Some Background Material from Analysis¹

1 Elementary point set topology

We denote by \mathbb{R} the field of real numbers and \mathbb{C} the field of complex numbers.

• If $x, y \in \mathbb{R}$ the distance between a and b is defined to be

$$d(x,y) := |x-y|.$$

If for $z \in \mathbb{C}$ we interpret |z| as the absolute value of z,² then the same formula above holds for the distance between two complex numbers z and w.

- A neighborhood of a point p is a set $N_r(p)$ consisting of all points q such that d(p,q) < r. The number r is called the radius of $N_r(p)$.
- A point p is a *limit point* of the set E (a subset of either \mathbb{R} or \mathbb{C}) if every neighborhood of p contains a point $q \neq p$ such that $q \in E$. (Note that p is not necessarily in the set E.)
- The set *E* is said to be *closed* if every limit point of *E* is a point of *E*. Thus, for example, the interval $[a, b] := \{x : a \le x \le b\}$ is a closed set in \mathbb{R} . We call [a, b] a *closed interval*.
- A point $p \in E$ is an *interior* point of E if there is a neighborhood N of p such that $N \subset E$. For example, the point $\frac{1}{2}$ is an interior point of [0, 1] where as 0 and 1 are *not* interior points of [0, 1].
- A set E ⊂ X (X = ℝ or X = ℂ) is open if every point of E is an interior point of E.
 For example, the interval (a, b) := {x : a < x < b} ⊂ ℝ, a < b, is an open set in ℝ.
- The complement of $E \subset X$ (here X is either \mathbb{R} or \mathbb{C}) is the set of points $p \in X$ such that $p \notin E$.
- A set E is bounded if there is a real number M and a point q such that d(p,q) < M for all $p \in E$.
- A set $E \subset X$ $(X = \mathbb{R} \text{ or } X = \mathbb{C})$ is *compact* if it is both closed and bounded.³

 $^{^1\}mathrm{For}$ full details see $Principles\ of\ Analysis\ by\ Walter\ Rudin.$

²Recall that if z = x + iy, $x, y \in \mathbb{R}$, then $|z| = \sqrt{x^2 + y^2}$.

³In most analysis courses this is a theorem called the Heine-Borel theorem since a compact set is defined as follows: An *open cover* of a set $E \subset X$ is a collection $\{G_{\alpha}\}$ of open subsets of X such that $E \subset \bigcup_{\alpha} G_{\alpha}$. A set K is said to be *compact* if every open cover of K contains a *finite* sub cover. We will sometimes use this property of compact sets.

2 Continuity

As earlier, by X and Y we mean either \mathbb{R} or \mathbb{C} . Suppose f is a function whose domain E is a subset of X and whose range is a subset of Y.

• We say f is *continuous* at the point $p \in E$ if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$d_Y(f(x), f(p)) < \varepsilon$$

for all points $x \in E$ for which $d_X(x,p) < \delta$. Here d_X denotes the distance function in X and similarly for d_Y . Given the definition of a limit, this is equivalent to

$$\lim_{x \to p} f(x) = f(p).$$

• Suppose $f: X \to Y$. We say that f is uniformly continuous on X if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$d_Y(f(p), f(q)) < \varepsilon$$

for all p and q in X for which $d_X(p,q) < \delta$.

Uniform continuity is a property of a function on a set whereas continuity can be defined at a single point. The choice of δ in the above definition of uniform continuity can be taken to hold for all points in the set X.

