7, 31, 29]. The
sucrose gap preparation is used as a simple experimental model for infarcted or
ischemic tissue as well as the AV node, and exhibits much of the same behavior as
these. The preparation consists of a Purkinje fibre or strip of ventricular tissue lying
in a bath that is composed of three distinct sections. In the outer two sections, the
bath consists of a solution that mimics the extracellular medium in healthy tissue,
thus the portions of tissue in these section retain their normal excitation properties.
The middle section contains an ion-free, high glucose solution that extinguishes or
at least greatly limits the excitability of the portion of tissue in this section. A
variable resistor that connects the outer two sections of the bath is used to vary the
level of resistance across the gap. Thus, the gap model mathematically describes

the sucrose gap experiment quite well.

1.3 Outline

The work in this thesis deals with two aspects of the gap problem. One aspect
is the study of conduction block. In this study, we use the scalar version of system
(1.1) that ignores recovery. The other aspect that we consider is the study of an
exotic behavior known as reflection that can be seen under certain conditions when
recovery is included.

Often the time-scales involved in recovery dynamics are much slower than those
for excitation, therefore we can address questions concerning the propagation of
waves of excitation by ignoring recovery dynamics (i.e., taking w to be constant)
and using only the equation for u. This scalar partial differential equation is much
easier to handle than the nonscalar case that we have when recovery is included. In
Chapter 2, we consider the problem when recovery is not included in the gap model
and describe conditions that lead to failure of wavefronts to be transmitted across
the gap (conduction block). Finally, we discuss the implications of our results to

cardiac dynamics.



The scalar case, where recovery dynamics are not included, fails to encompass
a great deal of interesting behavior that the full system can exhibit. In Chapter 3,
we study a behavior that the system can produce only when recovery dynamics are
present. We describe a situation in which a wave of excitation traveling towards that
gap not only successfully traverses the gap, but also starts a wave in the retrograde
direction. This behavior is known as reflection. Reflection is seen in sucrose gap
experiments and is thought to be responsible for triggering AV nodal tachycardias as
well as reentrant cardiac arrhythmias. Chapter 3 attempts to uncover the dynamical
mechanism underlying this behavior and suggests how the behavior can give rise to

the arrhythmias mentioned above.



CHAPTER 2

PROPAGATION FAILURE

2.1 The Scalar Gap Problem

When considering a situation where waves of excitation are propagating through

an inhomogeneous medium, it is important to address the questions: when is a

region of inexcitability or depressed excitability large enough to prevent a wave of

excitation from being successfully transmitted through the region and how do the

properties of the excitable medium affect this? For instance, in the heart, wave

block itself can be a serious arrhythmia or it can lead to fatal arrhythmias.

In order to gain insight into this issue, we study a simple spatially distributed

excitable system, the bistable reaction-diffusion equation with a passive “gap”

region
ur = (D(2)us)s + () f(u),

where the functions D and s are piecewise defined as follows

D, 0<z<L,
1, otherwise,

D(z) = {

Y

and

sy =0 0sa<L
1 1, otherwise.

(2.1)

(2.2)

(2.3)

In the examples provided throughout this chapter, the reaction term f will be

idealized to be the cubic function

fu) =u(l —u)(u—a), 0<oz<1.

2

(2.4)



However, it should be noted that the results directly apply to the more general case

f € CL(R) satisfying

f(0) = f(a) = f()—0,0<0z<1,
f(u) < 0<u<a,
fu) > a<u<l, (2.5)
F'(0 )75075f'()
fo ) du > 0.

Also, the results need only be slightly modified to apply to different restrictions on
f (e.g., a change of sign in the integral constraint).

The partial differential equation (PDE) (2.1) is one of the simplest caricatures
of the physical system under consideration, because it has no recovery variables
and has simple dynamics in the gap. However, this simplicity is the key to gaining
an understanding of many aspects of the more detailed problem, because one can
analyze the simple system much more easily than the full system, and therefore get
useful insight into the much more complicated physical problem.

The scalar gap problem has been studied by Sneyd and Sherratt [62] in the
context of Calcium-induced Calcium Release (CICR). However, they only consider
the very special case of a piecewise linear discontinuous reaction term f and do not
push the analysis very far. On the other hand, Fife and Peletier [20] considered a
more general case of the above problem, which was inspired by population genetics.
They model “gap” dynamics as a region with a decreased non-constant reaction
term. By considering a special case of the Fife and Peletier problem and a more
general case of Sneyd and Sherratt, both of their results can be extended. These
results will be discussed later in the chapter; however now we turn to the case of a

homogeneous cable for background needed to understand the gap problem.

2.2 The Homogeneous Cable
Before attacking the problem of how inhomogeneities effect signal propagation in
a one-dimensional bistable system, it will be useful to start by considering the case
of a uniform cable and describe classical results concerning steady state solutions,

traveling wave dynamics, and threshold properties. The results themselves are
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of interest here, but more importantly, an understanding of the techniques with
which the results are obtained will be essential for understanding results for the
inhomogeneous cable. Specifically, the type of phase plane analysis and super- and
subsolution techniques that are used in the analysis of the homogeneous cable will
be used extensively in the analysis of the inhomogeneous system. For this reason, we
will state pertinent theorems and sketch their proofs. More detail will be provided
when it is applicable to the inhomogeneous case.

The equation describing a scalar one-dimensional homogeneous excitable medi-

um is
up = Dug, + f(u). (2.6)

where f is as described above. Without loss of generality, we will set D = 1,

because we can rescale space as x/v/D.

2.2.1 Steady state solutions
Steady state solutions to equation (2.6) can be found by setting u;, = 0 and

studying the resulting second order ordinary differential equation
Ugg + f(u) = 0. (2.7)

Obviously there exists three spatially uniform (u, = 0) steady states where f(u) =
0. These are u(z) = 0 and u(xz) = 1, which are stable as in the nonspatial case,
and u(z) = «, which is unstable. However, there are nonuniform steady states as
well. The nonuniform steady state solutions of interest here have u,(+oc) = 0 and
0 < u < 1. Up to translation invariance (and reflection invariance in case (ii)),

there is exactly one of these solutions for a given reaction term, f.

Theorem 2.1 The following lists the cases for nonuniform steady state solutions
to equation (2.6):

(i) There exists a family of steady states, u(x — &), with boundary conditions
u(+oo) = 0, uy(+oo) = 0 if and only if folf(u)du > 0. Furthermore, u is
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symmetric around x =&, 0 < u <1, uy >0 forx < & and u, <0 for x > &. The
mazimum of |ug| occurs when uw = «. Here and below & is arbitrary; this implies
that the solutions are translation invariant.

(ii) There exists a family of steady states, u(x — &), with boundary conditions
u(oo) = 1 and u(—o0) = 0 and uy(£oc) = 0, if and only if folf(u)du =0 (the
equal area condition). Furthermore, u is monotonically increasing and 0 < u < 1.
The mazimum of |ug| occurs when u = a. (note that a mirror image of this solution
can be found by substituting —x for x).

(111) There ezists a family of steady states, u(x — &), with boundary conditions
u(+oo) = 1, uy(+oo) = 0 if and only if fol f(u)du < 0. Furthermore, u is
symmetric around x =&, 0 < u <1, u, <0 forx <& and u, > 0 for x > &. The

mazimum of |uz| occurs when u = .

Figure 2.1 shows examples of these three types of solutions for a cubic f with a =
0.3. Before considering any of the individual cases, notice the following algebraic
fact about equation (2.7). By multiplying equation (2.7) by u,dz and integrating,

we get

T T
/ UgpUypdr = —/ f(u)ugdz.
— 00 — 00
Assuming w is monotonic in z (a technical condition that can usually be worked
around by piecing solutions together), there is a change of variables u,dz = du that

results in the equation

u?(r) = —2F (u(x)). (2.8)

The solutions in the above theorem can easily be shown to exist for the appro-
priate conditions by using this property and examining the w — u phase plane of

the system

Lo =, 29
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which is equivalent to equation (2.7). This system has fixed points at (0,0), («, 0),
and (1,0) corresponding to the uniform steady states. The fixed points at (0,0)
and (1,0) are saddle points and the fixed point at («,0) is a center.

Now let us consider the case (i). The example of the phase plane for cubic f is
shown in Figure 2.2, but the phase plane for any f of the form (2.5) is qualitatively
the same. Note that the boundary condition at © = —oo is associated with the
point (0,0). Recall that (0,0) is a saddle point, and therefore it is required that
the solution lives on the portion of unstable manifold of (0,0) projecting into the
region where w > 0. The boundary condition at = oo is also associated with
(0,0) and this requires the solution to live on the stable manifold of (0,0). Thus,
we are searching for a homoclinic orbit.

Integrating forward along the unstable manifold of (0,0), w increases until u = «
and then begins to decreases (as a result of the sign of f). By property (2.8), the
trajectory hits w = 0 at u = 4 < 1 where anA f(u)du = 0. However, this can
happen if and only if fol f(u)du > 0. Because u < 1 at this crossing point, the
symmetry of the equations requires that this trajectory asymptotically approaches
its starting point (0,0) as x — oo and thus we have found the homoclinic orbit. In
doing so, we have constructed a case (i) solution.

The proof for the existence of the solutions in case (iii) is identical to that for
case (i) after applying the change of variable u — (1 — u).

For the intermediate case (ii), solutions were first shown to exist by Kanel [35]
by using property (2.8). Suppose u(z) is a case (ii) solution. If the upper limit
of = in property (2.8) is set to oo, then the left-hand side of equation (2.8) is 0,
since ug(+oo) = 0. Thus, because u = 1 is associated with the upper limit we have
chosen, it follows that fol f(u)du = 0.

On the other hand, if fol f(u)du = 0, then by an argument similar to that for
the existence of case (i), we see that the unstable manifold of (0,0) hits w = 0 at
u = 1. This trajectory perfectly describes a case (ii) solution. O

In case (ii), the steady state is manifested as a heteroclinic connection between

(0,0) and (1,0) in the phase plane (see an example of this in Figure 2.3). This
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Figure 2.2. Phase plane for equation (2.7) with fol f(u)du > 0 (cubic f with
a = 0.3). The thick trajectory is the homoclinic orbit. Thin lines show other
trajectories and light arrows give the vector field for the flow.
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solution is known as a standing wave and is a special case of traveling waves, which

are discussed below.

2.2.2 Traveling wavefronts

In the absence of any inhomogeneities, signal transmission over long distances
occurs entirely as a propagated wavefront in the excitable medium. Figure 2.4 shows
an example of this. Initially, the medium is excited u = 1 for x > 25 and at rest
u = 0 for x < 25. The sharp transition in u causes u to diffuse down its gradient
into the region of the medium immediately in front (to the left) of the excited
region. This increases u in this region past threshold, u > «. Above threshold,
an autocatalytic production of w is initiated and u rapidly increases towards the
excited state u = 1. Thus, the sharp transition in u, which is the wavefront, is
shifted to the left (although smoothed). This process is repeated continuously and
the wavefront propagates through the medium.

The wavefronts can be understood mathematically as a traveling wave solutions
of equation (2.6). These solutions are of the form u(z,t) = U(z + ¢t — &) such that
U(oo) =1 and U(—o0) = 0 (see Figure 2.4). The parameter ¢ is the speed of the

traveling wavefront and is determined by the reaction term f.

Theorem 2.2 For fized f(u) of form (2.5), there is a unique speed ¢ for which there
is a unique traveling wave solution to equation (2.6). The traveling wave solution
is of the form u(z,t) = U(x + ¢t — &) with arbitrary & and provides a transition
between uw =0 and u = 1 such that 0 < U <1 and U(oc) =1 and U(—o0) = 0 with
U,(£o00) = 0.

This theorem is due to Aronson and Weinberger [3], who also showed that U
is strictly increasing and that the wave speed c is positive for fol f(u)du > 0 and
negative for fol f(u)du < 0. The intermediate case were fol f(u)du = 0 is a zero
speed wave or standing wave described above. The following provides the basis of
their proof for the case fol f(u)du > 0.

When the independent variables, (z,t), are changed to traveling wave coordi-
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Figure 2.3. Phase plane for equation (2.7) with fol f(u)du = 0 (cubic f with
a = 0.5). The thick trajectory is the heteroclinic orbit. Thin lines show other
trajectories and light arrows give the vector field for the flow.
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Figure 2.4. Numerical simulation of a traveling wave in (2.1) with for cubic f with
a = 0.3. u vs. space () is plotted. Each curve is the solution at a fixed time (every
5 time units) and as time progresses the curves are lifted slightly. The wave speed
is approximately 0.28. This simulation was performed using the implicit-explicit
method of Hines [26] with At = 0.001 and Az = 0.01.
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nates, z = x + ¢t — &, equation (2.6) becomes
U,. — cU, + f(U) = 0. (2.10)

(Note that any translation of U satisfies equation (2.10), i.e., £ is arbitrary). This
equation is a nonlinear eigenproblem, since ¢ is unknown a priori. Similar to the
steady state equations, this equation is best studied in the phase plane given by

the system of equation

U,=Ww,
{ W= e — fw) (2.11)

Notice that the steady state equations are a special case of this system (¢ = 0).
Again, this system has fixed points at (0,0), («,0), and (1,0). The fixed points
at (0,0) and (1,0) are saddle points and the fixed point at («,0) is a center. We
are looking for solutions U(oo) = 1 and U(—o0) = 0 as previously mentioned, but
also U, (00) = U,(—o0) = 0. That is, we are looking for a trajectory in the phase
plane that connects (0,0) to (1,0). This trajectory will appear as a heteroclinic
connection, which is both the unstable manifold of (0,0) and the stable manifold
of (1,0).

