Some Background Material from Analysis ${ }^{1}$

1 Elementary point set topology

We denote by \mathbb{R} the field of real numbers and \mathbb{C} the field of complex numbers.

- If $x, y \in \mathbb{R}$ the distance between a and b is defined to be

$$
d(x, y):=|x-y| .
$$

If for $z \in \mathbb{C}$ we interpret $|z|$ as the absolute value of $z,{ }^{2}$ then the same formula above holds for the distance between two complex numbers z and w.

- A neighborhood of a point p is a set $N_{r}(p)$ consisting of all points q such that $d(p, q)<r$. The number r is called the radius of $N_{r}(p)$.
- A point p is a limit point of the set E (a subset of either \mathbb{R} or \mathbb{C}) if every neighborhood of p contains a point $q \neq p$ such that $q \in E$. (Note that p is not necessarily in the set E.)
- The set E is said to be closed if every limit point of E is a point of E. Thus, for example, the interval $[a, b]:=\{x: a \leq x \leq b\}$ is a closed set in \mathbb{R}. We call $[a, b]$ a closed interval.
- A point $p \in E$ is an interior point of E if there is a neighborhood N of p such that $N \subset E$. For example, the point $\frac{1}{2}$ is an interior point of $[0,1]$ where as 0 and 1 are not interior points of $[0,1]$.
- A set $E \subset X(X=\mathbb{R}$ or $X=\mathbb{C})$ is open if every point of E is an interior point of E. For example, the interval $(a, b):=\{x: a<x<b\} \subset \mathbb{R}, a<b$, is an open set in \mathbb{R}.
- The complement of $E \subset X$ (here X is either \mathbb{R} or \mathbb{C}) is the set of points $p \in X$ such that $p \notin E$.
- A set E is bounded if there is a real number M and a point q such that $d(p, q)<M$ for all $p \in E$.
- A set $E \subset X(X=\mathbb{R}$ or $X=\mathbb{C})$ is compact if it is both closed and bounded. ${ }^{3}$

[^0]
2 Continuity

As earlier, by X and Y we mean either \mathbb{R} or \mathbb{C}. Suppose f is a function whose domain E is a subset of X and whose range is a subset of Y.

- We say f is continuous at the point $p \in E$ if for every $\varepsilon>0$ there exists a $\delta>0$ such that

$$
d_{Y}(f(x), f(p))<\varepsilon
$$

for all points $x \in E$ for which $d_{X}(x, p)<\delta$. Here d_{X} denotes the distance function in X and similarly for d_{Y}. Given the definition of a limit, this is equivalent to

$$
\lim _{x \rightarrow p} f(x)=f(p)
$$

- Suppose $f: X \rightarrow Y$. We say that f is uniformly continuous on X if for every $\varepsilon>0$ there exists a $\delta>0$ such that

$$
d_{Y}(f(p), f(q))<\varepsilon
$$

for all p and q in X for which $d_{X}(p, q)<\delta$.
Uniform continuity is a property of a function on a set whereas continuity can be defined at a single point. The choice of δ in the above definition of uniform continuity can be taken to hold for all points in the set X.

An example here is useful. Consider the function $f:(0,1) \rightarrow \mathbb{R}$ defined by $f(x)=1 / x$. Let $x_{0} \in(0,1)$ be a fixed point. We claim that f is continuous at x_{0}. It's pretty clear intuitively that $\lim _{x \rightarrow x_{0}} \frac{1}{x}=\frac{1}{x_{0}}$, but let's give an explicit $\varepsilon-\delta$ proof: Given an $\varepsilon>0$ we wish to find a $\delta>0$ such that if $\left|x-x_{0}\right|<\delta$, then it follows that $\left|\frac{1}{x}-\frac{1}{x_{0}}\right|<\varepsilon$. We do a little computation:

$$
\left|\frac{1}{x}-\frac{1}{x_{0}}\right|=\frac{\left|x-x_{0}\right|}{x x_{0}}<\frac{\delta}{x x_{0}}
$$

We want the last quantity to be less that ε. Since $x_{0}-\delta<x$, we have $\frac{1}{x}<\frac{1}{x_{0}-\delta}$. Thus we want

$$
\frac{\delta}{x_{0}\left(x_{0}-\delta\right)}<\varepsilon
$$

Solving this inequality for δ gives that we can choose any δ satisfying

$$
\delta<\frac{x_{0}^{2}}{1+\varepsilon x_{0}}
$$

it follows by reversing the above computation that

$$
\left|\frac{1}{x}-\frac{1}{x_{0}}\right|<\varepsilon .
$$

Note that as x_{0} becomes smaller, the choice of δ becomes smaller. It is not possible to find one $\delta>0$ that works for all x_{0}. Thus $f(x)=1 / x$ is not uniformly continuous on $(0,1)$.