An example here is useful. Consider the function $f: (0,1) \to \mathbb{R}$ defined by f(x) = 1/x. Let $x_0 \in (0,1)$ be a fixed point. We claim that f is continuous at x_0 . It's pretty clear intuitively that $\lim_{x\to x_0} \frac{1}{x} = \frac{1}{x_0}$, but let's give an explicit $\varepsilon - \delta$ proof: Given an $\varepsilon > 0$ we wish to find a $\delta > 0$ such that if $|x - x_0| < \delta$, then it follows that $|\frac{1}{x} - \frac{1}{x_0}| < \varepsilon$. We do a little computation:

$$|\frac{1}{x} - \frac{1}{x_0}| = \frac{|x - x_0|}{xx_0} < \frac{\delta}{xx_0}$$

We want the last quantity to be less that ε . Since $x_0 - \delta < x$, we have $\frac{1}{x} < \frac{1}{x_0 - \delta}$. Thus we want

$$\frac{\delta}{x_0(x_0-\delta)} < \varepsilon$$

Solving this inequality for δ gives that we can choose any δ satisfying

$$\delta < \frac{x_0^2}{1 + \varepsilon x_0}$$

it follows by reversing the above computation that

$$\left|\frac{1}{x} - \frac{1}{x_0}\right| < \varepsilon.$$

Note that as x_0 becomes smaller, the choice of δ becomes smaller. It is not possible to find one $\delta > 0$ that works for all x_0 . Thus f(x) = 1/x is not uniformly continuous on (0, 1).

- A fundamental result in analysis says that if E is a compact subset of X and f is continuous for each point $p \in E$, then f is uniformly continuous on E. Note that in the above example the set E was not compact.
- Suppose f is a continuous function on the compact set $E \subset X$ (and hence by the previous item, uniformly continuous on E). Let

$$m = \inf_{x \in E} f(p), \ M = \sup_{p \in E} f(p)$$

then there exist points $p_1, p_2 \in E$ such that $f(p_1) = m$ and $f(p_2) = M$. Recall that inf is the infinum which is the greatest lower bound and sup is the supremum which is the least upper bound.

3 Uniform Convergence

Many times in analysis we have a sequence of functions $\{f_n\}$ and we define a new function by $f := \lim_{n\to\infty} f_n$; and we then ask questions about the properties of f. For example, suppose each f_n is a continuous function, then is f necessarily continuous? To make this question precise we must first answer in what sense does f_n converge to f.

The first notion of convergence is *pointwise convergence*; that is suppose f_n are defined on some set E, then we say f_n converges pointwise on E to f if for each $x \in E$, $\lim_{n\to\infty} f_n(x) = f(x)$. Since we are evaluating $f_n(x)$ at a point x, this is convergence of a sequence of numbers (we assume f_n are either real- or complex-valued). The following examples show that pointwise convergence of a sequence of functions does not imply the limiting function necessarily inherits the properties of the sequence functions:

1.

 $f_n(x) := x^n, \ 0 \le x \le 1.$

For |x| < 1, $\lim_{n\to\infty} f_n(x) = 0$. Since $f_n(1) = 1$, $\lim_{n\to\infty} f_n(1) = 1$. Thus the limiting function is

$$f(x) = \begin{cases} 0, & x < 1\\ 1, & x = 1 \end{cases}$$

which is clearly a discontinuous function of x.

2. Let

$$f_m(x) := \lim_{n \to \infty} \left(\cos m! \pi x \right)^{2n}$$

When m!x is an integer, $\cos(m!\pi x) = \pm 1$ so that $f_m(x) = \lim_{n\to\infty} (\pm 1)^{2n} = 1$. For other values of x, the cosine of absolute value less than 1; and hence, $f_m(x) = 0$ for those values of x. Now let

$$f(x) = \lim_{m \to \infty} f_m(x)$$

If x is a rational number; say x = p/q where p and q are integers, then for sufficiently large m (namely, $m \ge q$) m!x is an integer and hence f(x) = 1. If x is irrational, then m!x is never an integer and we obtain for every $m f_m(x) = 0$. Thus we've shown that

$$f(x) = \begin{cases} 0, x \text{ irrational} \\ 1, x \text{ rational} \end{cases}$$

Thus the limiting function f is neither continuous nor Riemann-integrable.