Aronson and Weinberger showed that this heteroclinic connection exists for a
unique value of ¢ using a shooting argument. When ¢ = 0, the system is identical
to the system in case (i) steady state case. The unstable manifold of (0,0) in this
case (i.e., the homoclinic orbit) undershoots the fixed point at (1,0). On the other
hand, it can be analytically shown that, when ¢ is chosen to be sufficiently large,
the unstable manifold of (0,0) overshoots the fixed point at (1,0) crossing the line
U =1 at a value of W > 0. By continuous dependence of trajectories of system
(2.11) on parameters, we are guaranteed that there exists at least one value of ¢
for which the trajectory emanating from (0, 0) (the unstable manifold with U, > 0)
hits the point (0, 0), thus forming a heteroclinic connection. Furthermore, slopes of
trajectories in the first quadrant of the W — U plane are monotonically increasing

functions of ¢, therefore a heteroclinic orbit exists for a unique ¢. O
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Figures 2.5-2.7 show the phase portraits for f = —u(u — «)(u— 1) with @ = 0.3
and different values of c. Figure 2.5 is for ¢ = 0 and Figure 2.6 is for ¢ = 0.32. The
trajectories emanating as the unstable manifold of (0,0) undershoot and overshoot
the point (1,0), respectively. In Figure 2.7, ¢ is chosen 0.4/v/2, so that there
the unstable manifold of (0,0) hits (1,0) and thus a heteroclinic orbit exist. This
trajectory corresponds to the wavefront of equation (2.6) shown in Figure 2.7. This
wavefront of course has a speed of 0.4/y/2. (This speed can actually be calculated
analytically, because f is cubic).

Fife and McLeod [19] showed that the travelling wave solution for equation (2.6)
is stable. Their proof will not be given here, but it should be pointed out that it
uses sub- and supersolution techniques that will be introduced in the next chapter

and will be an integral part of our analysis of the inhomogeneous problem (2.1).

2.2.3 Threshold results

This subsection gives a summary of threshold results. These results tell us when
local perturbations are sufficient to produce propagated wavefronts of excitation.
However, the main reason that we include the results is that the theorems used to
obtain them will be used to determine when propagated wavefronts are blocked in
the case of an inhomogeneous medium. The results presented in this section are due
to Aronson and Weinberger [3] and are based on comparison principles that in turn
rely on the maximum principle for scalar parabolic partial differential operators

(see Protter and Weinberger [55]).

Theorem 2.3 (COMPARISON PRINCIPLE) Let u(z) and v(x) satisfy the in-

equalities

ut_um:_f(u)zvt_vm:_f(v)a

0 <wv(z,0) <u(z,0) < 1.

Then u(z,t) > v(x,t) for allt > 0 and if u(z,0) > v(z,0) then u(x,t) > v(x,t) for
all t > 0.
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Figure 2.5. Phase plane for (2.11) with ¢ = 0 (cubic f with @ = 0.3). The
trajectory emanating from (0,0) undershoots (1,0).
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Figure 2.6. Phase plane for (2.11) with ¢ = 0.32 (cubic f with o = 0.3). The
trajectory emanating from (0,0) overshoots (1,0).
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Figure 2.7. Phase plane for (2.11) with ¢ = 0.2828 (cubic f with o = 0.3). The
trajectory emanating from (0,0) hits (1,0), thus forming a heteroclinic connection.
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Rearranging the first inequality and applying the mean value theorem, we get

(u=0) 2 (U= V)aa + (f(u) = f(v)) = (U= V)az + ['(v 4+ 0(u = v))(u—v)

for some 0 < § < 1. If we define § to be the maximum of f' on [0,1] and w =

(u —v)e P!, then
Wy > Wep + [0+ 0(u—0)) = flw = wyy — yw.

where v = f'(v+ 60(u — v)) — f > 0. By the strong maximum principle for linear
parabolic partial differential inequalities, this inequality and the fact that w(x,0) =
u(z,0) — v(z,0) > 0 implies that w(x,t) > 0, and thus u(z,t) > v(x,t). Note that

strict inequalities carry through in the argument where needed. O

Definition 2.4 Suppose that ¢ € C*'(R\ {z;,7 =1,...,N} x (0,T)) (i.e., con-
tinuous and piecewise differentiable).

é(x,t) is a subsolution of equation (2.6), if ¢y — ¢duz — f() < 0 on differentiable
segments of ¢ and ¢$(ac;“, t) — ¢z(z;,t) > 0 where ¢, has discontinuities.

¢(z,t) is a supersolution of equation (2.6), if ¢1— ¢ze— f () > 0 on differentiable

segments of ¢ and ¢$(ac;“, t) — ¢z(z;,t) <0 where ¢, has discontinuities.

The next theorem follows from the above comparison principle and the defini-
tions of super- and subsolutions. This theorem will be the key to understanding

propagation failure in the heterogeneous cable that we will study in the next section.

Theorem 2.5 (ORDERING PRINCIPLE) Let ¢(z) be a time-independent super-
solution of equation (2.6) and u(zx,t) be the solution to equation (2.6) with the
initial condition ¢(x). Then u(x,t) is a nonincreasing function of t and approaches
the largest steady state solution u*(x) of equation (2.6) such that u*(z) < ¢(x).

Similarly, Let ¢(x) be a time-independent subsolution of equation (2.6) and u(x,t)
be the solution to equation (2.6) with the initial condition ¢(x). Then u(w,t) is a
nondecreasing function of t and approaches the smallest steady state solution u*(x)

of equation (2.6) such that u*(x) > ¢(x).
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By definition, we have that

0 < u(r,0)=¢(z) <1.

Theorem 2.5 implies, ¢(z) = u(z,0) > u(x,t) for all t > 0. Now, we will apply the
theorem again to u(x,t) and u(x,t + J). Note that both are solutions of equation
(2.6)), and therefore u(x,t) can play the role of the supersolution, while u(x,t+ 9)
plays the role of the initial condition. We conclude that u(x,t) > u(x,t + ). By
following this procedure recursively, we see that u(z,?) must be a nonincreasing
function of ¢. Further argument that uses properties of parabolic equations along
with the fact that 0 < u < 1is an invariant region guarantees that u(z, t) converges
to the largest steady state solution of equation (2.6) that is smaller than ¢(z).

A similar argument justifies the second portion of the theorem. O

We now present a theorem that gives conditions for when a local disturbance with
compact support has sufficiently large magnitude over a sufficiently large interval
to grow to u = 1 everywhere. That is, it gives conditions necessary for local
perturbations to be superthreshold.

Before stating the theorem, we first will construct a function that will be used
as the superthreshold initial conditions for the PDE (2.6). Let us construct this
function ¢(x) in a piecewise fashion. To do this, once again consider the u — u,
phase plane of the steady state equations (2.7). Let us construct the function ¢(x)
in a piecewise fashion. For —I, < x < I, q(z) sketches out a trajectory that
circumnavigates the homoclinic orbit associated with (0,0) such that the trajectory
starts with w = 0, hits u, = 0 at v = b and ends when v = 0 (see Figure 2.2).
This requires that uy < b < 1 where foﬂA f(u)du = 0. For all other z, g(x) = 0.
Therefore, on —I, < x < I, q(x) satisfies ¢" + f(q) = 0 with ¢(0) = b, ¢'(0) = 0.
The length [, can be found by using a property similar to equation (2.8)

0 q(z)

—_ flu)du = —F(q(z)) + F(b),
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b= —/_(:b de = /0” \/Z(F(bciq— F(g))

Theorem 2.6 Let u(z,t) be the solution to equation (2.6) with the initial condition
q(z) as defined above. Then lim;_, u(z,t) = 1.

Note that ¢(z) is a solution to equation (2.6) everywhere except at x = =+l,.
Also, ¢(=1;) — q(=1;) = q(=1) > 0 and ¢(I}) — q(l,) = —q(l;) > 0. Therefore,
¢(z) is a time-independent subsolution of equation (2.6). By theorem 2.6, u(x,t)
must evolve to the smallest steady state that is larger than ¢(x). By inspection
of the u — u, phase plane, the only steady state that is greater than ¢(z) and in
0<u<lisu=1. 0

There are theorems that give conditions that ensure subthreshold disturbances
as well, but they will not be presented here, because we have already illustrated how
theorem 2.6 can be used. In the next section, we will use theorem 2.6 to demonstrate
that, when certain nonuniform steady states exist in the inhomogeneous problem,
a wave of excitation cannot be transmitted through the entire medium and thus

the wave is blocked.

2.3 The Inhomogeneous Cable: The Gap Model
Now we move to the scalar gap problem described in section 2.1 and study the
effects of specific type of a local inhomogeneity on wave propagation. Inhomo-
geneities make the problem harder in many respects, however in special cases such

as the problem described by equation (2.1) analytical results can still be obtained.

2.3.1 Numerical solution of the PDE
In order to become familiar with the system, it is useful to present some nu-
merical results. For these simulations, the excitability term f is taken to be cubic
with @ = 0.3 and in the gap, D = 1. A wavefront of excitation is started far away
from the gap so that it travels towards the gap. When the wavefront reaches the
proximal side of the gap it stalls, because there is no excitability in the gap. It

does, however, begin to source u to the distal side of the gap via diffusion. For
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“small” L, the wavefront is able to source enough u through the gap to excite the
distal side of the gap, and thus after a slight delay, the wavefront is able to “jump”
the gap. As L is increased, the delay increases, but the wavefront is still able to
jump the gap. This behavior continues until L is increased above a critical value,
L*, after which the wavefront completely stalls. For these “large” values of L, the
solution appears to approach a nonuniform steady state solution and thus there is
block. Figure 2.8 shows examples of both successful transmission of the wavefront
across the gap (top) and wavefront block (bottom). The critical gap length L* is
approximately 6.5 in this case. These simulations are very similar to the those of
Sharp and Joyner [60] in a one-dimensional cable model using detailed ionic models
and a gap consisting of zero sodium current.

Long delays before successful jumping of the gap make it difficult to compute L*
precisely without effort. Furthermore, obtaining anything more than a critical gap
length for a specific excitability function at a specific set of parameters by doing
only numerical simulations of the PDE is difficult. For this reason, we turn to the

analytical methods to help us gain further insight into our problem.

2.3.2 Steady state solutions and block

Although no true traveling wave solutions exist for inhomogeneous problems,
the ordering principles for solutions will be shown to apply. Thus, the plan of
attack is to look for the existence of nonuniform steady state solutions u*(z) of the
equation (2.1) for which u,u, — 0as z — —ococ and u — 1, u, — 0 as z — oo (see
Figure 2.4).

The key idea here is that u*(z) acts as time-independent supersolution of equa-
tion (2.1), and therefore if the solution starts below u*(x), then it will remain below
for all time. If such a steady state exists, a wave front traveling towards the gap will
asymptotically approach this steady state (or a similar, but smaller, nonuniform
steady state), and hence the wavefront will be blocked by the gap. If no such steady
state exists, the solution will approach u = 1, the smallest steady state greater than
the initial conditions, and hence the wave front necessarily successfully jumps the

gap. Our numerical simulations hint at this (see Figure 2.4). When block does
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Figure 2.8. Numerical simulations of the PDE with D = 1, a = 0.3. Plots are
of u vs. space (z). Each curve is the solution at a fixed time (every 5 time units)
and as time progresses the curves are lifted slightly. The position of the gap is
marked by the a black bar on each figure. The wavefront propagates towards the
gap from the right. In the top figure, there is successful transmission across the
gap (L = 5.0), whereas in the bottom figure, the wavefront is blocked (L = 10.0).
These simulation were performed using the implicit-explicit method of Hines [26]

with At =0.001 and Az = 0.01.
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occur, the solution appears to approach a steady state of this form.

The argument above is summarized in the following theorem:

Proposition 2.7 Consider the system described in section 2.1. A wave propagating
towards a diffusive gap fails to cross the gap, if and only if a nonuniform steady
state solution u*(x) of the equation (2.1) exists for which u,u, — 0 as v — —o0

and v — 1, uy — 0 as x — oo.

For constant diffusion coefficient, this result follows directly from theorem 2.7,
since the multiplicative factor s(z) does not affect the argument used to prove
this ordering principle. When diffusion constant D(x) varies but is continuous,
this result follows directly from a change of variables and applying theorem 2.7.
Furthermore, an extension of the theorem by Pauwelussen [53, 54| includes the case

of discontinuities in the diffusion coefficient. O

2.3.3 Calculating steady state solutions
Theorem 2.7 reduces the problem of looking for block to simply looking for

steady state solutions. These steady state solutions must obey the equation

umm+f(u)7 NS (_007 0)
0=1< Duy, z € (0,L) (2.12)
uge + f(u), z € (L,00)

with the boundary conditions mentioned above. Also, matching conditions must

be satisfied for u (continuity)

lim v = lim u,
z—0~ z—0t
lim v« = lim w,
x— L+ z—L—

and for u, (the jump condition or conservation of current)

lim u, = lim Du,,
z—0— z—0t
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lim v, = lim Du,.
z— L+t z—L~
Let ug = u(0) and u;, = u(L). Using the continuity condition for u, the solution
in the gap (0, L) must be the linear function

u(z) = Mm + uy.

L

In the excitable regions of equation (2.12), we can use the same calculus trick
that we used in the discussion of steady states for the homogeneous medium

(section 2.2.1). Multiplying by u,dz and integrating, we obtain

x1 1
/ Ugp Uy dT = —/ f(u)ugdx
xo xo

and assuming u is monotonic in z, the change of variables u,dx = du gives
T ’11,2 u(w1)
[ o=~ [ fuda
o u(xo)

zo

where F' is the antiderivative of f (i.e., F(u) = [/ f(v)dv). By taking z; = 0,

x9 = —oo and x; = 00, o = L and applying the appropriate boundary conditions,
we respectively get
uz(LY) = V2(F(1) = F(uz)).

