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Some Background Material from Analysis!

Elementary point set topology

We denote by R the field of real numbers and C the field of complex numbers.

If x,y € R the distance between a and b is defined to be

d(z,y) = |r —yl.

If for z € C we interpret |z| as the absolute value of 2,2 then the same formula above
holds for the distance between two complex numbers z and w.

A neighborhood of a point p is a set N,.(p) consisting of all points g such that d(p, q) < r.
The number r is called the radius of N,(p).

A point p is a limit point of the set E (a subset of either R or C) if every neighborhood
of p contains a point ¢ # p such that ¢ € E. (Note that p is not necessarily in the set

The set F is said to be closed if every limit point of E is a point of E. Thus, for
example, the interval [a,b] := {z : a < x < b} is a closed set in R. We call [a,b] a
closed interval.

A point p € E is an interior point of F if there is a neighborhood N of p such that
N C E. For example, the point % is an interior point of [0, 1] where as 0 and 1 are not
interior points of [0, 1].

Aset EC X (X =R or X =C) is open if every point of F is an interior point of E.
For example, the interval (a,b) :=={z:a <z <b} CR, a <, is an open set in R.

The complement of E C X (here X is either R or C) is the set of points p € X such
that p ¢ E.

A set E is bounded if there is a real number M and a point ¢ such that d(p,q) < M
for all p € E.

Aset EC X (X =R or X =C) is compact if it is both closed and bounded.?

'For full details see Principles of Analysis by Walter Rudin.

2Recall that if z = z + iy, =,y € R, then |z| = /22 + y2.

3In most analysis courses this is a theorem called the Heine-Borel theorem since a compact set is defined
as follows: An open cover of a set E C X is a collection {G} of open subsets of X such that £ C |, Ga.
A set K is said to be compact if every open cover of K contains a finite sub cover. We will sometimes use
this property of compact sets.



2 Continuity

As earlier, by X and Y we mean either R or C. Suppose f is a function whose domain FE is
a subset of X and whose range is a subset of Y.

e We say f is continuous at the point p € E if for every € > 0 there exists a o > 0 such
that

dy (f(z), f(p)) <e

for all points x € F for which dx(z,p) < 0. Here dx denotes the distance function in
X and similarly for dy. Given the definition of a limit, this is equivalent to

lim f(z) = f(p).

T—=p

e Suppose f: X — Y. We say that f is uniformly continuous on X if for every ¢ > 0
there exists a 6 > 0 such that

dy(f(p), f(q)) <e

for all p and ¢ in X for which dx(p,q) < .

Uniform continuity is a property of a function on a set whereas continuity can be
defined at a single point. The choice of § in the above definition of uniform continuity
can be taken to hold for all points in the set X.

An example here is useful. Consider the function f : (0,1) — R defined by f(z) = 1/x.

Let x¢ € (0,1) be a fixed point. We claim that f is continuous at xq. It’s pretty clear

intuitively that lim,_,,, % = %, but let’s give an explicit € — ¢ proof: Given an € > 0

we wish to find a § > 0 such that if | — x| < §, then it follows that |} — = <e. We
do a little computation:
1 1 |z — ¢ - 4]

X Zo iy iy

We want the last quantity to be less that €. Since o — ¢ < x, we have % < ﬁ. Thus

we want
0 <€
Zo (.CI?Q — 5)
Solving this inequality for § gives that we can choose any ¢ satisfying
2
§< —20
1+ EXo

it follows by reversing the above computation that

1 1
|- ——]<e.
X Zo
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Note that as zy becomes smaller, the choice of  becomes smaller. It is not possible to
find one § > 0 that works for all zo. Thus f(z) = 1/x is not uniformly continuous on

0,1).

e A fundamental result in analysis says that if £ is a compact subset of X and f is
continuous for each point p € E, then f is uniformly continuous on E. Note that in
the above example the set £ was not compact.

e Suppose [ is a continuous function on the compact set £ C X (and hence by the
previous item, uniformly continuous on E). Let

m = inf f(p), M =sup f(p)

peE

then there exist points pi,ps € E such that f(p;) = m and f(ps) = M. Recall that
inf is the infinum which is the greatest lower bound and sup is the supremum which is
the least upper bound.

3 Uniform Convergence

Many times in analysis we have a sequence of functions { f,,} and we define a new function by
f:=lim, _, fn; and we then ask questions about the properties of f. For example, suppose
each f, is a continuous function, then is f necessarily continuous? To make this question
precise we must first answer in what sense does f,, converge to f.