3. Let

$$f_n(x) := \frac{\sin nx}{\sqrt{n}}, \ x \in \mathbb{R}, n = 1, 2, 3, \dots$$

Since the absolute value of the sine function is bounded by 1,

$$f(x) = \lim_{n \to \infty} f_n(x) = 0, x \in \mathbb{R}.$$

Thus f'(x) = 0. However

$$f_n'(x) = \sqrt{n}\cos(nx)$$

so that $\{f'_n\}$ does not converge to f'.

4. Let

$$f_n(x) = n^2 x (1 - x^2)^n, \ 0 \le x \le 1, n = 1, 2, \dots$$

For 0 < x < 1, $\log f_n(x) = n \left[\log(1 - x^2) + 2 \log x \right] + \log x$. Since the quantity in square brackets is negative for 0 < x < 1, $\lim_{n \to \infty} \log f_n(x) = -\infty$; and hence, $\lim_{n \to 1} f_n(x) = 0$. Since $f_n(0) = f_n(1) = 0$, we get $\lim_{n \to \infty} f_n(x) = 0$ for all $0 \le x \le 1$. Now

$$\int_0^1 x(1-x^2)^n \, dx = \frac{1}{2n+2}$$

so that

$$\int_0^1 f_n(x) \, dx = \frac{n^2}{2n+2}$$

Thus

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \infty$$

but

$$\int_0^1 f(x) \, dx = 0$$

Thus we have for this example

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx \neq \int_0^1 \lim_{n \to \infty} f_n(x) \, dx$$

We now introduce a stronger notion of convergence of a sequence of functions, *uniform* convergence, that will guarantee nice limiting properties.

Definition. We say that a sequence of functions $\{f_n\}$, n = 1, 2, ... converges uniformly on E to a function f if for every $\varepsilon > 0$ there is an integer N such that $n \ge N$ implies

$$|f_n(x) - f(x)| \le \varepsilon$$

for all $x \in E$.

The difference between pointwise convergence and uniform convergence is that in pointwise convergence the N can depend both upon ε and x whereas for uniform convergence the N can depend only upon ε ; that is, we can find one integer N that holds for all $x \in E$.

Definition. We say that the series $\sum_{n} f_n(x)$ converges uniformly on E if the sequence of partial sums $\{S_n\}$ defined by

$$S_n(x) := \sum_{j=1}^n f_j(x)$$

converges uniformly on E.

The Cauchy criterion for uniform convergence is as follows:

Theorem. The sequence of functions $\{f_n\}$, defined on E, converges uniformly on E if and only if for every $\varepsilon > 0$ there exists an integer N such that $m \ge N$, $n \ge N$, $x \in E$ implies

$$|f_m(x) - f_n(x)| \le \varepsilon.$$

Proof. Suppose $\{f_n\}$ converges uniformly to f on E. Then there is an integer N such that for all $n \ge N$ and all $x \in E$,

$$|f_n(x) - f(x)| \le \frac{\varepsilon}{2}$$

Then for all $m, n \ge N$ and all $x \in E$

$$|f_m(x) - f_n(x)| \le |f_m(x) - f(x)| + |f_n(x) - f(x)| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

(We used the triangle inequality $|x - y| \le |x - z| + |z - y|$.) This proves one-half of the theorem.

Now suppose $\{f_n\}$ satisfies the above Cauchy criterion. By the Cauchy criterion for convergence of a sequence of numbers, we have the existence (pointwise) of a limiting function

f. We must show the convergence to f is uniform. Let $\varepsilon > 0$ be given and choose N such that for all $x \in E$ and all $m, n \geq N$ we have

$$|f_m(x) - f_n(x)| \le \varepsilon.$$

Since $f_m(x) \longrightarrow f(x)$ pointwise, we take the limit $m \to \infty$ in the above inequality to obtain

$$|f(x) - f_n(x)| \le \varepsilon$$

which holds for all $x \in E$ and all $n \ge N$.