Using these two equations above, the slope of solution in the gap, and the

matching conditions for u,, we get the nonlinear system of algebraic equations

for (up,ur) with L as a parameter

{ Flug) = Fluy) — F(1),

D(ug, — o) = L/=2F (ug). (2.13)

For each solution of this system, there exists a (monotonic) steady state of the
original PDE (2.1). Thus, the problem of studying block has been reduced to a
bifurcation problem for a nonlinear system of algebraic equations. Note that the
bifurcation parameter of interest here can be thought of as L/D, therefore usually

we will take D =1 in what follows without loss of generality.
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2.3.4 Piecewise linear reaction terms
Sneyd and Sherratt [62] obtained equations similar to system (2.13) in the
context of calcium induced calcium release (CICR). However, they were able to
obtain tight results but limited results, because their calculations were for the

simple case of a piecewise linear discontinuous bistable equation

o={ oy 150

—(u—1) u>a.
In their work, they set 4(0) = « in equation (2.13) and calculate that a steady state
with this condition exists for

1
L,=——-2.
Q

Throughout this section, we will take L, to be defined as the minimum value of L
for which there exists a steady state with u(0) = a.

Sneyd and Sherratt hypothesize that L, marks a sharp delineation between
guaranteed block for L > L, and guaranteed successful transmission across the gap
for L < L,. For the case of piecewise linear discontinuous f, their claim turns out
to be correct (i.e., L* = L,). This can be proven by trying to construct all possible
piecewise defined solutions types and getting conditions for their existence. This
will be omitted, because it is rather tedious and not too instructive. A much nicer
proof will be given later.

On the other hand, their claim does not carries over to general f. For any f,
there necessarily exists a steady state solution with u(0) = a for some L. Indeed,
this makes sense physically, because « is the threshold for the spatially constant
bistable equation. (A simple proof for this will be given later.) However, steady
state solutions for more general f (e.g., continuous) exist on either side of L, in L
space. Therefore, although L, may be used as an approximation of the critical gap
length, it is only an upper bound of L* above which there is existence of steady
state solutions and guaranteed block.

To demonstrate this, consider a piecewise linear continuous reaction term

6]
—u 7u§57
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As for the previous case, we can construct, piecewise defined solutions and calculate

the critical value of L below which steady state solutions do not exist,
L*=4/2(—=-1)2-1-1.

If we were to immediately set u(0) = « as Sneyd and Sherratt do, then we would
find
1
Lo=vV2(=—-1)—1.

(%

Again, this is a tedious calculation, hence the details will be omitted. There actually
is very easy way to find the L* using ideas that will be developed in the following
sections. These functions L* and L® are plotted in Figure 2.9. Note that both
L* and L, are decreasing functions of the threshold « as one would expect. For
sufficiently small o, L, approximates L* well. The normalized difference between
the two functions is shown in Figure 2.10. This difference goes to 0 as « — 0, but
as alpha increases and the critical gap length gets smaller, the approximation of
L, to L* becomes increasingly worse.

Sneyd and Sherratt admit that, for f more general than the piecewise linear dis-
continuous case, solutions exist on either side of L, in L space, but then conjecture
that solutions for L < L, must be unstable and their existence in this case does
not correspond to block. This is false. According to Proposition 2.7, the existence
of any steady state solution (of the appropriate form) guarantees block, because
the steady state solution acts as a time-independent supersolution regardless of its
stability.

Calculations from the piecewise linear continuous reaction term suggest a general
bifurcation structure for solutions of the steady state equation (2.12). They show
that in fact two steady state solutions can be constructed for every L > Lx and as
L decreased to L*, the solutions coalesce and vanish in a tangent bifurcation. For
values of I < L*, no solutions exist.

For nonlinear f, it is hard to find the bifurcation structure and critical gap
length algebraically, even for a simple cubic f. This is true even when attempting

to approximate L* by setting u(0) = a. Thus, in order to address the problem of
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Figure 2.9. Graphs of L* (solid line) and L, (dashed line) as a function of « for
the piecewise linear continuous reaction term described in text.
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Figure 2.10. Graph of (L, — L*)/L* as a function of « for the piecewise linear
continuous reaction term described in the text.
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calculating critical gap length and uncovering the general structure for nonlinear
f, one must either consider the problem numerically or turn to other methods to

obtain analytical insight into the behavior of the system.

2.3.5 A geometrical interpretation

Before, or even instead of, pursuing this bifurcation problem numerically (either
equation (2.12) directly or system (2.13)), it is enlightening to consider a geomet-
rical interpretation of the problem.

Consider the phase portrait of wu,, + f(u) = 0 as discussed in section 2.2
(Figure 2.2) and shown again in Figure 2.11. Two important trajectories are plotted
in the phase plane: curve A is a portion of the homoclinic orbit emanating from
the saddle point (v = 0,u, = 0), and curve B is the stable manifold of the saddle
point (v = 1,u, = 0). Note that on trajectory A, u,u, — 0 as x — —oo. This
is exactly the left boundary condition of steady state equations. On trajectory B,
u— 1, u; — 0 as x — oo, which is the boundary condition on the right. Thus,
we see that the steady state solution u*(x) to the left of the gap (x < 0) lives on
trajectory A, and therefore so does (u(0),u,(0)). Similarly, u*(z) to the right of
the gap (z > L) lives on trajectory B, and therefore so does (u(L), uz(L)).

Next, we note that the “flow” in the gap (on 0 < x < L) is governed by the
differential equation Du,, = 0. Let us take all points on curve A to be a family
of initial conditions (z = 0) and flow forward using this differential equation to
x = L. If any trajectory stemming from a point on A, say point a, matches up
with a point on curve B, say point b, then we have found a solution. This solution
can be reconstructed by considering the (u,u,) coordinates and tracing out the
following trajectory. Starting at (0,0) (z = —o0), move along curve A to point a.
Because curve A is a homoclinic orbit, the x value is arbitrary at this point, so we
can set it to x = 0. From point a, follow the flow of Du,, = 0, which is horizontal
in the u,, u-phase plane (u, constant) until x = L. By design this will be point b
on curve B. The remaining portion of the solution is obtained by following curve
B, the stable manifold of (1,0), into the steady state (1,0) while x increases from

L to oo. This idea of piecing flows of phase planes together is somewhat similar to
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Figure 2.11. The u,u,-phase portrait of u,, + f(u) = 0 with vector field. f is
cubic with a = 0.4. Curve A is the homoclinic orbit associated with (0,0) and curve
B is the stable manifold of (1,0).
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techniques used in [53] and [37].
The description above suggests an easy way to find these solutions. As before,
consider points on curve A as all possible x = 0 values for our solution. We can

derive a map by the flow in the gap (Du,, = 0) and map these points on curve A,

(u(0), u.(0)), to points on a new curve 11, (A), which will be called(v(L), v, (L))

b+ [u(0), uz(0)] = [v(L), v (L)] = [um(o)% +u(0), uz(0)].

Any intersection of this new curve ¢7,(A) and curve B corresponds to a steady state
solution of the partial differential equation (2.1).

The map )y, is continuous and has fixed points where u, = 0, which occurs at
two points along the trajectory A. When L = 0, the map is the identity map (curve
Y (A) is exactly curve A). However, when L is positive, the map effectively shifts
curve A to the right towards trajectory B for u, > 0. The map shifts curve A to
the left away from trajectory B for u, < 0, thus no intersections can occur on this

portion of A. The shift is linear in L and the greater u, is, the larger the shift.

2.3.6 Results

An example of the mapping described in the previous section is given for the
cubic f with o = 0.3 in Figure 2.12. One can be see that for small L, there are no
intersections of ¢ (A) and curve B. However, as L increases, a critical value of L,
L*, is reached where there is one intersection, and thus one steady state solution to
equation (2.1). For L greater than this critical value, two intersections, and thus
two steady state solutions, exist. This suggests that the solutions arise via a saddle
node bifurcation. A bifurcation diagram for this system is shown in Figure 2.13.
This bifurcation structure is similar to that found in the case of an abrupt change in
diffusion coefficient [53, 28], however we will show that more than two solutions can
arise in the gap problem, which is not the case for the abrupt change in diffusion
coefficient.

Figure 2.14 shows the actual steady state solutions of equation (2.1) for L > L*.
These solutions were constructed using the values at the intersection points in

Figure 2.12. It will be shown that the smaller of the two solutions is stable (with
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Figure 2.12. u,u,-phase portrait of u,, + f(u) = 0 (as in previous figure) with
images of the homoclinic orbit (curve A) under the map ;. Intersections with the
stable manifold of (1, 0) (curve B) correspond to steady state solutions of the PDE.
a = 0.1, D = 1. The first intersection is at L* = 6.40.
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solutions. The critical gap length is L* = 6.40. The parameters are a = 0.3, D = 1.
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Figure 2.14. The steady state solutions or “clines” of equation (2.1) for L = 20.0.
The solid line represent the stable solution and the dashed line represent the
unstable solution. Parameters are « = 0.3, D = 1.
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respect to time) and the larger is unstable. The “distance” of the stable solution
from the unstable solution gives an idea of the size of the basin of attraction of the
stable solution. In this light, the unstable solution can be interpreted as a threshold
for jumping the gap, and one can begin to address the question of how noise or
other perturbations could affect the signal blocking properties of the gap. That is, if
a perturbation moves the solution u(x,t) above the unstable steady state solution,
then a wavefront will form on the distal side of the gap. (Note that a threshold
result similar to theorem thethreshthm could be derived in which the perturbation
need only make u(z,t) sufficiently greater than the unstable steady state over a
large enough region.)

Another interesting aspect of this graphical representation is that it immediately
shows the portions of f that determine whether or not block occurs. The maximal
value that u attains on curve A is w4, and curve A attains a maximal value of u,,
Wy, when u = . A steady state solution lives on curve A on the distal side of the
gap, therefore 0 < u < 74 on this side. Futhermore, because points on curve A are
mapped horizontally in the u, u,-phase plane by ¢, w4 is the maximal value of u,
that a steady state solution can attain. A steady state solution on the proximal
side of the gap lives on curve B, and thus up < u < 1 on the proximal side of
the gap, where up is the value of v on curve B associated with u, = w,. This
potentially leaves the interval u € (@4, @p), and the corresponding portion of f,
unrepresented.

For instance, for @« = 0.3, we can see in Figure 2.12 that the values of f in
u € (0.5,0.9) are inconsequential with respect to any possible steady state and
therefore whether there is block or not. That is, two different reaction terms that
are the same on 0 < u < 0.5 and 0.9 < v < 1.0 could be extremely different between
0.5 and 0.9, yet the corresponding gap problem would exhibit a identical L* and
the same steady state solutions for L > L*. Note that as « decreases, the size of
this ‘inconsequential’ region increases substantially.

Figure 2.15 shows the critical gap length as a function of the threshold parameter
«. As intuition would predict, the critical gap length L*, and therefore the first
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point of block as gap length increases, decreases as « increases. L* =0 at o = 0.5,
which corresponds to a standing wave in the homogeneous cable. As a approaches
0 from above, L* goes to oo. The a = 0 case corresponds to a Fisher-like equation
[21] where the slightest perturbations away from the resting state leads to traveling
wavefronts, thus for any finite gap length and nonzero diffusion in the gap, a
wavefront will be able to jump the gap. Qualitatively, this curve is identical to the
L* vs. « curve analytically computed for the continuous piecewise linear reaction
case (see Figure 2.9).

By using the geometric interpretation of the problem, we can now extend and
solidify the ideas generated from the example above and easily prove the following

existence proposition.

Proposition 2.8 Consider the scalar gap problem (2.1) with L > 0. There exists
a critical value of L, L*, such that system has no solutions for L < L*, exactly one
solution at L = L* (generically), and at least two solution for L > L*. Furthermore,

solutions arise disappear via tangent (saddle-node) bifurcations.

By our restrictions on f, there is a homoclinic orbit, curve A, which is associated
with (0,0). For w > 0, it lies entirely below the stable manifold of (1,0), B. Thus,
because the map ), is the identity map for L = 0, there are no intersections of
curve B and 1, (A) and therefore no solution to system exists.

Note that the map 1), shifts points (u,u,) on curve A such that the u, values
remain unchanged and u values are increased by the amount u, L. That is, for fixed
Uz, ¥y, maps u values of points on A in a monotonic (linear) fashion with respect
to L. This mapping is therefore strictly increasing fashion for u, > 0, while points
with u, = 0 remain fixed. Thus, 1;,(A) will intersect B for sufficiently large L with
u, > 0.

The monotonicity of ¢y, in L, the continuity of ¢;, and the continuity of the
curves A and B ensures that, as L increases, the first crossing must be tangential
(generically, this will occur at a single point). Let us define L to be L* at this

critical value. The above properties also guarantee that at least two nontangential
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intersections will exist for L > Lx. The existence of solutions to equation (2.12)

follow from the existence of these intersection points. O

2.3.7 Some properties of solutions
Proposition 2.9 The steady state solutions of the scalar gap problem (2.1) have
the following properties
(i) Solutions are monotonically increasing.
(i1) Solutions have bounds 0 < u; < Wpez, 0 < u(0) < w4 and Up(Wpae) <
uw(l) < 1, where Wye, = foaf(u)du, Up(Wiaz) s defined such that wp., =
f(}B(wmaz) f(u)du, and @4 is defined such that ['* f(u)du = 0.
(iii) For a given L, steady state solutions are nowhere equal. (i.e., they are ordered).
(iv) There exist an L** such that there are exactly two solutions for L > L**.
(v) There ezists a solution u(x) such that u(0) = « for some L > L*. Furthermore,

this solution is stable.

The first three properties follow directly from inspection of the phase portrait,
so proof will not be given. Properties (iv) and (v) require only brief explanation.

The u values of all points on curve A with u, > 0 are increased under ¢ for
L > 0 by the amount u, L, thus all of these values of v on the shifted curve tend to
infinity as L — oc. However, points (0,0) and (1,0) remain fixed and because the
slopes of the unstable manifold of (0,0) and the stable manifold (1,0) are nonzero,
property (iv) must follow.

To show that property (v) holds, we begin by plugging u(0) = « into the

algebraic system (2.13) and rearranging the equations to get

(2P (L) ~ ) = ~2F (a).