- A fundamental result in analysis says that if E is a compact subset of X and f is continuous for each point $p \in E$, then f is uniformly continuous on E. Note that in the above example the set E was not compact.
- Suppose f is a continuous function on the compact set $E \subset X$ (and hence by the previous item, uniformly continuous on E). Let

$$
m=\inf _{x \in E} f(p), \quad M=\sup _{p \in E} f(p)
$$

then there exist points $p_{1}, p_{2} \in E$ such that $f\left(p_{1}\right)=m$ and $f\left(p_{2}\right)=M$. Recall that inf is the infinum which is the greatest lower bound and sup is the supremum which is the least upper bound.

3 Uniform Convergence

Many times in analysis we have a sequence of functions $\left\{f_{n}\right\}$ and we define a new function by $f:=\lim _{n \rightarrow \infty} f_{n}$; and we then ask questions about the properties of f. For example, suppose each f_{n} is a continuous function, then is f necessarily continuous? To make this question precise we must first answer in what sense does f_{n} converge to f.

The first notion of convergence is pointwise convergence; that is suppose f_{n} are defined on some set E, then we say f_{n} converges pointwise on E to f if for each $x \in E, \lim _{n \rightarrow \infty} f_{n}(x)=$ $f(x)$. Since we are evaluating $f_{n}(x)$ at a point x, this is convergence of a sequence of numbers (we assume f_{n} are either real- or complex-valued). The following examples show that pointwise convergence of a sequence of functions does not imply the limiting function necessarily inherits the properties of the sequence functions:
1.

$$
f_{n}(x):=x^{n}, \quad 0 \leq x \leq 1
$$

For $|x|<1, \lim _{n \rightarrow \infty} f_{n}(x)=0$. Since $f_{n}(1)=1, \lim _{n \rightarrow \infty} f_{n}(1)=1$. Thus the limiting function is

$$
f(x)= \begin{cases}0, & x<1 \\ 1, & x=1\end{cases}
$$

which is clearly a discontinuous function of x.
2. Let

$$
f_{m}(x):=\lim _{n \rightarrow \infty}(\cos m!\pi x)^{2 n}
$$

When $m!x$ is an integer, $\cos (m!\pi x)= \pm 1$ so that $f_{m}(x)=\lim _{n \rightarrow \infty}(\pm 1)^{2 n}=1$. For other values of x, the cosine of absolute value less than 1 ; and hence, $f_{m}(x)=0$ for those values of x. Now let

$$
f(x)=\lim _{m \rightarrow \infty} f_{m}(x)
$$

If x is a rational number; say $x=p / q$ where p and q are integers, then for sufficiently large m (namely, $m \geq q$) $m!x$ is an integer and hence $f(x)=1$. If x is irrational, then $m!x$ is never an integer and we obtain for every $m f_{m}(x)=0$. Thus we've shown that

$$
f(x)=\left\{\begin{array}{l}
0, x \text { irrational } \\
1, x \text { rational }
\end{array}\right.
$$

Thus the limiting function f is neither continuous nor Riemann-integrable.
3. Let

$$
f_{n}(x):=\frac{\sin n x}{\sqrt{n}}, x \in \mathbb{R}, n=1,2,3, \ldots
$$

Since the absolute value of the sine function is bounded by 1 ,

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=0, x \in \mathbb{R}
$$

Thus $f^{\prime}(x)=0$. However

$$
f_{n}^{\prime}(x)=\sqrt{n} \cos (n x)
$$

so that $\left\{f_{n}^{\prime}\right\}$ does not converge to f^{\prime}.
4. Let

$$
f_{n}(x)=n^{2} x\left(1-x^{2}\right)^{n}, \quad 0 \leq x \leq 1, n=1,2, \ldots
$$