It is sometimes useful to introduce the sup-norm: Suppose f is defined on a set E, the

$$||f|| = \sup_{x \in E} |f(x)|$$

Theorem. The sequence $\{f_n\}$ converges uniformly on E if and only if $||f_n - f|| \to 0$ as $n \to \infty$.

Proof. Suppose $||f_n - f|| \to 0$ as $n \to 0$, then for every $\varepsilon > 0$ there exists an integer N such that for all $n \ge N$ we have

$$\sup_{x \in E} |f_n(x) - f(x)| \le \varepsilon.$$

Since for all $x \in E$

$$|f_n(x) - f(x)| \le \sup_{x \in E} |f_n(x) - f(x)|$$

by definition of sup (the least upper bound), the sequence $\{f_n\}$ converges uniformly to f on E.

Now suppose $\{f_n\}$ converges uniformly to f on E. Let $\varepsilon > 0$ be given. Then there exists an integer N such that for all $x \in E$ and all $n \ge N$

$$|f_n(x) - f(x)| \le \frac{\varepsilon}{2} < \varepsilon$$

The least upper bound of this inequality satisfies

$$\sup_{x \in E} |f_n(x) - f(x)| \le \varepsilon$$

for all $n \geq N$.

Theorem. (Weierstrass *M*-test). Suppose $\{f_n\}$ is a sequence of functions defined on *E*, and suppose there exist nonnegative real numbers M_n such that

$$|f_n(x)| \le M_n, \ x \in E, n = 1, 2, \dots$$

Then $\sum_{n} f_n$ converges uniformly on E if $\sum_{n} M_n$ converges.

Proof. If $\sum_n M_n$ converges then for arbitrary $\varepsilon > 0$

$$\left|\sum_{j=n}^{m} f_{j}\right| \leq \sum_{j=n}^{n} M_{j} \leq \varepsilon$$

provided m, n are large enough. By the Cauchy criterion we obtain uniform convergence of the series.

Examples of the use of the Weierstrass M-test:

1. Let

$$f(x) := \sum_{n=1}^{\infty} \frac{\sin nx}{n^2}, \ x \in \mathbb{R}.$$

For any closed interval $[a, b] \subset \mathbb{R}$

$$|\frac{\sin nx}{n^2}| \le \frac{1}{n^2}$$

and since the series $\sum_{n} 1/n^2$ is convergent, the above series converges uniformly on every closed interval of \mathbb{R} .

2. Suppose f is defined by the power series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \ |z| < R,$$

where R is the radius of convergence (which may be infinite). Let 0 < r < R. Then the series converges uniformly in the disk $|z| \leq r$. To see this note that

$$\left|\sum_{n} a_{n} z^{n}\right| \le \sum_{n} |a_{n}| r^{n}$$

The series on the right-hand side (a series of real numbers) converges since r is less than the radius of convergence. (It is a fact that if the power series converges it converges absolutely.)

3. If $s = \sigma + it, \sigma > 1$, then the Riemann zeta-function $\zeta(s)$ is defined by setting

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$
(*)

If $\sigma \geq \sigma_0 > 1$, the the series on the right in (*) converges uniformly and absolutely in the half-plane $\sigma \geq 1 + \sigma_0$ for all $\sigma_0 > 0$. This follows from the following estimates and

the Weierstrass M-test:

$$\begin{aligned} \sum_{n=1}^{\infty} \frac{1}{n^{\sigma+\mathrm{i}t}} \middle| &\leq \sum_{n=1}^{\infty} \frac{1}{|n^{\sigma+\mathrm{i}t}|} = \sum_{n=1}^{\infty} \frac{1}{n^{\sigma}} \\ &\leq \sum_{n=1}^{\infty} \frac{1}{n^{\sigma_0}} < 1 + \int_1^{\infty} \frac{dx}{x^{\sigma_0}} \\ &= 1 + \frac{1}{\sigma_0 - 1} < \infty. \end{aligned}$$