The right-hand side of this equation is a positive constant. As a function of u(L),
the left-hand side is a concave up parabola with a double zero at a. Therefore,
a solution exists for all D/L > 0, but it is required that o < u(L) < 1, because
solutions must be monotonically increasing. However, the parabola gets arbitrarily

narrow as L increases. Thus for sufficiently large L, a solution with «(0) = o and
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a < u(L) < 1is guaranteed to exist. Generically, this is for L > L* and not L = L*.

The stability of the solution will be inferred from the next two sections. O

2.3.8 The appearance and disappearance of solutions

To acquire more information about the appearance and disappearance of solu-
tions, we consider the bifurcation structure of system (2.12) in more detail. In
doing so, we obtain a relationship that will help us to analytically determine the
stability of solution branches.

Let w = Ga(u) = \/—2F(u) be the function describing the homoclinic orbit
Afor w = u, > 0 on u € (0,u4) where fouA fu)du = 0. Ga(u) is strictly
decreasing on u € (o, 1,), and thus can be inverted on this region, u = G (w) =

Ua(w). Similarly, we can define w = Gp(u) = /2(F(1) — F(u)), and therefore

u = G3'(w) = Ug(w), to describe the decreasing portion of the stable manifold of

(1,0), curve B with u € (a, 1). We can now express the map ¢, as
Y [Ua(w), w] = [wL + Uyx(w), w]

and look for solutions to

wL + Up(w) = Ug(w)

where w is u,(0) on a solution of equation (2.12). Rearranging this equation, we

obtain
H(w; L) = Uyg(w) +wL — Ug(w) = 0. (2.14)

Assume that we know a solution u*(x) of system (2.12) with L = Ly where u(0) =

wy. Then
H(wo, Lo) = UA(UJ()) 4+ IU()L() — UB(U}()) = 0 (215)

By expanding H in a Taylor series about (wy; Ly) and using the above equation,

we get

H(w; L) = [U’A(’(U()) + Lo — U]’_E,(wo)](w — ’wo) + ’U)()(L — Lo) +
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[Uﬁ(wo) — Ug(wo)](w — w0)2 + (w — wo)(L — Lo) + HO.T.
= 0.

Thus, bifurcations can (and do in this case) occur when

Note that, Uj(wy) < 0 in order to have solutions to this equation, because Ly
and —Up(wy) are both positive. This is always the case for the branch of curve A
that we have chosen to work with, however it is never the case on the u € (0, )
branch of curve A, i.e., all bifurcations occur with u(0) > a.

By using equations (2.15) and (2.16), we have two equations for the two un-
knowns wy and the value of L at the bifurcation point. Solving these equations for

Ly, we get

Lo = ~Ul(wo) + Ul (wn) = ——[Ua(wo) — Up(uwo)] (2.17)

Wo
To find the type of bifurcation algebraically, we let
L:L0+€L1+€2L2+...

w:w0+6w1+62w2+...

where € is a small positive parameter, and substitute into equation (2.14) and collect

like terms. The O(e) equation is
woL, =0,
which implies that L; = 0. The O(€?) terms give
woLy + wiU"% (wo) — Up(w)] + Lyw; = 0.

L, is arbitrary and we can choose it to give the direction of the perturbation away

from the bifurcation point. If we choose Ly = +1, then

+ —to
w =
' U (wo) — Ug(wo)’
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which exists when U’{(wq) — U};(wq) < 0. This implies that if there is a bifurcation
at L = L, then two new solutions are born as L is increased. If we choose Ly, = —1,

then

wy = =+ — %o
L —U%(wo) + Up(wo)’

which exists when U’{(wq) — U};(wq) > 0. This implies that if there is a bifurcation
at L = Ly, then two solutions coalesce at L = Ly and vanish as L is increased.
In the nongeneric case that U'{(wg) — Uj(wg) = 0, higher order terms must be
considered to ascertain what happens.

The above gives a condition for the existence of more than two solutions: If
Ul (w) — Upj(w) change signs on u € («,u4), then more than two solutions can
exist. In fact, the number of sign changes determines the number of possible tangent
bifurcations and thus the number of solutions that can possibly coexist. If U’{(w) —
U} (w) does not change sign, then there is a single bifurcation and a maximum of
two solutions. This was the case for the cubic f as shown in Figures 2.12 and 2.13.
Figure 2.16 shows the phase portrait (with mapping of curve A) for the case of
f=—u(u—017)(u — 1.0)(u? — 1.1u + 0.3075) in which U%(w) — Uj(w) changes
sign twice. As a result of these sign changes, three bifurcations occur: two saddle
node bifurcations in which two solutions are born in each and one where the middle
two solutions coalesce and vanish. This leads to a maximum of four steady state
solutions.

Note that at the bifurcation point, where two solutions are born as L is increased,
Hy(wo; Lo) = Ha(wo) + Lo = [U)(wo) — Up(wo)] + Lo = 0,

and

wa(w(); Lo) = Hé(wo) = UX(U}()) — Ug(wo) < 0.

Thus by continuity and ordering, the solution branch with w < wy immediately
following the bifurcation point, and thus the “greater” solution (because w = Gg(u)

is monotonically decreasing in u in the pertinent region), will have

UIA(’U)()) — UIB(’U)()) + LO > 0.
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Figure 2.16. The u,u,-phase portrait of wu,, + f(u) = 0 with images of the
homoclinic orbit (curve A) under the map v,. Here, a quintic reaction term is used
f=—u(u—0.17)(u—1.0)(u? — 1.1u+0.3075). At L = 90, it can be seen that there
are four intersections of the mapped homoclinic orbit A and the stable manifold of
(1,0) (curve B). These intersections correspond to four steady state solutions of
the partial differential equation (2.1).
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The solution branch with w > wy immediately following the bifurcation point, and

thus the “smaller” solution, will have
UA(UJ()) — U’B(wo) + Lo < 0.

This condition will be used to show that the smaller solution is stable and the larger
solution is unstable. The stability of one branch and the instability of the other is
exactly what we expect given a saddle-node bifurcation. Note that one can justify

this result graphically as well.

2.3.9 Stability of solutions

Stability can be determined by numerical simulations of the PDE (2.1) (i.e.,
observing dynamics for small perturbations away from steady states u*(x)) or by lin-
earizing around u*(z) and calculating the eigenvalues of the resulting Schroedinger-
type equation. However, these results would only be applicable to the general case
in an inferential way. Here, we will show stability for general f.

The following proposition implies that, any time two new solutions are born via
a saddle-node bifurcation, the larger solution is unstable and the smaller is stable.
We show this by attempting to construct time-independent super- and subsolutions
that are solutions of system (2.1) everywhere except at x = 0. Therefore, they live
on curve A for x < 0, they are straight lines on 0 < x < L, they live on curve B
for x > L, and have continuous second derivatives everywhere but x = 0 where a
jump in the z-derivative will occur. Conditions for the existence of these super-

and subsolutions give us our result.

Proposition 2.10 Let u(z) be a steady state solution of equation (2.1).

(i) If U (uz(0)) — Up(uy(0)) + L < 0, then there exists a time-independent super-
solution ¢(x) and subsolution ¢(x) that are arbitrarily close to u(x) with ¢(z) >
u(z) > ¢. Therefore, u(x) is a stable solution.

(i1) If Uy (uy(0)) — Up(ug(0)) + L > 0, then there exists a time-independent super-
solution ¢(x) and subsolution ¢(x) that are arbitrarily close to u(x) with ¢(z) <

u(z) < ¢(x). Therefore, u(x) is an unstable solution.
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Assume that we want to construct a supersolution with ¢(z) < u(z). As we
construct ¢, it will be extremely useful to follow its trajectory in the phase plane
shown in Figure 2.17. Let us attempt to build the supersolution starting from
2 = oo and then decreasing  to + = —oo. From z = L to oo, take ¢ to live on
curve B with ¢'(L) = «/(L) + €, where ¢ is arbitrarily small. Because curve B is
monotonic with Uj; < 0 in the region of interest, it is required that ¢ > 0 in order
to have ¢(x) < u(x). For 0 < x < L, take ¢ to be a straight line such that ¢ and

¢' are continuous at x = L. The equation for ¢(0) is then
$(0) = —(u'(L) + )L + Up(u'(L) + ¢).

The remainder of ¢ will be taken to live on curve A with ¢ continuous. Thus, ¢
is a solution everywhere except x = 0 where generically ¢’ is not continuous (for
€ # 0). For ¢ to be a supersolution, the jump condition ¢'(0%) — ¢'(0~) < 0 must
be satisfied. Therefore, it is required that ¢(0) < Ugs(u,(L) + €) for points with
u € (a,uq) where Uy < 0 (or ¢(0) > Ua(ug(L) + €) for points with u € (v, u4)
where U’y > 0). This gives the inequality

—(u'(L) 4+ €)L + Ug(u'(L) + €) < Ua(uz(L) + €).
Expanding the inequality about € = 0 and collecting like terms, we get
(Ua(ug(L)) — Up(ug(L)) + up(L)L) + (U (uz (L)) — Ug(ug(L)) + L)e+ ... >0

Because u(x) is a solution to system (2.7), we have that Us(u,(L)) + u,(L)L =
Ug(uz(0)). Thus, since € is positive and arbitrarily small, for ¢ to exist with the

given restrictions, it is required that

The argument for the existence of sub- and supersolutions in other three cases are
identical except for sign changes.

Because ¢ is arbitrarily small, the time-independent sub- and supersolutions
are arbitrarily close to the steady state solutions u(x). Therefore, based on the
conditions for the existence of the sub- and supersolutions, the results presented in

the previous section, and theorem 2.10, our stability result is obtained. O
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Figure 2.17. Phase plane for cubic f with & = 0.4. The trajectory for a
steady state solution u* of (2.1) is plotted as a thick solid line. The trajec-
tory for a time-independent supersolution ¢ is plotted as a thick dot-dashed
line. (D = 1,L = 7.2). Values of interest: u*(0) = 0.650, u*(L) = 0.942,
u(0) = ui(L) = 0.041. ¢(0) = 0.576, ¢(L) = 0.930, ¢,(0+) = ¢.(L) = 0.051,

(ie., € = 0.1), ¢.(0—) = 0.0939, U4 (¢, (04)) ~ 0.64.
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2.3.10 Analogy to coupled cells
It was previously mentioned that the bifurcation parameter of interest is L/D
when we are considering the existence of steady states. If L — 0 with L/D constant,
then we have the case of two identical excitable cables connected via an ohmic
resistor. All results given here apply to this case, which may be a better model for
the sucrose gap preparation than when L is taken to be large. This case in many

respects is close to two excitable (bistable) cells coupled by a resistor of resistance

1/cq

{ uy = fur) 4 cg(uz — ua), (2.18)
fu2) + cg(uy — uz).

Indeed, Othmer [51] showed that under appropriate scaling, a finite cable with an
inhomogeneity identical to the one considered here can be reduced to a pair of
coupled cells.

The question that was considered for the full PDE system can also be considered
for the case of the coupled cells: Assume the two cells are at rest (u; = 0,us = 0)
and cell 2 receives a sufficiently large perturbation for it to become excited. Is the
signal transmitted to cell 2 (i.e., does cell 2 become excited as well) or is the signal
blocked?

We will show that the bifurcation structure of steady states in system (2.18) has
the exact same qualitative features as the full gap model. Also, ordering principles
can be derived for system (2.18) in an almost identical way to those in section 2.2.3.
Thus, the coupled cell problem (2.18) is analogous to the gap problem (2.1).

To see the similarity in bifurcation structure, the system is best studied in the
ug, ui-phase plane. Figures 2.18-2.20 show the phase planes for various values c,.
The figures use a cubic f with o = 0.3. Figure 2.18 show the phase plane for the
uncoupled case ¢, = 0. There are 9 steady states in all as seen by the intersections
of the nullclines. The upper three, which have u, = 1, are of the most interest here.
The steady state at (uy,ug) = (0,1) and (1,1) are stable nodes, which correspond
to cell 2 being excited with cell 1 at rest and both cells being excited, respectively.

The steady state at (1, «) is a saddle point that separates the basins of attraction of
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Figure 2.18. Phase plane of coupled cells for cubic f with o = 0.3 and ¢; = 0
(uncoupled). Dashed curves are portions of the wu;-nullcline and the dash-dotted
curves are portions of the wus-nullcline. A few trajectories are shown that begin
at points corresponding to superthreshold perturbations of cell 2. The excitation
signal is blocked, of course, because the cells are uncoupled and therefore cell 1
does not become excited.
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Figure 2.19. Phase plane of coupled cells for cubic f with & = 0.3 and ¢, = 0.019.
Dashed curves are portions of the wu;-nullcline and the dash-dotted curves are
portions of the wo-nullcline. A few trajectories are shown that begin at points
corresponding to superthreshold perturbations of cell 2. The excitation signal is
blocked, because the coupling is not sufficiently strong and therefore cell 1 does not
become excited.
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Figure 2.20. Phase plane of coupled cells for cubic f with o = 0.3 and ¢, = 0.028.

Dashed curves are portions of the wu;-nullcline and the dash-dotted curves are
A few trajectories are shown that begin at points

portions of the us-nullcline.
corresponding to superthreshold perturbations of cell 2. Here, the coupling strength

is large enough so that the excitation of cell 2 leads to the excitation of cell 1.
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the two stable nodes. If the cells are both at rest (i.e., at the stable node (0,0)) and
a perturbation is given to cell 2 that raises us above «, cell 2 will become excited
and uy will increase to 1. Cell 1 will, of course, remain unchanged at u; = 0. Thus,
the signal is blocked.

For small ¢4, this behavior persists. Of note, however, is the appearance of the
full structure of the nullclines and the fact that the node that was at (0,1) and
the saddle point that was at («, 1) are shifted towards one another. This is seen
in Figure 2.19 where ¢, = 0.019. Sufficiently large perturbations of cell 2 away
from (0,0) fall into a positively invariant region D (limited by the immediately
surrounding nullclines). The flow in this region funnels all trajectories into the
only stable point in the region, the stable node that was shifted from (0, 1). Thus,
the signal is still blocked.