For $0<x<1, \log f_{n}(x)=n\left[\log \left(1-x^{2}\right)+2 \log x\right]+\log x$. Since the quantity in square brackets is negative for $0<x<1, \lim _{n \rightarrow \infty} \log f_{n}(x)=-\infty$; and hence, $\lim _{n \rightarrow 1} f_{n}(x)=$ 0 . Since $f_{n}(0)=f_{n}(1)=0$, we get $\lim _{n \rightarrow \infty} f_{n}(x)=0$ for all $0 \leq x \leq 1$. Now

$$
\int_{0}^{1} x\left(1-x^{2}\right)^{n} d x=\frac{1}{2 n+2}
$$

so that

$$
\int_{0}^{1} f_{n}(x) d x=\frac{n^{2}}{2 n+2}
$$

Thus

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\infty
$$

but

$$
\int_{0}^{1} f(x) d x=0
$$

Thus we have for this example

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x \neq \int_{0}^{1} \lim _{n \rightarrow \infty} f_{n}(x) d x
$$

We now introduce a stronger notion of convergence of a sequence of functions, uniform convergence, that will guarantee nice limiting properties.
Definition. We say that a sequence of functions $\left\{f_{n}\right\}, n=1,2, \ldots$ converges uniformly on E to a function f if for every $\varepsilon>0$ there is an integer N such that $n \geq N$ implies

$$
\left|f_{n}(x)-f(x)\right| \leq \varepsilon
$$

for all $x \in E$.
The difference between pointwise convergence and uniform convergence is that in pointwise convergence the N can depend both upon ε and x whereas for uniform convergence the N can depend only upon ε; that is, we can find one integer N that holds for all $x \in E$.
Definition. We say that the series $\sum_{n} f_{n}(x)$ converges uniformly on E if the sequence of partial sums $\left\{S_{n}\right\}$ defined by

$$
S_{n}(x):=\sum_{j=1}^{n} f_{j}(x)
$$

converges uniformly on E.
The Cauchy criterion for uniform convergence is as follows:
Theorem. The sequence of functions $\left\{f_{n}\right\}$, defined on E, converges uniformly on E if and only if for every $\varepsilon>0$ there exists an integer N such that $m \geq N, n \geq N, x \in E$ implies

$$
\left|f_{m}(x)-f_{n}(x)\right| \leq \varepsilon
$$

Proof. Suppose $\left\{f_{n}\right\}$ converges uniformly to f on E. Then there is an integer N such that for all $n \geq N$ and all $x \in E$,

$$
\left|f_{n}(x)-f(x)\right| \leq \frac{\varepsilon}{2}
$$

Then for all $m, n \geq N$ and all $x \in E$

$$
\left|f_{m}(x)-f_{n}(x)\right| \leq\left|f_{m}(x)-f(x)\right|+\left|f_{n}(x)-f(x)\right| \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

(We used the triangle inequality $|x-y| \leq|x-z|+|z-y|$.) This proves one-half of the theorem.

Now suppose $\left\{f_{n}\right\}$ satisfies the above Cauchy criterion. By the Cauchy criterion for convergence of a sequence of numbers, we have the existence (pointwise) of a limiting function
f. We must show the convergence to f is uniform. Let $\varepsilon>0$ be given and choose N such that for all $x \in E$ and all $m, n \geq N$ we have

$$
\left|f_{m}(x)-f_{n}(x)\right| \leq \varepsilon
$$

Since $f_{m}(x) \longrightarrow f(x)$ pointwise, we take the limit $m \rightarrow \infty$ in the above inequality to obtain

$$
\left|f(x)-f_{n}(x)\right| \leq \varepsilon
$$

which holds for all $x \in E$ and all $n \geq N$.
It is sometimes useful to introduce the sup-norm: Suppose f is defined on a set E, the

$$
\|f\|=\sup _{x \in E}|f(x)|
$$

Theorem. The sequence $\left\{f_{n}\right\}$ converges uniformly on E if and only if $\left\|f_{n}-f\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Suppose $\left\|f_{n}-f\right\| \rightarrow 0$ as $n \rightarrow 0$, then for every $\varepsilon>0$ there exists an integer N such that for all $n \geq N$ we have

$$
\sup _{x \in E}\left|f_{n}(x)-f(x)\right| \leq \varepsilon
$$

Since for all $x \in E$

$$
\left|f_{n}(x)-f(x)\right| \leq \sup _{x \in E}\left|f_{n}(x)-f(x)\right|
$$

by definition of sup (the least upper bound), the sequence $\left\{f_{n}\right\}$ converges uniformly to f on E.