The first notion of convergence is pointwise convergence; that is suppose f,, are defined on
some set £, then we say f, converges pointwise on F to f if for each € E, lim,,_, fn(z) =
f(z). Since we are evaluating f,(x) at a point z, this is convergence of a sequence of
numbers (we assume f, are either real- or complex-valued). The following examples show
that pointwise convergence of a sequence of functions does not imply the limiting function
necessarily inherits the properties of the sequence functions:

1.
folz):=2" 0<z<1.

For |x| < 1, lim, .o fn(x) = 0. Since f,(1) = 1, lim,, oo fn(1) = 1. Thus the limiting
function is
0, z<1
J(x) = { 1, =1

which is clearly a discontinuous function of x.

2. Let

fm(x) := lim (cosmlmz)*" .
n— oo



When m!z is an integer, cos(m!rz) = +1 so that f,,(z) = lim, . (£1)** = 1. For
other values of x, the cosine of absolute value less than 1; and hence, f,,(x) = 0 for
those values of . Now let

f(@) = Jim_ f.(x)

If x is a rational number; say x = p/q where p and ¢ are integers, then for sufficiently
large m (namely, m > ¢) mlz is an integer and hence f(z) = 1. If z is irrational, then
mlz is never an integer and we obtain for every m f,,(z) = 0. Thus we’ve shown that

0,z irrational
)= {

1, x rational

Thus the limiting function f is neither continuous nor Riemann-integrable.

. Let )
sin nx

falz) = N

Since the absolute value of the sine function is bounded by 1,

, te€Rn=1,23,....

f(z) = lim f,(z) =0,z € R.

n—o0

Thus f'(x) = 0. However
() = Vit cos(na)
so that {f} does not converge to f’.
. Let
fol) =n*z(1—2*)", 0<2<1n=12....

For 0 < z < 1, log fu(x) = n[log(1 — 2?) + 2log 2] +log z. Since the quantity in square
brackets is negative for 0 < x < 1, lim,,_,, log f,(x) = —o0o; and hence, lim,,_,, f,(z) =
0. Since f,(0) = f,(1) =0, we get lim,, . fn(x) =0 for all 0 <z < 1. Now

! 1
/ r(1— 23" dx =
0 2n + 2
so that
1 n2
n dr =

/0 fala)do = "
Thus 1

lim fo(z)de = oo

n—oo 0
but

/Olf(x)dx:().
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Thus we have for this example
1

1
lim fo(x)dx 7&/ lim f,(x)dz.
0 0 n—o0

n—oo

We now introduce a stronger notion of convergence of a sequence of functions, uniform
convergence, that will guarantee nice limiting properties.

Definition. We say that a sequence of functions {f,}, n = 1,2,... converges uniformly on
E to a function f if for every € > 0 there is an integer NV such that n > N implies

[fulz) = f(z)] <e

forall x € .

The difference between pointwise convergence and uniform convergence is that in point-
wise convergence the N can depend both upon € and x whereas for uniform convergence the
N can depend only upon ¢; that is, we can find one integer N that holds for all x € E.

Definition. We say that the series ) f.(x) converges uniformly on E if the sequence of
partial sums {5, } defined by

Sulw) == 3" Ji()

converges uniformly on F.
The Cauchy criterion for uniform convergence is as follows:

Theorem. The sequence of functions {f,,}, defined on E, converges uniformly on E if and
only if for every € > 0 there exists an integer N such that m > N, n > N, x € E implies

Proof. Suppose {f,} converges uniformly to f on E. Then there is an integer N such that
forallm > N and all x € F,

|[fu(z) = f(z)] <

Then for all m,n > N and all x € £

Do ™

(@) = fu(@)] < |fm(2) = f(@)] + [fal2) = f(2)] < 5 + 5 =&

NN Q)

(We used the triangle inequality |z — y| < |z — z| + |z — y|.) This proves one-half of the
theorem.

Now suppose {f,} satisfies the above Cauchy criterion. By the Cauchy criterion for
convergence of a sequence of numbers, we have the existence (pointwise) of a limiting function



f. We must show the convergence to f is uniform. Let € > 0 be given and choose N such
that for all z € E and all m,n > N we have

Since f,,(z) — f(z) pointwise, we take the limit m — oo in the above inequality to obtain

|f(x) = fulz)] < e
which holds for all x € F and all n > N. OJ

It is sometimes useful to introduce the sup-norm: Suppose f is defined on a set E, the

/Il = sup | f ()]
el

Theorem. The sequence {f,} converges uniformly on E if and only if || f, — f|| — 0 as
n — oo.