As ¢, is increased further, however, the stable node that was at (0,1) and the
saddle that was at (a, 1) for the uncoupled system collide and vanish via a saddle-
node bifurcation. For the case shown in the figures, this bifurcation point is at ¢, =
0.0235. Following the bifurcation, the basin of attraction of the old stable steady
state is now absorbed by that of the steady state (1, 1), and now perturbations that
excite cell 2 lead to an excitation of cell 1 and the signal is successfully transmitted.
This is seen in Figure 2.20 where ¢, = 0.028.

Thus, we see the similarity between the coupled cell model and the gap problem.
The saddle that was at («, 1) in the uncoupled system is analogous to the unstable
solution in the PDE and the stable node that was at (0,1) is analogous to the
stable solution. Moreover, the transition between signal block and successfully
signal transmission is associated with a saddle-node bifurcation.

In retrospect, we should not be surprised by the bifurcation structure in the gap
problem, because of its similarity to the very easily studied coupled cell system.
We will make use of this analogy between the gap problem and coupled cells in the
next chapter in order to help us understand the dynamic mechanism underlying

the phenomenon of wave reflection.
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2.3.11 Summary

In section 2.3, we consider wavefront propagation in a spatially distributed
scalar excitable medium that contains a local inhomogeneity. This inhomogeneity
is a region of nonexcitability of length L in which information is transmitted
only by diffusion. By quoting existing theorems, we link the ability of the local
inhomogeneity to block wavefront propagation to the existence of solutions to the
steady state equations (2.12). We then develop a geometric method that allows one
to quickly and easily find when these steady state solutions exist. Furthermore, this
method immediately shows several important features of solutions and the overall
behavior of the problem.

One of these features is that there exists a critical gap length L* such that no
solutions exist for L < L*, there is exactly one solution for L = L*, and there are
two (or more) solutions L > L*. This suggests that the solutions arise via a saddle
node bifurcation. Indeed, using upper and lower solution techniques, we prove that
the larger of the two solutions is unstable, whereas the smaller solution is stable.
The “distance” of the stable solution from the unstable solution gives an idea of the
size of the basin of attraction of the stable solution (i.e., just how stable the stable
solution is). The unstable solution can be interpreted as a threshold for jumping
the gap.

Another benefit of the graphical representation is that it shows the important
portions of f that determine whether or not block occurs. If the system is “highly
excitable”, there is a sizable portion of f that plays no role whatsoever in the
dynamics of wavefront block.

In the following sections, we will show examples of how the geometric method

can be extended to problems with gap dynamics other than strict diffusion.

2.4 Other Gap Dynamics
2.4.1 Variable diffusion coefficient
It should be noted that the true parameter involved in determining the existence
of steady state solutions to system (2.1), and therefore wavefront block, is total

resistance in the gap. Consider the case of a variable diffusion coefficient, D(z), in



o7

the gap 0 < x < L and the excitable portion as originally defined. The matching
conditions change slightly to

lim v = lim u,

x—0~ x—0t

lim v = lim u,

z— Lt z—L~

lim u, = lim D(0)u,,
x—0~ z—0t

lim w, = lim D(L)u,.
z— Lt z—L~

Integrating the equation for gap dynamics,

This results in a map
U+ [u(0), uz(0)] = [v(L), va(L)] = [%(0)/0 [D ()]~ dz + u(0), uz(0)]-

Thus we see that the total resistance fOL[D(a:)]_ldx determines the mapping of
points on curve A through the gap to curve B.

This mapping implies that an asymmetric diffusion coefficient within the gap
does not give rise to unidirectional block, i.e., it does not make it easier to block
a wave traveling towards the gap in one direction compared to a wave traveling
towards the gap in the other direction [32, 34, 42]. Unidirectional block can only
occur when the two excitable regions of the cable have different diffusion coefficients.
For a gap length of zero and only a change diffusion coefficients, this situation would
be equivalent to problems considered by Pauwelussen [53] (changing diameter of a
neuron), and Fife and Peletier [20] (changing mobility in space). It should be noted
that if the gap has nonzero excitability and D varies through the gap, then one-way

block can occur [20].
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2.4.2 Leaky Gap and ischemic tissue
Similar analysis can be performed in the (perhaps more physical) case where gap

dynamics include a leakage term, —~u, in addition to diffusion:
uy = Duge —yu, x € (0,L).

Because only the dynamics in the gap are altered, only the map ¢ is changed.

The new map is:

Yo [u(0),ue(0)] = [%2 sinh \/FL +u(0) cosh \/FL,
u(0) cosh /L L + Du(0) /% sinh \/ZL].

It is easy to show that as v — 0, 'QEL — 1. However, for a sizeable leakage
term, results look different, as shown in Figures 2.21-2.25. The addition of this
leakage term results in a lower critical gap length L* as expected. It also allows
for the possibility for nonmonotonic solution (which are always unstable according
to Sturm-Liouville theory). Furthermore, for 7 not too small, almost the entire
function f is represented along solutions (i.e., very little of f is unimportant in
determining block unlike the case with v = 0). All of these differences are products
of the new map having only one fixed point (0,0) (rather than two) and lifting the
rest of the homoclinic orbit including the point («,0) towards the stable manifold
of (1,0).

Despite the difference in the map and solutions, the important aspects of the
topology of the system remain the same as those for the strictly diffusive gap.
Hence, the super- and subsolutions needed to determine stability of solutions can
be constructed in the same manner as before, and they lead to results that are very
similar to the strictly diffusive case (see Figure 2.23).

The above may be more realistic for the AV node in which the resting potential
is not too different from atrial and bundle of His tissue, however an additional
factor may be important to include in the case of an ischemic region. One of the

major changes that occurs when a tissue becomes ischemic is that the membrane
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Figure 2.21. The u,u,-phase portrait of wu,, + f(u) = 0 with images of the

homoclinic orbit (curve A) under the map ¢y, for leaky gap. The first intersection
is at L* = 0.426.
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Figure 2.23. Bifurcation diagram for leaky gap: u(0) of the steady state vs. gap
length (L). The solid line represent stable solutions and the dashed line represent
unstable solutions. The critical gap length is L* = 0.426. The parameters are
a=03 D=1,v=1.0.
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potential depolarizes (increases with respect to surrounding healthy tissue), thus

the gap dynamics become
wy = Duge —y(u —u,), x € (0,L).

and the map is adjusted to have a shift in the phase plane

Yr : [u(0), ug(0)] = [u,(1 —cosh\/ZL) + “%1(;2 sinh /%L + u(0) cosh \/Z L,
—u,+/7D sinh \/gLuw(O) cosh \/%L + u(0)y/yD sinh \/%L].

Because the adjustment terms in the map are always negative, the shift of @L(A)
is down and away from curve B, and therefore delays the critical gap length at which
block occurs when compared to the leaky gap result. This may not be surprising,
because the depolarized region acts as an extra source that will aid in transmission

of signals across the gap.

2.4.3 Gap with low excitation

In this section, gap dynamics of reduced excitability will be considered. The
main results presented are essentially due to Fife and Peletier [20] in that the
super- and subsolutions constructed to prove the results are the same as theirs. We
will modify their main theorem and its proof to use terminology consistent with the
rest of this thesis and rework resulting approximations of (bounds on) the critical
gap length L* enabling a few new observations. In particular, a smaller lower bound
on L* is obtained. This bound has explicit dependence on s(z) and does not rely
on a specific form of s(x). Also, an interpretation of the problem is given in terms
of the phase plane for the case when s in the gap is constant.

Let us study the equation (2.1) with a local inhomogeneity described by

— 89(1‘)7 0<2 <L,
sle) = { L otherwise. (2.19)

It is mentioned above that we are considering reduced excitability in the gap. One

could take this to imply that s,(x) < 1, however we will see that it actually is the
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average level of excitability in the gap that will appear in our bound on L*, thus

this is not a necessary restriction.

Proposition 2.11 Let M be the mazimum of f on u € (o, 1) and 5 be the average
excitability in the gap %fOL sg(x)da.
If

and

—2F () 1-2(1-a)
LZ%—M(l_’/W) (2.20)

then equation (2.1) with inhomogeneity (2.19) has a stable steady state solution.

If the reaction term in the gap sy = 0, then this bound reduces to

(1—-«a)

> Nt (2.21)

To prove this, we attempt to construct a time-independent subsolution ¢ and
a time-independent supersolution ¢ for equation (2.1) with condition (2.19) such
that ¢ > ¢. When these exist, according to theorem 2.11, we are guaranteed the
existence of a stable steady state solution of (2.1).

The supersolution, ¢, consists of u = 0 for + < L and the solution the lives on
the stable manifold of (1,0) (curve B) starting from u = 0 at x = L and going to
v = 1as z — oo. Note that ¢ is a solution everywhere except at = L where
¢'(0%) — ¢’'(07) > 0, therefore the supersolution, ¢, always exist.

Set L = L, where L is the minimum value of L for which we can construct
a particular subsolution, ¢. This subsolution, ¢, consists of 3 regions. On x €
(—00, 0], ¢ lives on the homoclinic orbit A with ¢(0) = o and ¢'(0) = \/—2F(«).
Onz>1L, ¢ = 1. The portion of ¢ in x € (0, L), which will be called v, is given

by the initial value problem

V" + s4(x)M =0,

v(0) = o, v'(0) = /—2F (). (2.22)
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As a subsolution, ¢ is required to be continuous, so we must set v(L) = 1. Thus,
¢" + s(x)f(¢) < 0and ¢'(07) — ¢'(07) < 0 (e, if it exists, then ¢ is indeed a
subsolution).

We now find conditions for the existence of ¢. From equation (2.22), v" < 0.
This implies that a requirement for the existence of ¢ is that v'(0)L > (1 — «),
which is exactly the inequality (2.20). Note that this bound does not depend on
details of the inhomogeneity. In fact, this is the bound that for the solely diffusive
case, s, = 0 given in inequality (2.21).

Integrating equation (2.22) for z < L, we obtain

T L
v'(z) —'(0) = —M/ sq(2)dz > —M/ sq(2)dz = —MS5L.
0 0
Integrating again and evaluating at = = L, we find that

v(L) —v(0) =1—a > (—M5L +v'(0))L.

Rearranging and using the quadratic formula, we find that

I v'(0) — /v'(0)2 — 4M5(1 — a).
- 25M

(i.e., the larger "root” is of no consequence). Rearranging this inequality, we arrive
at inequality (2.20). Note that this bound relies on the average excitability in the
gap and not on the explicit form of s(z). The condition for the existence of such a
bound is given by the discriminant, which is equivalent to the condition stated in
the hypothesis of the proposition.

Also, although we have already validated inequality (2.21), it is comforting to
see that (2.20) reduces to (2.21) as the average level of excitability in the gap s,(z)
goes to 0.

Finally, note that if L > L, then the same ¢ exists. O

When s,(z) is a constant the bound on L can be improved to

—2F(a) [1-2(1-a)
Lz (1 - W) : (2.23)
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which exists when
—F()
M1 —-a«)/2

This bound on s, is reminiscent of a similar bound in a model where there is an

54 <

abrupt decrease in excitability [20, 53], especially if one thinks of M (1 — «)/2 as
an approximation of f; f(u)du.

Also, when s,(z) is a constant, we can apply techniques similar to those used
in the purely diffusive case. We can generate a map under the flow of the gap
dynamics, use this to map points on the homoclinic orbit determined by the outer
equations, and look for intersections of this mapped curve with the stable manifold
of (1,0). The only difference is that the map can not be written explicitly and must
be generated numerically. Examples of the mapping is shown in Figure 2.26 where
L is varied and Figure 2.27 where s, is changed. Also, the geometric technique
presented here can be extended to apply to piecewise constant changes in s(z). In
this case, steady state solution could be found by simply applying a series of maps

to curve A before looking for intersections with curve B.

2.5 Discussion

We believe the analysis and results that we present here helps to elucidate the
problem of determining which properties regulate the ability of a wave of excitation
to be transmitted across gaps of inexcitability or low excitability. However, because
only the scalar system is considered, the direct applicability of this work to general
excitable media needs further consideration. When the time scale of recovery is
much larger than the characteristic time for diffusion and excitation, the analysis
here will predict the critical gap length well. On the other hand, in some physical
situations, recovery dynamics are not slow enough to ignore and can play a large
role in determining whether or not a wave is blocked by a gap. To make matters
worse, excitation is not always described by a single variable in many systems.

Most simple caricature models of the electrical activity in cardiac tissue do not
have these problems. Generally, they have a single fast variable that is respon-

sible for the autocatalytic process in excitation and fairly slow recovery variables.
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Figure 2.26. The u,ug,-phase portrait of wug, + f(u) = 0 with images of the

homoclinic orbit under the map flow of uy, + s,f(u) =0. a =04, s, = 0.3.
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Figure 2.27. The u,ug,-phase portrait of ug, + f(u) = 0 with images of the

homoclinic orbit under the map flow of uy, + s,f(u) =0. a =04, L = 8.0.
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Therefore, if we implement these models in the gap problem, we can set the recovery
variables to constants, apply our geometric method, and confidently approximate
the critical gap length. Unfortunately, detailed models of cardiac tissue have both
several excitability variables and some fairly fast recovery variables. It is not easy to
get good quantitative approximations of the critical gap length from a physiological
standpoint. It may be possible that this can be overcome by deriving “effective” one
variable excitation terms for these detailed model. We have had some preliminary
success in accomplishing this for a specific case (the Noble model [49]), but much
more work needs to be done before a general method for this type of reduction can

be attained.