Theorem. Suppose $\{f_n\}$ converges uniformly on E. Let x be a limit point of E, and suppose that

$$\lim_{t \to x} f_n(t) = A_n, \ n = 1, 2, \dots$$

Then $\{A_n\}$ converges, and

$$\lim_{t \to x} f(t) = \lim_{n \to \infty} A_n = \lim_{n \to \infty} \lim_{t \to x} f_n(t).$$

Proof. Let $\varepsilon > 0$ be given. By the uniform convergence of $\{f_n\}$, there exists N such that $n \ge N, m \ge N, t \in E$ imply

$$|f_n(t) - f_m(t)| \le \varepsilon.$$

Let $t \to x$ in the above to obtain

$$|A_n - |A_m| \le \varepsilon$$

for $m, n \geq N$. Thus $\{A_n\}$ is a Cauchy sequence and therefore converges to a number, say A. Now

$$|f(t) - A| \le |f(t) - f_n(t)| + |f_n(t) - A_n| + |A_n - A| \tag{(\star)}$$

by use of the triangle inequality. We first choose n such that

$$|f(t) - f_n(t)| \le \frac{\varepsilon}{3}$$

for all $t \in E$ (this is possible by the uniform convergence), and such that

$$|A_n - A| \le \frac{\varepsilon}{3}.$$

Then, for this n, we choose a neighborhood V of x such that $t \in V$ implies

$$|f_n(t) - A_n| \le \frac{\varepsilon}{3}$$

Substituting these three inequalities into the inequality (\star) implies

$$|f(t) - A| \le \frac{\varepsilon}{3}.$$

An immediate corollary of this theorem is

Corollary. If $\{f_n\}$ is a sequence of continuous functions on E, and if $f_n \longrightarrow f$ uniformly on E, then f is continuous on E.

The following theorem shows we can interchange the limit with integration under the hypothesis of uniform convergence.

Theorem. Suppose f_n are Riemann integrable on [a, b] for $n = 1, 2, \ldots$, and suppose $f_n \longrightarrow f$ uniformly on [a, b], then f is Riemann-integrable on [a, b] and

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx.$$
(1)

Proof. We first show that the limiting function f is Riemann integrable.

Let $\varepsilon > 0$ be given. Choose $\eta > 0$ such that

$$\eta(b-a) \le \frac{\varepsilon}{3}$$

By the uniform convergence, there exists an integer n such that

$$|f_n(x) - f(x)| \le \eta, \ a \le x \le b.$$

For this fixed n, we choose a partition P of [a, b] such that

$$U(P, f_n) - L(P, f_n) \le \frac{\varepsilon}{3}$$

where U and L are the upper and lower Riemann sums, respectively. Now $f(x) \leq f_n(x) + \eta$ for all $a \leq x \leq b$. Thus

$$U(P, f) \le U(P, f_n) + (b - a)\eta \le U(P, f_n) + \frac{\varepsilon}{3}$$

Similarly, the inequality $f(x) \ge f_n(x) - \eta$ implies

$$L(P, f) \ge L(P, f_n) - \frac{\varepsilon}{3}$$

Thus

$$U(P,f) - L(P,f) \le \left\{ U(P,f_n) + \frac{\varepsilon}{3} \right\} - \left\{ L(P,f_n) - \frac{\varepsilon}{3} \right\} = \left\{ U(P,f_n) - L(P,f_n) \right\} + \frac{2\varepsilon}{3} \le \varepsilon$$

This proves that f is Riemann integrable.

We now prove (1). Choose N such that $n \ge N$ implies

$$|f_n(x) - f(x)| \le \varepsilon, \ a \le x \le b.$$

Then for $n \ge N$

$$\left| \int_{a}^{b} f(x) \, dx - \int_{a}^{b} f_{n}(x) \, dx \right| = \left| \int_{a}^{b} (f(x) - f_{n}(x)) \, dx \right| \le \int_{a}^{b} |f(x) - f_{n}(x)| \, dx \le \varepsilon (b - a)$$

nce ε is arbitrary, (1) follows.