Now suppose $\left\{f_{n}\right\}$ converges uniformly to f on E. Let $\varepsilon>0$ be given. Then there exists an integer N such that for all $x \in E$ and all $n \geq N$

$$
\left|f_{n}(x)-f(x)\right| \leq \frac{\varepsilon}{2}<\varepsilon
$$

The least upper bound of this inequality satisfies

$$
\sup _{x \in E}\left|f_{n}(x)-f(x)\right| \leq \varepsilon
$$

for all $n \geq N$.
Theorem.(Weierstrass M-test). Suppose $\left\{f_{n}\right\}$ is a sequence of functions defined on E, and suppose there exist nonnegative real numbers M_{n} such that

$$
\left|f_{n}(x)\right| \leq M_{n}, \quad x \in E, n=1,2, \ldots
$$

Then $\sum_{n} f_{n}$ converges uniformly on E if $\sum_{n} M_{n}$ converges.

Proof. If $\sum_{n} M_{n}$ converges then for arbitrary $\varepsilon>0$

$$
\left|\sum_{j=n}^{m} f_{j}\right| \leq \sum_{j=n}^{n} M_{j} \leq \varepsilon
$$

provided m, n are large enough. By the Cauchy criterion we obtain uniform convergence of the series.

Examples of the use of the Weierstrass M-test:

1. Let

$$
f(x):=\sum_{n=1}^{\infty} \frac{\sin n x}{n^{2}}, x \in \mathbb{R} .
$$

For any closed interval $[a, b] \subset \mathbb{R}$

$$
\left|\frac{\sin n x}{n^{2}}\right| \leq \frac{1}{n^{2}}
$$

and since the series $\sum_{n} 1 / n^{2}$ is convergent, the above series converges uniformly on every closed interval of \mathbb{R}.
2. Suppose f is defined by the power series

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n},|z|<R
$$

where R is the radius of convergence (which may be infinite). Let $0<r<R$. Then the series converges uniformly in the disk $|z| \leq r$. To see this note that

$$
\left|\sum_{n} a_{n} z^{n}\right| \leq \sum_{n}\left|a_{n}\right| r^{n}
$$

The series on the right-hand side (a series of real numbers) converges since r is less than the radius of convergence. (It is a fact that if the power series converges it converges absolutely.)
3. If $s=\sigma+\mathrm{i} t, \sigma>1$, then the Riemann zeta-function $\zeta(s)$ is defined by setting

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

If $\sigma \geq \sigma_{0}>1$, the the series on the right in (\star) converges uniformly and absolutely in the half-plane $\sigma \geq 1+\sigma_{0}$ for all $\sigma_{0}>0$. This follows from the following estimates and
the Weierstrass M-test:

$$
\begin{aligned}
\left|\sum_{n=1}^{\infty} \frac{1}{n^{\sigma+i t}}\right| & \leq \sum_{n=1}^{\infty} \frac{1}{\left|n^{\sigma+i t}\right|}=\sum_{n=1}^{\infty} \frac{1}{n^{\sigma}} \\
& \leq \sum_{n=1}^{\infty} \frac{1}{n^{\sigma_{0}}}<1+\int_{1}^{\infty} \frac{d x}{x^{\sigma_{0}}} \\
& =1+\frac{1}{\sigma_{0}-1}<\infty
\end{aligned}
$$

Theorem. Suppose $\left\{f_{n}\right\}$ converges uniformly on E. Let x be a limit point of E, and suppose that

$$
\lim _{t \rightarrow x} f_{n}(t)=A_{n}, \quad n=1,2, \ldots
$$

Then $\left\{A_{n}\right\}$ converges, and

$$
\lim _{t \rightarrow x} f(t)=\lim _{n \rightarrow \infty} A_{n}=\lim _{n \rightarrow \infty} \lim _{t \rightarrow x} f_{n}(t)
$$