CHAPTER 3

REFLECTION

3.1 Including Recovery

The previous chapter dealt with propagation failure in excitable media having
a distinct region with weak or no excitability. It was assumed that recovery was
slow enough so that it could be ignored. The benefit of ignoring recovery was
that the resulting equation was a scalar parabolic partial differential equation, and
ordering principles for these types of equations allowed us to obtain analytical
results concerning conditions for propagation failure. However, propagation failure
was one of the few behaviors that can be studied with this model.

When recovery is included, one problem of interest is how recovery dynamics
modulate the critical gap length that marks the transition from successful trans-
mission of the signal through the gap to transmission block. Figure 3.1 shows
the time it takes for a signal to be transmitted through the gap as a function of
gap length for the scalar gap problem. As the gap length is increased towards
the critical gap length, the transmission time goes to infinity. (This reflects the
presence of the zero eigenvalue associated with the saddle-node bifurcation). When
recovery is included, the medium on the proximal side of the gap is only excited
for a finite amount of time and therefore can only source current to medium on the
distal side for that finite amount of time. Thus, it is obvious that the block must
occur at smaller gap lengths in a model that contains recovery dynamics than the
critical gap length in a comparable scalar model, and in order to get a complete
picture of wave block, one must study the relationship between recovery dynamics
on the proximal side of the gap, threshold dynamics on the distal side of the gap,
properties of the gap and the critical gap length.
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Figure 3.1. The time required for the wavefront to cross the gap as a function
of the length of the gap (L) for equation (2.1) with f cubic and @ = 0.3. As L
approaches the critical gap length Lx ~ 6.45, the transmission time goes to oo.
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When recovery is included in the model, more interesting behavior can occur
than simply propagation failure or successful transmission. Because cardiac tissue
usually receives periodic input stemming from the sino-atrial node, the response
to periodic stimulation is of particular interest in cardiac electrophysiology. Dif-
ferent periods and amplitudes of stimulation uncover the dependency of excitation
threshold and excitation duration on recovery times and give rise to various different
excitation patterns [43, 67, 46, 11]. Preliminary studies show that the gap model
exhibits patterns of activity known as Wenckebach rhythms [47, 36]. Wenckebach
rhythms are also seen clinically and in sucrose gap experiments [7, 29|, in vivo and
in vitro AV nodal preparations [6], as well as ventricular tissue [14] and Purkinje
fiber [64]. Furthermore, Guevara saw these same patterns in a detailed model of
Purkinje with a region of reduced excitability [24]. This increases confidence that
the gap model is a viable simple analog for the AV node as well as damaged tissue.

Another behavior that is important in cardiac electrophysiology is a phenomenon
known as reflection or echo waves [39]. Reflection is characterized by a wave that
is propagating in one direction giving rise to another wave that travels back in
the direction from which the original wave came. This behavior has been observed
in sucrose gap experiments [7, 29] and in experiments where the gap contains an
ischemic like medium [59]. These experimental results have lead to the belief that
reflection can play a key role in the initiation of the fatal cardiac arrhythmias
ventricular tachycardia and fibrillation. The exact mechanism, however, is not at all
clear. Reflection has also been described in models of neurons with inhomogeneities
such as changes in axonal diameter, temperature and channel density [18, 70, 22]
or a region of injury [27]; however only partial reflection has been seen in actual
experimental neural preparations [56].

In this chapter, we describe the behavior associated with reflection in the gap
model and attempt to obtain insight into the physical and dynamical mechanisms
underlying this behavior. As mentioned above, it is the inclusion of recovery
dynamics that gives rise to behaviors such as reflection. Unfortunately, when

recovery dynamics are included, the model is no longer a scalar equation and
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ordering principles no longer hold. This makes the more interesting behavior of
the system more difficult to study directly. For this reason, our insight into the

underlying mechanisms will hinge on simplifications of the full system.

3.2 Reflection in the Gap Model
3.2.1 Numerical simulations

The following describes results of numerical simulations of the gap problem using
Morris-Lecar dynamics [48]. (The next section will describe these dynamics in
detail). The simulations begin with a wave of excitation traveling towards the gap
and show the different behaviors that result as the gap length, L, is varied.

At small gap lengths, the wave propagates towards the gap and stalls as it reaches
it. This stall is brief, because the wave quickly sources enough current through the
purely diffusive region of the medium to excite the portion of the medium on the
distal side of the gap. The wave is thus reestablished and continues to propagate
into the remainder of the medium. Figure 3.2 shows an example of this for L = 1.5.
It is interesting to note that excitation on the distal portion of the medium starts
at a point that is not immediately next to the gap. Figure 3.3 depicts a situation
in which the gap length is large enough to block the wave, L = 1.7. In this case,
when the wave hits the gap, it cannot source enough current through the gap to
excite the medium on the distal side before the excitation ends on the proximal side.
So far, this behavior is similar to the behavior described in the previous chapter.
However, when we look at the behavior for intermediate gap lengths, we see much
more interesting behavior.

At a gap length of L = 1.6, the wave successfully bridges the gap, however the
delay between hitting the gap and exciting the distal side is long. In fact, it is long
enough so that when the distal side becomes excited, the proximal side is recovered.
This results in not only the wave propagating down the distal side of the medium,
but also the distal excitation sources current back through the gap and is able to
re-excite the recovered proximal side. This is seen in Figure 3.4. The result is a
“reflected” wave that travels through the medium in a retrograde fashion. This is

exactly the behavior that is exhibited in the sucrose gap experiments.
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Figure 3.2. Numerical simulation of the gap problem (2.1) using ML excitation
dynamics with a gap length L = 1.5. At this gap length, the wave successfully
crosses the diffusive gap - 1:1 pattern. For this figure and the next five figures, u
vs. space () is plotted. Each curve is the solution at a fixed time (every 1 ms) and
as time progresses the curves are lifted slightly.
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Figure 3.3. Numerical simulation of the gap problem (2.1) using ML excitation
dynamics with a gap length L = 1.7. At this gap length, the gap blocks the wave
- 1:0 pattern. This simulation was performed using the implicit-explicit method of
Hines [26] with a time step of At = 0.01 and a space step of Az = 0.05.
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Figure 3.4. Numerical simulation of the gap problem (2.1) using ML excitation
dynamics with a gap length L = 1.6. At this gap length, the wave successfully
crosses the diffusive gap and then produces a reflected wave - 2:1 pattern. This

simulation was performed using the implicit-explicit method of Hines [26] with
At =0.01 and Az = 0.05.
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If we probe the fine detail of parameter L space, we see even more exotic
behavior. At L = 1.52, a reflected wave occurs, but the reflected wave itself actually
elicits a reflection of its own. At L = 1.544, the reflection of the reflection gives
rise to another reflection, and at L = 1.543, yet another reflection occurs on top of
these. Figures 3.5, 3.6, and 3.7 show these behaviors.

As L space is probed even deeper, many more reflected waves occur, although
the behavior occurs over a very small region of parameter space.

Let us define an N:M reflection pattern such that N is the number of waves
occurring on the proximal side of the gap (including the original incoming wave)
and M is the number of waves occurring on the distal side of the gap. The sequence

of behavior that the above simulations suggests can then be expressed as
1:1,2:2,3:3, ..., N:N, ...,..., N+1:N, ..., 3:2,2:1,1:0 (3.1)

as the gap length L is increased. Ermentrout and Rinzel [18] observed this same

sequence of reflection in a cable model with an abrupt change in cable diameter.
We will attempt to uncover the dynamical mechanism underlying this sequence,

but first we give a detailed description of the ML model that will lead to a “physical”

explanation of reflection in the model.

3.2.2 The Morris-Lecar (ML) model
The ML model was originally designed as an ionic (Hodgkin-Huxley-like) model
for “slow potential” activity in the barnacle muscle [48], but now is generally used
as a simple model of excitable media that exhibits true threshold behavior. The
property of having a true threshold is known as type I excitability [57] and it will
be shown here that it facilitates the appearance of reflected waves.

The ML equations are
Uy = f(u,w) =1- gCamoo(u)(u - ECa) - ng(U - EK) — gl(u — El),

we = g(u, w) = —)(’woo(U) —w),

Tw(u
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Figure 3.5. Numerical simulation of the gap problem (2.1) using ML excitation
dynamics with a gap length L = 1.52. At this gap length, the wave successfully
crosses the diffusive gap and then leads to two reflected waves - 2:2 pattern. This

simulation was performed using the implicit-explicit method of Hines [26] with
At =0.01 and Az = 0.01.
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Figure 3.6. Numerical simulation of the gap problem (2.1) using ML excitation
dynamics with a gap length L = 1.544. At this gap length, the wave successfully
crosses the diffusive gap and then leads to a series of three reflected waves - 3:2
pattern. This simulation was performed using the implicit-explicit method of Hines
[26] with a time step of At = 0.01 and a space step of Az = 0.001.
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Figure 3.7. Numerical simulation of the gap problem (2.1) using ML excitation
dynamics with a gap length L = 1.543. At this gap length, the wave successfully
crosses the diffusive gap and then leads to a series of four reflected waves - 3:3
pattern. This simulation was performed using the implicit-explicit method of Hines
[26] with a time step of At = 0.01 and a space step of Az = 0.001.
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where
Meo(u) = 0.5(1 + tanh(*=24)),

V2

Woo (1) = 0.5(1 4 tanh(*=12)),

V4
To(u) =a cosh_l(“;Tf’).

Here, we take the parameters to be as follows: a = 3.0, ¢ = 0.5, gk = 2.0,
gca = 1.0, v; = —0.01, vy = 0.15, v3 = 0.1, vy = 0.145, E¢, = 1.0, Ex = —0.7,
E,=—0.5and I = 0.08.

The system using these parameters exhibits a true all-or-none threshold (type I
excitability). The reason for this is easily seen in the phase plane in Figure 3.8. The
intersections of the nullclines show that there are three steady states of the system.
From left to right (in order of increasing u), the steady states are a stable node, a
saddle point and an unstable focus. The existence of the saddle point is responsible
for the all-or-none behavior, because its stable manifold acts as a local separatrix
dividing initial conditions that are subthreshold and those that are superthreshold.
When a perturbation brings the system to a point to the left of the stable manifold,
the system simply returns to the rest state. If a perturbation brings the system to
a point to the right of the saddle point, u increases in an autocatalytic fashion and
the flow must circumnavigate the unstable focus before the system is able to return
to the rest state.

When the saddle point does not exist, the behavior is fundamentally different (as
is the case for the usual FitzHugh-Nagumo equations). In this case, there exists a
region in phase space that separates subthreshold and superthreshold behavior, but
within this region, a family of graded responses exists. This makes the distinction
between subthreshold and superthreshold responses arbitrary. Thus, we say that
there exist a “quasithreshold” and that the system demonstrates type II excitability.

Note that the true threshold, unlike the quasithreshold, allows for infinite delays
prior to a large excitation and therefore it is much easier in general to get long
delays in type I excitable systems as opposed to type II excitable systems. This
ability to produce long delays before excitation seems to promote the appearance
of reflections in the gap model. This is the reason why the ML model was used in

the above simulations.
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Figure 3.8. The phase plane of Morris-Lecar, parameters as in text. u-nullcline is
the dashed curve and the w-nullcline is the dot-dashed curve. The stable manifold of
the saddle point and the trajectories of a subthreshold and superthreshold response
are also shown.
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3.2.3 Physical mechanism of reflection

By inspecting the excitability variable as a function of time at a point on the
proximal side of the gap and a point on the distal side of the gap, we can see the
“physical” mechanism allowing reflection to occur. This mechanism is the ability of
the local dynamics to produce a long delay by remaining close to threshold for an
extended period of time before becoming excited. This consists of both u remaining
at a threshold level and only small changes in the recovery variable w, so that the
medium remains excitable.

Figure 3.9 shows an example of this behavior with L adjusted to produce a single
reflection (L = 1.6). Following excitation on the proximal side of the gap, u on the
distal side of the gap increases fairly slowly towards threshold. As the distal side
reaches a level just above threshold and is ready to take off, u on the proximal side
becomes unexcited. The value of u on the proximal side actually falls below the
resting value before beginning to rise again. This causes a further delay before the
autocatalytic excitation process can occur on the distal side. After hovering just
above threshold, the distal side finally becomes excited. By this time, the proximal
side is almost fully recovered and thus the distal side is able to reexcite the proximal

side.

3.3 Coupled Cells and Reflection

We would like to get insight into the dynamical mechanism underlying the be-
havior described above, however it is difficult to work on the full partial differential
equation model. Thus, we attempt to reduce the system while still keeping key
features that seems to underlie the physical mechanism of reflection, i.e., the true
threshold behavior. Because we saw that a model of two cells coupled by an resistor
mimicked the behavior of the PDE model, the coupled cell model seems like a good
place to begin.

3.3.1 Previous work
As mentioned previously, Ermentrout and Rinzel [18] saw the same reflection

sequence in a cable model with an abrupt increase in cable diameter that we describe
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Figure 3.9. “Physical” reflection mechanism. The u values and the w values at
points on the proximal side (solid line) and distal side (dashed line) of the gap. The
gap length is L = 1.6 as in Figure 3.4 where one reflected wave occurs.
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for the gap model. In their work, they consider coupled cells of different sizes as an
analog to the PDE model. By studying this simpler model, they are able to suggest
a link between reflection and the existence of an unstable periodic orbit.

Reflection in coupled excitable cells has been of interest for some time (although
Ermentrout and Rinzel were unaware of this). Krinskii et al. [40] observed transient
multiple reflections similar to those described here in a FitzHugh-Nagumo-like
model and attempted to construct a periodic orbit in a reduction of phase space.
Nordhaus [50] actually proved the existence of an unstable periodic orbit in a
system of coupled piecewise linear FitzHugh-Nagumo cells. His proof was for the
singular limit (very slow recovery dynamics) and for small coupling. The cells
also had to be at the threshold of becoming self-oscillatory. This final condition
enabled him to link this unstable periodic orbit with the anti-phase solution of two
coupled oscillators. Also, Nordhaus [50] and Tyson [63] showed the existence of
stable reflection oscillations in numerical simulations of a coupled piecewise linear
FitzHugh-Nagumo model and a model of the Belousov-Zhabotinsky (BZ) reaction,
respectively. (We should note the stable oscillations in coupled cell models studied
by Smale [61] and Alexander [2] seem to stem from a mechanism similar to diffusion
driven instability, which relies on the coupling via more than a single variable. This
is fundamentally different than the process considered here).