Since ε is arbitrary, (1) follows.

As a corollary of this theorem we have

Corollary. If f_n are Riemann-integrable on [a, b] and if the series

$$f(x) = \sum_{n=1}^{\infty} f_n(x), \ a \le x \le b,$$

converges uniformly on [a, b], then

$$\int_{a}^{b} f(x) \, dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) \, dx.$$

Example. Suppose we define

$$f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{n^2}, \ 0 \le x \le \pi.$$

We showed earlier that the above series converges uniformly on $[0, \pi]$. By use of the above corollary we can compute

$$\begin{aligned} \int_0^\pi f(x) \, dx &= \int_0^\pi \sum_{n=1}^\infty \frac{\sin nx}{n^2} \, dx \\ &= \sum_{n=1}^\infty \int_0^\pi \frac{1}{n^2} \sin(nx) \, dx = \sum_{n=1}^\pi \frac{1}{n^2} \int_0^\pi \sin(nx) \, dx \\ &= \sum_{n=1}^\infty \frac{1}{n^2} \frac{1 - \cos n\pi}{n} = \sum_{n=1}^\infty \frac{1}{n^2} \frac{1 + (-1)^{n+1}}{n} \\ &= 2 \sum_{n=1}^\infty \frac{1}{(2n-1)^3} \\ &= 2 \sum_{n=1}^\infty \frac{1}{(2n-1)^3} + 2 \sum_{n=1}^\infty \frac{1}{(2n)^3} - 2 \sum_{n=1}^\infty \frac{1}{(2n)^3} \\ &= 2 \sum_{n=1}^\infty \frac{1}{n^3} - \frac{1}{4} \sum_{n=1}^\infty \frac{1}{n^3} \\ &= \frac{7}{4} \zeta(3) \end{aligned}$$

where $\zeta(s) = \sum_{n=1}^{\infty} 1/n^s$, $\Re(s) > 1$, is the Riemann zeta-function.

For differentiation some additional hypotheses beyond uniform convergence are required. The following theorem can be found in Rudin.

Theorem. Suppose $\{f_n\}$ is a sequence of functions, differentiable on [a, b] and such that $\{f_n(x_0)\}$ converges for some point x_0 on [a, b]. If $\{f'_n\}$ converges uniformly on [a, b], then $\{f_n\}$ converges uniformly on [a, b], to a function f, and

$$f'(x) = \lim_{n \to \infty} f'_n(x), \ a \le x \le b.$$

Remarks: Note that the above analysis on interchange of limits does *not* apply to

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n}, \ 0 \le x \le \pi,$$

since the obvious bound

$$\left|\frac{\sin nx}{n}\right| \le \frac{1}{n}$$

does not lead to a useful bound to which we can apply the Weierstrass M-test. This series will be studied in the lectures and we will show that the convergence is not uniform on $[0, \pi]$. To get some preview of the difference between the two series, let's define the partial sums

$$S_1(n,x) := \sum_{j=1}^n \frac{\sin(j\pi x)}{j}$$
 and $S_2(n,x) := \sum_{j=1}^n \frac{\sin(j\pi x)}{j^2}, \ 0 \le x \le 1.$

In Figures 1 and 2 we plot the partial sums for n = 10, 20, 50, 100. As these pictures indicate, the nature of convergence is quite different for these two series.

To see better the behavior near zero, we plot the partial sums for n = 500 in the interval $0 \le x \le 1/10$ in Figures 3 and 4.

Figure 1: The partial sums $\sum_{j=1}^{n} \sin(j\pi x)/j$ for $0 \le x \le 1$ and n = 10, 20, 50, 100.

Figure 2: The partial sums $\sum_{j=1}^{n} \sin(j\pi x)/j^2$ for $0 \le x \le 1$ and n = 10, 20, 50, 100.

Figure 4: The partial sum $\sum_{j=1}^{500} \sin(j\pi x)/j^2$ for $0 \le x \le 1/10$.