Proof. Let $\varepsilon>0$ be given. By the uniform convergence of $\left\{f_{n}\right\}$, there exists N such that $n \geq N, m \geq N, t \in E$ imply

$$
\left|f_{n}(t)-f_{m}(t)\right| \leq \varepsilon
$$

Let $t \rightarrow x$ in the above to obtain

$$
\left|A_{n}-\left|A_{m}\right| \leq \varepsilon\right.
$$

for $m, n \geq N$. Thus $\left\{A_{n}\right\}$ is a Cauchy sequence and therefore converges to a number, say A. Now

$$
|f(t)-A| \leq\left|f(t)-f_{n}(t)\right|+\left|f_{n}(t)-A_{n}\right|+\left|A_{n}-A\right|
$$

by use of the triangle inequality. We first choose n such that

$$
\left|f(t)-f_{n}(t)\right| \leq \frac{\varepsilon}{3}
$$

for all $t \in E$ (this is possible by the uniform convergence), and such that

$$
\left|A_{n}-A\right| \leq \frac{\varepsilon}{3}
$$

Then, for this n, we choose a neighborhood V of x such that $t \in V$ implies

$$
\left|f_{n}(t)-A_{n}\right| \leq \frac{\varepsilon}{3}
$$

Substituting these three inequalities into the inequality (\star) implies

$$
|f(t)-A| \leq \frac{\varepsilon}{3}
$$

An immediate corollary of this theorem is
Corollary. If $\left\{f_{n}\right\}$ is a sequence of continuous functions on E, and if $f_{n} \longrightarrow f$ uniformly on E, then f is continuous on E.

The following theorem shows we can interchange the limit with integration under the hypothesis of uniform convergence.
Theorem. Suppose f_{n} are Riemann integrable on $[a, b]$ for $n=1,2, \ldots$, and suppose $f_{n} \longrightarrow f$ uniformly on $[a, b]$, then f is Riemann-integrable on $[a, b]$ and

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x \tag{1}
\end{equation*}
$$

Proof. We first show that the limiting function f is Riemann integrable.
Let $\varepsilon>0$ be given. Choose $\eta>0$ such that

$$
\eta(b-a) \leq \frac{\varepsilon}{3} .
$$

By the uniform convergence, there exists an integer n such that

$$
\left|f_{n}(x)-f(x)\right| \leq \eta, a \leq x \leq b
$$

For this fixed n, we choose a partition P of $[a, b]$ such that

$$
U\left(P, f_{n}\right)-L\left(P, f_{n}\right) \leq \frac{\varepsilon}{3}
$$

where U and L are the upper and lower Riemann sums, respectively. Now $f(x) \leq f_{n}(x)+\eta$ for all $a \leq x \leq b$. Thus

$$
U(P, f) \leq U\left(P, f_{n}\right)+(b-a) \eta \leq U\left(P, f_{n}\right)+\frac{\varepsilon}{3} .
$$

Similarly, the inequality $f(x) \geq f_{n}(x)-\eta$ implies

$$
L(P, f) \geq L\left(P, f_{n}\right)-\frac{\varepsilon}{3} .
$$

Thus

$$
U(P, f)-L(P, f) \leq\left\{U\left(P, f_{n}\right)+\frac{\varepsilon}{3}\right\}-\left\{L\left(P, f_{n}\right)-\frac{\varepsilon}{3}\right\}=\left\{U\left(P, f_{n}\right)-L\left(P, f_{n}\right)\right\}+\frac{2 \varepsilon}{3} \leq \varepsilon
$$

This proves that f is Riemann integrable.
We now prove (1). Choose N such that $n \geq N$ implies

$$
\left|f_{n}(x)-f(x)\right| \leq \varepsilon, a \leq x \leq b
$$

Then for $n \geq N$

$$
\left|\int_{a}^{b} f(x) d x-\int_{a}^{b} f_{n}(x) d x\right|=\left|\int_{a}^{b}\left(f(x)-f_{n}(x)\right) d x\right| \leq \int_{a}^{b}\left|f(x)-f_{n}(x)\right| d x \leq \varepsilon(b-a)
$$

Since ε is arbitrary, (1) follows.