The analysis and the initial conclusions that follow are quite similar to the work
of Ermentrout and Rinzel [18]. However, we derive different “reduced” dynamics
to use in a coupled cell model. This allows a clearer explanation of the results and
extends them over a wider parameter range. Also, our modifications allow us to
easily set the results in a broad dynamical context and link them to the behavior
described above. In doing so, we are able to suggest how stable oscillations may

arise.

3.3.2 A reduced model of coupled cells
As stated above, we would like to find a simple system that keeps the key features
appearing to underlie the physical mechanism of reflection. Because we saw that

the coupled cell model described in the previous chapter displayed very similar
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behavior to the full PDE model, we will consider the coupled cell model once more.

Equations for coupled cells are

{ up = f(ug, wi) + co(u; — uy), (3:2)

w; = g(ui, wi),

where 7,7 = 1,2 with j # i. Cell ¢ and cell j are coupled through an ohmic resistor
(a limiting case of the gap model). The parameter ¢, is the coupling strength
between the cells (analogous to D/L in the gap model). Indeed, as ¢, is varied, the
equations describing coupled ML cells exhibit an identical reflection sequence (3.1)
as the PDE system.

The 4 variable system of ordinary differential equations (3.2) describing coupled
ML cells is much easier to study than the PDE model, but it is still fairly difficult
to analyze without making further simplifications. We will now describe a simpler
coupled cell model that also exhibits reflection dynamics and is even easier to study
than system (3.2). In fact, the dynamics of this simplified system will be shown
to reduce to a one-dimensional map (a finite difference equation) in the following
subsections.

The model consists of excitable cells that are each described by a single variable

obeying the differential equation

u' = f(u), (3.3)

where f is similar to the cubic-like function described in Chapter 2. Here, assume
that f has zeros at u = 0, @ and 1 and that these are the only zeros in [v,,, 1] for
Umin < 0. Furthermore, @ < 0.5 and f'(0) < 0, f'(«) > 0 and f'(1) < 0. Thus,
there is a stable rest state at v = 0, and if u is perturbed so that w is still less
than «a, then the system will decrease back to the rest state. If the perturbation
knocks u above the threshold point at «, then excitation will occur and u will
increase towards the stable excited state at 1. We truncate this system to include

only vpin < U < Upmaee Where v,,., is close to, but less, than 1. At u = v,02, Ut
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is still positive, however at this point, we take u to relax to v,,;, infinitely fast.
Therefore, the system will respond to subthreshold perturbations as before, but for
superthreshold perturbations, v will increase to v,qq, “rapidly” relax to v,,, and
then recover from u = v,,;, towards u = 0.

9

We call this reduced model the “integrate-and-relax” model for excitable cells.
Figure 3.10 shows typical superthreshold and subthreshold responses of the model.
The benefit of the model is that it keeps the threshold behavior that appears to
play a major role in the mechanism of reflection and keeps a physical coupling
term (unlike [18]), yet two coupled cells are described by a system of two first-order

ordinary differential equations

uy = f(ur) + cg(ug —uy),
{ f (3.4)

(u2) + ¢q(ur — up).
This system can be understood by considering flow in the uy, us-phase plane.

3.3.3 the uy,us-phase plane

Figures 3.11 and 3.12 show examples of the phase plane of the reduced coupled
cell model (3.4). Notice that this model is simply a truncated version of the one
discussed in section 2.2.10, Figure 2.20. Here, trajectories hitting u; = vy,4, at an
arbitrary value of uy get immediately reinjected into the phase plane at u; = vy,
and the same value of us. Similar dynamics are prescribed for trajectories hitting
Uy = Upae- Lhus, the system is described by continuous (CO) flow on a torus.
The line u; = v, Will be called the wuq-excited edge of the phase plane and the
U1 = Umsn 10 be the uy-recovery edge of the phase plane. Similar definitions will be
taken for the us-excited and wus-recovery edges.

There are several important curves drawn on the phase plane. The thin dashed
curve is the portion of the u;-nullcline in the restricted domain and the thin dash-
dotted curve is the same for the us-nullcline. For the choice of ¢, and f in both
Figures 3.11 and 3.12, there are four steady states. There is stable rest point at
(0,0) and an unstable node at (o, «). Also, there are two saddle points at (at,0")

and (07, ™) where 0% is slightly larger than 0 and «™ is slightly larger than «. If
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Figure 3.10. Superthreshold (solid curve) and subthreshold (dashed curve) re-
sponses of the “integrate-and-relax” model. The horizontal dotted lines correspond

t0 Upmin = —0.1, u = 0 (rest point), u = « (threshold) and ve, = —0.95.
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Figure 3.11. Phase plane of two coupled “integrate-and-relax” cell (system (3.4))
with cubic f with o = 0.2 and ¢, = 0.042. The dashed curve is the u;-nullcline and
the dash-dotted curve is the us-nullcline. The thick solid and thick dashed lines
are the unstable and stable manifolds of the saddle points (the fixed points off the
diagonal). The thin solid lines represent trajectories under the flow. A = 0.259,

Al =0.197.



91

0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
A AL ul

Figure 3.12. Phase plane of two coupled “integrate-and-relax” cell (system (3.4))
with cubic f with o = 0.2 and ¢, = 0.062. The dashed curve is the u;-nullcline and
the dash-dotted curve is the us-nullcline. The thick solid and thick dashed lines
are the unstable and stable manifolds of the saddle points (the fixed points off the
diagonal). The thin solid lines represent trajectories under the flow. A = 0.285,
A1 =10.368, A = 0.468.



92

the domain were unrestricted, there would also be a stable excited point at (1, 1).
Notice that because the cells are identical, the phase plane is symmetric about
the line u; = wo, which is drawn as a dotted line. Flow on this line reduces to
the case of two single cells with a stable resting state at (0,0) and a threshold at
(e, ), because in this case the coupling terms %c,(us —u;) = 0. Perhaps the most
important curves drawn in Figures 3.11 and 3.12 are the portions of the unstable
and stable manifolds of the saddle points. These are drawn as thick solid lines for
the saddle point at (a™,07) and as thick dashed lines for (07, a™).

Associated with the unstable and stable manifolds of the saddle points, there are
values that will be called A, A=!, and A'. The relative magnitudes of these values
will be essential in determining the type of behavior that the system exhibits. Let us
define A to be the value of u; at which the stable manifold of (o™, 0") emerges from
the us-recovery edge of the phase plane and A' to be the value of u, at which the
unstable manifold of (at,07) hits the u;-excited edge of the phase plane. We can
think of (v,n4e, A') as the image of (A, v,ni,) under the flow. Likewise, we will define
A~ by letting (vymin, A™') be the preimage of (A, v,,4,) under the flow. Because
the flow is symmetrical, A, A and A~! can be equally defined by exchanging the
positions of u; and wus.

Now, let us study the dynamics of system (3.4). Specifically, we will examine the
response of the system for initial conditions on the uy-recovery edge (i.e., points
(U1, Umin)). Different qualitative dynamics can occur for different ordering of A,
A=t and Al

First, let us consider the case of A' < A. This is always the case for low
coupling (as inferred by the ¢, = 0 case). An example of this case is shown in
Figure 3.11. (In this case, A~! is the unstable node at (o, «)). Notice that the
value A acts as a threshold. If u; is taken to be less than A, flow dictates that
trajectories immediately get absorbed by the resting state (0,0) and neither cell
becomes excited. This would correspond to a 0:0 pattern. If u; is taken to be
greater than A, then the flow increases u; and eventually the trajectory hits the

up-excited edge of the phase plane (at u; = vyq,). Because A' < A, when the flow
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is reinjected on the u;-recovery edge, us is always less than A and trajectories gets

absorbed by the resting state without cell 2 becoming excited. This corresponds to

a 1:0 pattern. These are the only two possible results for low coupling (A < A).
As ¢, is increased, A' moves toward A. At a critical parameter value Cpr A =

At = A", and for ¢4 > ¢}, both A < A" and A < A™'. At ¢, = ¢}, the unstable

*
9
manifold of each saddle point becomes the stable manifold of the other saddle point
and there is a heteroclinic connection. Hence, as ¢, is increased past cj, the system
undergoes a heteroclinic (or saddle-loop) bifurcation. This suggests that a periodic
orbit is born. We will return to this issue soon.

For cases when A < A' (¢, > c;) , the value A again acts as a threshold. If
uy is taken to be less than A, a 0:0 excitation pattern occurs (see Figure 3.12).
If u; is taken to be greater than A, then as before the flow increases u; to vViqz-
However, what follows depends on the exact starting point. If u; is taken to be
greater than A~ !, the resulting trajectory hits the u;-excited edge at a value of wu,
that is less than A, and therefore when it is reinjected on the u;-recovery edge, us
is less than A and the trajectory gets absorbed by the resting state without cell
2 becoming excited. This corresponds to a 1:0 pattern (see Figure 3.12). When
initial conditions (w1, vpin) are such that A < u; < A~!, more interesting dynamics
occur. These dynamics will be described by the return one-dimensional map that

is derived below.

3.3.4 The one-dimensional map

Consider the flow in the phase plane discussed above. Let the function ¢(u;) be
defined as follows. If u; < A, q(u1) = 0. If A < uy < Upaq, then let g(u;) be equal
to the value of uy at the point on the u;-excited edge of the phase plane that is the
image of (41, Vi) under the flow. Thus, ¢ : u; — us is a map that describes how
the flow of equation (3.4) takes points (1, Umin) On the us-recovery edge to points
(Umaz, u2) on the uj-excited edge of the phase plane.

Note that because the flow is symmetric around the line uy = uq, an identical
map is generated by flow above uy = u;. Therefore, the entire dynamics of the flow

are exactly described by the one-dimensional return map
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) _ Q(mz)a A S Z; S Urmax»
Titl = { 0, otherwise. (3.5)

The variable z; for odd ¢ corresponds to the value of us when cell 1 becomes excited
(i.e., when flow in the reduced coupled cell model hits the u;-excited edge of the
phase plane) and z; for even i corresponds the value of u; when cell 2 becomes
excited (i.e., when flow in the reduced coupled cell model hits the uy-excited edge
of the phase plane). By iterating this map, we can observe the excitation dynamics

of the ODE system (3.4).

3.3.5 The existence of a periodic orbit

The following describes two important properties of the map for A < A' and
A < A~! from which the existence of a periodic orbit in system (3.4) can be deduced.

The important portion of the map is, of course, z € (A, Vyq,). Because the map
is generated by a flow of a system of ODEs, it is continuous on x € (A, Vypaz). The
smoothness is determined by that of the flow. Also, notice that, in a sense, the flow
flips the ordering of points as it takes points from one recovery edge to the other.
This implies that the map is monotonically decreasing on x € (A, Vpaz)-

By construction, two points on the map are (A, A') and (A~', A). Thus, when
A < A and A < A7' (e, for ¢, > ¢ so that A is not greater to A'), the
map is guaranteed to have a fixed point, z*, by the intermediate value theorem.
Furthermore, because the map is strictly decreasing, this fixed point is unique.

The existence of the fixed point on the map implies that there exists a periodic
orbit in the coupled cell system (3.4) for sufficiently large coupling (¢, > c;). We
will now show that the reflection patterns that we have described are associated

with the existence of this periodic orbit.

3.3.6 The dynamical mechanism for reflection
Let us consider the case in Figure 3.12 where A' > A™! > A. The map
corresponding to the flow in Figure 3.12 is depicted in Figure 3.13. The slope
of map at the fixed point, z*, is less than negative one, and thus the fixed point is

unstable and repels iterates.
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Figure 3.13. A portion of one-dimensional return map for the flow in Figure 3.12.
the cobwebbing shows an example of an iteration of the map. The initial condition
xo = 0.33 leads to 11 iterates before x = 0. This correspond to a 6:5 reflection
pattern in the coupled cell model.
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By choosing different initial conditions and iterating the map, we are able to
observe behavior that corresponds to the various reflection patterns that were
observed in the ODE and PDE models. Remember that every nonzero iterate
corresponds to one of the cells being excited.

If we choose the initial condition to be larger than A~!, then we are only able
to iterate once before z; = 0 (i.e., before the iterations fall off the nonzero branch
of the map). This corresponds to a 1:0 pattern in the ODE. If we choose an
initial condition close to, but greater than A, then we are able to iterate twice,
corresponding to a 1:1 pattern. As the initial condition approaches the unstable
fixed point at x = x*, the number of iterates prior to x = 0 goes to infinity.
Furthermore, initial conditions with zy < x* lead to an even number of iterations
prior to x = 0 and initial conditions with xy > z* lead to an odd number of
iterations prior to x = 0. In general, if /V is the total number of iterations of the
map prior to the value of z; becoming 0, then the reflection pattern is N/2:N/2 for
N even or (N —1)/2+1:(N —1)/2 for N odd.

Thus, as the initial condition is increased from xy = v t0 To = Upes, the
number of iterates goes through the sequence 0, 2, 4, 6, 8, ... accumulating
to infinity when z = 2* and then decreasing from infinity as when move past
xr = z* ..., 7,5, 3, 1. This corresponds to the exact same sequence as the
reflection sequence observed in both the ODE and PDE ML simulations. The
initial value space can easily be divided into regions that give the number of iterates,
and therefore different reflection patterns, by finding the preimages of A (iterate
backwards with 2o = A). In doing so, we see that the higher the number of iterates,
the smaller the region of initial condition space. This agrees with the observation
in the PDE and ODE ML models that higher number of reflections are associated
with smaller regions of parameter L space and parameter ¢, space, respectively.

As ¢, is increased, the map shifts to the right (and upwards), and the fixed point
and “pattern space” shift along with in. Therefore, when the initial conditions are
fixed, the same reflection sequence will be observed as ¢, is increased. Also of note is

that changing initial conditions in the ML coupled cell system results in the same



97

reflection sequence as well. However, note that we can do not have real control
over the initial conditions of the PDE, because the wave generated on the proximal
side of the gap quickly approaches a shape similar to the unique stable traveling
wave that the homogeneous system exhibit. We are thus restricted to changing
parameters of gap dynamics in order to observe the reflection sequence.

The conclusion is that as ¢, or L changes, the system is effectively marching
through initial condition space and visiting the various possible transient behaviors
associated with being close to an unstable periodic orbit. No bifurcation is involved
in the changes in behavior. This includes the initial appearance of reflection. The
heteroclinic bifurcation that gives rise to the periodic orbit generically occurs prior
to the point when reflections are observed.

To complete the picture, let us consider what happens when ¢, becomes very
large. As ¢, increases, there is a pitchfork bifurcation in which the two saddle
points coalesce with the unstable node leaving only a saddle point at (c, a). (This
happens when ¢, = f'(«)/2). In this case, A' = v;,4, which is always greater than
A~ for the restricted domain. Thus, despite the decreased number of steady states,
the behavior described above persists.

However, notice that as ¢, increases further u; = uy becomes rapidly attracting.
This causes A™! to increase t0 vy, = A at, say, ¢, = c,"- As aresult, the periodic
orbit vanishes via another heteroclinic bifurcation. Thus, the periodic orbit exists

for only a finite interval of coupling strength, i.e., 0 < ¢} < ¢, < ¢j".

3.4 Links to Other Behavior
The link between an unstable periodic orbit and reflection patterns was nicely
described by Ermentrout and Rinzel [18]. They saw reflections in a PDE model with
ML dynamics in response to an abrupt change in cable diameter. They explained
this behavior by considering the dynamics of two coupled phase model cells [17]
that describes flow on a torus. They took the cells to be of different sizes to
mimic the change in cable diameter, and in the well-coupled limit where only two

steady states exist, they constructed a negatively invariant annulus and used the
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Poincare-Bendixson theorem to prove the existence of an unstable periodic orbit.
They then suggested that as the diameter of one of the cells is varied, all the
different reflection patterns can be seen with fixed initial conditions.

However, changing the size of one cell in a coupled cell model makes the system
asymmetric and the complexity of the coupling in the two cell phase model makes it
difficult to see how the nullclines are changing in response to changes in parameters.
Here, our choice of both “reduced” cell dynamics and bifurcation parameter allows
for a clearer, more complete, phase plane analysis, as well as the reduction of flow
to a one-dimensional return map. As shown above, this enables us to ease the
restriction of the well-coupled limit imposed by Ermentrout and Rinzel. It also
enables a clear demonstration of the connection to other possible behavior such as

stable reflection oscillations and the connection to coupled oscillators.

3.4.1 Coupled oscillators

The fact that an unstable periodic orbit underlies reflection may seem somewhat
surprising. However, it makes prefect sense when we note that oscillators coupled
via ohmic resistors are known to usually have stable in-phase oscillations and
unstable antiphase oscillations [5]. For a special case, Nordhaus [50] showed that
the unstable periodic orbit associated with reflection in coupled excitable cells is a
continuation of the unstable antiphase oscillation for coupled relaxation oscillators.
This is very easily seen in our simple coupled cell model.

Consider system (3.4) with a reaction term f(u) — I where f is as previously
described and I is a new parameter. Note that when [ is sufficiently large, f loses
the two zeros that were at 0 and « for I = 0. This renders each cell self-oscillatory.
Let us choose parameters to be those described for Figure 3.12 and begin to increase
I from zero. As I increases, a pitchfork bifurcation occurs leaving only the two
steady states along the identity line (see Figure 3.14), however the unstable orbit
persists along with the reflection patterns.

Increasing I further, the remaining two fixed points collide and vanish via a
saddle-node bifurcation. There are two important observations to make here.

One is that prior to the saddle-node bifurcation the two steady states lived on
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an attracting heteroclinic loop. Thus, as they vanish, a stable periodic orbit is
born. This is the in-phase oscillation of coupled oscillators. The other observation
is that the bifurcation is local and therefore does not affect trajectories away for the
orbit undergoing the bifurcation. Thus, we see that the unstable orbit underlying
reflections is the continuation of an antiphase oscillation of coupled oscillators (see
Figure 3.15). We have shown that under the appropriate conditions cells do not

need to be close to self-oscillatory in order for this orbit to persist.

3.4.2 Stable reflection oscillations

The possibility of stable reflection oscillations is an extremely interesting issue.
Tyson [63] observed stable reflection oscillations in numerical simulations of a model
of BZ reaction. He hypothesized that these stable oscillations might be the result
of a saddle-node type bifurcation in which a stable and an unstable periodic orbit
were born. Although this may be a plausible scenario in more complex models,
it cannot happen in our simple model. This is seen by the fact that the maps
describing the dynamics in the simple model are monotonically decreasing, which
excludes the possibility of saddle-node bifurcations. However, there are two other
possibilities by which stable oscillations can arise. One is that a periodic orbit
born out of the heteroclinic bifurcation (discussed earlier) could appear as a stable
oscillation. This is this case when A~! < A! immediately following the bifurcation,
which makes the return map a contraction map. Another possibility is that if an
unstable orbit is born via the heteroclinic bifurcation, a subcritical period doubling
bifurcation could take place as ¢, is changed. This would give rise to an unstable
period-two orbit and a stable period-one orbit.

Both of these scenarios can be seen in our simple model by adjusting parameters.
Figure 3.16 shows an example of a map for ¢, just above c;. Below (Al < A), the
entire nonzero portion of the map lies the right of the identity line. As ¢, increases,
the map shifts to the left leading to the appearance of a fixed point. When the
fixed point appears, the slope is greater than -1 (and less than 0 of course), thus

the period-1 orbit is stable as soon as it is born. Figure 3.17 shows an example of
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a map just past a period doubling bifurcation where an unstable period-two orbit
(the dashed box) has grown out of the fixed point, which is now stable. If initial
conditions are chosen to be within the period-2 orbit, the system will evolve to
stable period-1 oscillations.

The possibility of stable reflection oscillations is especially interesting in the
context of cardiac electrophysiology. It is hypothesized that there are two main
pathways through the AV node and the current dogma is that most AV mnodal
tachycardias result from reentrant circulation of an electrical impulse down one
pathway and up the other [1]. However, there is no direct evidence for reentry
underlying these arrhythmias or even for the existence of dual pathways. The
analogy of the gap model between the AV node, along with the results provided
here, suggests that the existence of stable oscillations of reflection could be an viable

alternative mechanism of AV nodal tachycardia.

3.5 Reflection and the Induction of Spiral Waves

Cardiac arrhythmias such as ventricular and atrial tachycardia and ventricular
fibrillation are almost always due to self-perpetuating circulating wavefronts of
electrical activity. For several years, it has been thought that these reentrant
arrhythmias can often be associated with spiral waves (or scroll waves) [41, 65, 30].
Indeed, both models of cardiac tissue [38, 69, 12] and experimental preparations
[13, 23, 10] have been shown to support spiral wave dynamics.

In order to induce spirals, there must be a mechanism that breaks the symmetry
of the normal orderly wavefront that propagates through the heart. Experimentally
spiral are induced by external premature electrical stimulation. However, the
physiological mechanism involved in the autonomous induction of spiral waves
is still unresolved. In many situations, the heterogeneity due to damaged tissue
(by heart attacks for example) seems to be responsible for the symmetry breaking
[66, 33, 69, 58]. Perhaps the most plausible mechanism proposed thus far involves
curvature effects on the wavefronts as it tries to propagate around nonconducting

regions of tissue [52, 9]. However, even this mechanism has problems if the non-
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Figure 3.16. A portion of the one-dimensional return map showing a situation
for ¢, slightly large than a ¢ where a heteroclinic bifurcation gave rise to a stable

periodic orbit. Note that the slope of the map is between -1 and 0 everywhere.
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conducting tissue is due to damaged tissue. It is very reasonable to model the scar
tissue resulting from heart attacks by a nonconducting medium. On the other hand,
the mechanism requires wavefronts to experience a region of high curvature, and it
seems unlikely that sharp enough corners would exist in scar tissue in order to give
rise to such high wavefront curvature. Below, we suggest an alternative mechanism
in which damaged tissue could induced spiral waves and that does not rely on sharp
corners in the inhomogeneity in the medium. The mechanism involves a process
that we will refer to as facilitated reflection which occurs in a two-dimensional
version of the gap problem. To the best of our knowledge, this is the first time
reflection has been shown to induce spiral wave via an autonomous mechanism.

We use a two-dimensional excitable medium with a region of pure diffusion in the
middle. As discussed previously, this passive region is a simple model for ischemic
tissue. The excitation dynamics are described by the Morris-Lecar model. A wave
is started at an edge of the domain and it propagates towards the inhomogeneity.
If the length and/or width of the nonexcitable domain is small, the wave is able to
propagate through the medium without being significantly affected. If the diffusive
region is long and wide, the wave is blocked and is unable to propagate through
the diffusive area. As the wave hits the inhomogeneity, it breaks into two. These
two waves propagate around the nonexcitable region and then reattatch at the far
end of the region.

At intermediate sized passive domains, something interesting happens. Fig-
ures 3.18 and 3.18 show the results of a simulation in which the entire domain
is 20x20 spatial units (i.e., D = 1) and the nonexcitable region is 15 units wide
(i.e., the side parallel to the wavefront) and 4 units long. As the wave reaches the
diffusive region, the portion of the wave immediately in front on the region stalls
and begins to source current through the region. The portions of the wave that
have excitable tissue in front of them continue to propagate, but are slowed by
the portion of the wave that is lagging behind (see time=7ms). A combination of
current from the stalled portion of the wave and the waves that propagate along the

sides of the diffusive region is sourced into the excitable region distal to the gap-like
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region and enable it to become excited. The result is that the wave reestablishes
itself on the distal side of the diffusive region (see time 9ms). However, the delayed
excitation of the distal side and the residual passive current in the diffusive region,
reexcites the proximal side of the diffusive region. This reflection sets up the proper
topology for spiral wave formation and in this case, the medium is large enough to
support it. Thus, a pair of stable spiral waves are formed with their cores anchored
in the diffusive region.

We call the reflective behavior that initiates the spiral facilitated reflection,
because the length of passive region is longer than the gap length where reflection
occurs in one-dimensional model. The reflection mechanism here relies partially on
the waves propagating around the diffusive region helping to source enough current
to excite the distal side and reexcite the proximal side of the gap-like region. This

help, however, may not be necessary if the region is very wide but short in length.

3.6 Discussion

The work in this chapter has extended the current understanding of reflection
and shows how it relates to a broad range of behaviors. By introducing a new simple
model for excitable media and considering a pair of coupled cells with these dynam-
ics, we demonstrate that an unstable orbit underlies transient reflections (without
the same restriction of parameter space as Ermentrout and Rinzel [18]). Also, we
answer the question first posed by Tyson [63] and show dynamical mechanisms for
how stable reflection oscillations can arise. Finally, we describe a mechanism in
which reflection can induce spiral waves.

We suggest several implications that our work has on problems in cardiac elec-
trophysiology, in particularly on the generation of arrhythmias. Reflection has been
hypothesized to be linked to several arrhythmias, but no solid explanation has ever
been given. Transient reflections with more than one reflected wave appear to
occur over a minute parameter range and thus, by themselves, cannot be a robust
source of oscillatory behavior associated with AV nodal tachycardias or subsidiary

pacemakers (ectopic foci) arising from zones of injury. However, if the unstable
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Figure 3.18. Numerical simulation of a two-dimensional sheet of tissue with a
solely diffusive region. ML dynamics are used to describe the excitability. The
light regions correspond to high w values. (a) The first six panels show a wave
of excitation propagating towards the diffusive region, producing a reflected wave,
and thus initiating a pair of spiral waves.
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Figure 3.18. (continued) (b) The second six panels show the completion of a full
rotation of the spiral waves. The size of the entire domain is 20x20 and the diffusive
region is 15x4. The simulation was performed using a 2-D ADI method coupled to
the 1-D implicit-explicit method of Hines [26] with At = 0.01 and Az = 0.05



109

orbit underlying the transient reflection undergoes a period doubling bifurcation,
robust stable oscillations could be produced. These stable oscillation are certainly a
potential mechanism for the arrhythmic behavior mentioned above. Also, Because
reentrant arrhythmias in the ventricular and atrial myocardium have been linked
to spiral waves, the reflection mechanism for inducing spiral waves that we have
demonstrated is a viable mechanism for producing these often fatal arrhythmias.
In fact, it is perhaps the most viable mechanism to be proposed to date.

There is one possible point of contention concerning the applicability of our
results on reflection to cardiac dynamics. Reflection seems to be exhibited much
more readily in type I excitable systems than type II systems and it is generally
considered that most ionic models of the electrical activity in cardiac tissue do not
have type I excitability [4, 15, 44]. However, this is only definitely the case when the
model is in its normal resting state. Slight modifications of these models (in order to
mimic pathological changes in tissue or simply make them more realistic) may very
well produce type I behavior. Also, the system could exhibit true threshold behavior
in various states of recovery, and one only needs to study the response to premature
stimulation to uncover this behavior. In fact, a numerical simulation of a sucrose
gap experiment reflection demonstrated reflection using a slightly modified version
of the Difrancesco-Noble model [8]. The simulated data showed the membrane
potential on the distal side of the gap hovering around an apparent threshold prior
to excitation in a way that is characteristic of type II excitability. Furthermore,
this behavior was seen over larger parameter ranges following periodic stimulation.
Therefore, before a definitive claim is made either way, a systematic study must be
performed to classifying excitability dynamics in various ionic model under various

conditions.
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