As a corollary of this theorem we have
Corollary. If f_{n} are Riemann-integrable on $[a, b]$ and if the series

$$
f(x)=\sum_{n=1}^{\infty} f_{n}(x), \quad a \leq x \leq b
$$

converges uniformly on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x) d x
$$

Example. Suppose we define

$$
f(x)=\sum_{n=1}^{\infty} \frac{\sin n x}{n^{2}}, 0 \leq x \leq \pi
$$

We showed earlier that the above series converges uniformly on $[0, \pi]$. By use of the above corollary we can compute

$$
\begin{aligned}
\int_{0}^{\pi} f(x) d x & =\int_{0}^{\pi} \sum_{n=1}^{\infty} \frac{\sin n x}{n^{2}} d x \\
& =\sum_{n=1}^{\infty} \int_{0}^{\pi} \frac{1}{n^{2}} \sin (n x) d x=\sum_{n=1}^{\pi} \frac{1}{n^{2}} \int_{0}^{\pi} \sin (n x) d x \\
& =\sum_{n=1}^{\infty} \frac{1}{n^{2}} \frac{1-\cos n \pi}{n}=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \frac{1+(-1)^{n+1}}{n} \\
& =2 \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{3}} \\
& =2 \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{3}}+2 \sum_{n=1}^{\infty} \frac{1}{(2 n)^{3}}-2 \sum_{n=1}^{\infty} \frac{1}{(2 n)^{3}} \\
& =2 \sum_{n=1}^{\infty} \frac{1}{n^{3}}-\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^{3}} \\
& =\frac{7}{4} \zeta(3)
\end{aligned}
$$

where $\zeta(s)=\sum_{n=1}^{\infty} 1 / n^{s}, \Re(s)>1$, is the Riemann zeta-function.

For differentiation some additional hypotheses beyond uniform convergence are required. The following theorem can be found in Rudin.
Theorem. Suppose $\left\{f_{n}\right\}$ is a sequence of functions, differentiable on $[a, b]$ and such that $\left\{f_{n}\left(x_{0}\right)\right\}$ converges for some point x_{0} on $[a, b]$. If $\left\{f_{n}^{\prime}\right\}$ converges uniformly on $[a, b]$, then $\left\{f_{n}\right\}$ converges uniformly on $[a, b]$, to a function f, and

$$
f^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x), \quad a \leq x \leq b .
$$

Remarks: Note that the above analysis on interchange of limits does not apply to

$$
\sum_{n=1}^{\infty} \frac{\sin n x}{n}, 0 \leq x \leq \pi
$$

since the obvious bound

$$
\left|\frac{\sin n x}{n}\right| \leq \frac{1}{n}
$$

does not lead to a useful bound to which we can apply the Weierstrass M-test. This series will be studied in the lectures and we will show that the convergence is not uniform on $[0, \pi]$. To get some preview of the difference between the two series, let's define the partial sums

$$
S_{1}(n, x):=\sum_{j=1}^{n} \frac{\sin (j \pi x)}{j} \text { and } S_{2}(n, x):=\sum_{j=1}^{n} \frac{\sin (j \pi x)}{j^{2}}, 0 \leq x \leq 1
$$

In Figures 1 and 2 we plot the partial sums for $n=10,20,50,100$. As these pictures indicate, the nature of convergence is quite different for these two series.

To see better the behavior near zero, we plot the partial sums for $n=500$ in the interval $0 \leq x \leq 1 / 10$ in Figures 3 and 4 .

Figure 1: The partial sums $\sum_{j=1}^{n} \sin (j \pi x) / j$ for $0 \leq x \leq 1$ and $n=10,20,50,100$.

Figure 2: The partial sums $\sum_{j=1}^{n} \sin (j \pi x) / j^{2}$ for $0 \leq x \leq 1$ and $n=10,20,50,100$.

Figure 3: The partial sum $\sum_{j=1}^{500} \sin (j \pi x) / j$ for $0 \leq x \leq 1 / 10$.

Figure 4: The partial sum $\sum_{j=1}^{500} \sin (j \pi x) / j^{2}$ for $0 \leq x \leq 1 / 10$.

[^0]: ${ }^{1}$ For full details see Principles of Analysis by Walter Rudin.
 ${ }^{2}$ Recall that if $z=x+\mathrm{i} y, x, y \in \mathbb{R}$, then $|z|=\sqrt{x^{2}+y^{2}}$.
 ${ }^{3}$ In most analysis courses this is a theorem called the Heine-Borel theorem since a compact set is defined as follows: An open cover of a set $E \subset X$ is a collection $\left\{G_{\alpha}\right\}$ of open subsets of X such that $E \subset \bigcup_{\alpha} G_{\alpha}$. A set K is said to be compact if every open cover of K contains a finite sub cover. We will sometimes use this property of compact sets.