Proof. Suppose || f, — f|| = 0 as n — 0, then for every € > 0 there exists an integer N such
that for all n > N we have

sup [ fu(z) — f(2)] <e.

reR
Since for all x € F

|[fu(@) = f(2)] < sup [fu(x) — f(2)]

zel

by definition of sup (the least upper bound), the sequence {f,} converges uniformly to f on
E.

Now suppose { f,} converges uniformly to f on E. Let ¢ > 0 be given. Then there exists
an integer N such that for all z € F and alln > N

fulw) = (@) < 5 <

The least upper bound of this inequality satisfies

sup [ fo () = f(2)| <€

zel

foralln > N. O

Theorem.(Weierstrass M-test). Suppose { f,} is a sequence of functions defined on F, and
suppose there exist nonnegative real numbers M,, such that

|fu(@)| < M,, z€ Ein=12,....
Then ) f, converges uniformly on E if ) M, converges.

6



Proof. 1f " M, converges then for arbitrary ¢ > 0

m

> 1

j=n

n
< Mj <e
Jj=n

provided m,n are large enough. By the Cauchy criterion we obtain uniform convergence of
the series. m

Examples of the use of the Weierstrass M-test:

1. Let -
=3 L en
n=1
For any closed interval [a,b] C R
|sin nx| < 1
n? T n?

and since the series Y. 1/n? is convergent, the above series converges uniformly on
every closed interval of R.

2. Suppose f is defined by the power series
f(z) = Z@nz", 2| < R,
n=0

where R is the radius of convergence (which may be infinite). Let 0 < r < R. Then
the series converges uniformly in the disk |z| < r. To see this note that

| Zanz”| < Z la,|r™
n n

The series on the right-hand side (a series of real numbers) converges since r is less than
the radius of convergence. (It is a fact that if the power series converges it converges
absolutely.)

3. If s =0 +1it, 0 > 1, then the Riemann zeta-function ((s) is defined by setting

1
C(s) = g (%)
n=1
If 0 > 09 > 1, the the series on the right in (x) converges uniformly and absolutely in
the half-plane o > 1 + oy for all gy > 0. This follows from the following estimates and



the Weierstrass M-test:

e}

1 1 1
Z notit Z |na+1t| ne
n=1 n=1 n=1
> oo
dx
< ) o<l /1 oy
n=1
= 1+ < 00.
oo —

Theorem. Suppose {f,} converges uniformly on E. Let z be a limit point of F, and

suppose that
lim f,(t) = A,, n=1,2,....

t—zx

Then {A,} converges, and
lim f(¢) = lim A, = lim lim f,(¢).

t—zx n—o00 n—oo t—x

Proof. Let € > 0 be given. By the uniform convergence of {f,}, there exists N such that
n>N,m>N,te FE imply
fa(t) — fn@®)] <.

Let ¢ — x in the above to obtain
A, — |An| < e

for m,n > N. Thus {A,} is a Cauchy sequence and therefore converges to a number, say
A. Now

[f@) = AL < |F(8) = fu(®)] + [fa(t) — An| + [An — A] (x)
by use of the triangle inequality. We first choose n such that

€
76— Fult)] <
for all t € E (this is possible by the uniform convergence), and such that
A, — Al < =
3
Then, for this n, we choose a neighborhood V' of x such that ¢t € V implies
€
Substituting these three inequalities into the inequality (x) implies

|f(t) — Al <

Wl M



An immediate corollary of this theorem is

Corollary. If {f,} is a sequence of continuous functions on E, and if f, — f uniformly
on FE, then f is continuous on F.

The following theorem shows we can interchange the limit with integration under the
hypothesis of uniform convergence.

Theorem. Suppose f, are Riemann integrable on [a,b] for n = 1,2,..., and suppose
fn — f uniformly on [a, b, then f is Riemann-integrable on [a, b] and
b b
/ f(x)dr = lim [ f,(z)d. (1)
a n—oo a

Proof. We first show that the limiting function f is Riemann integrable.
Let € > 0 be given. Choose 1 > 0 such that

nb—a) < <.
By the uniform convergence, there exists an integer n such that

|fu(z) = f(@)] <nya<a<b

For this fixed n, we choose a partition P of [a, b] such that
€

where U and L are the upper and lower Riemann sums, respectively. Now f(z) < f.(x)+n
for all a < z < b. Thus

U(P’f)SU(p’f")+(b—a)77§U(P,fn)+§

Similarly, the inequality f(z) > f,(x) — n implies

L(P,f) > L(P, f,) — =
Thus

€ € 2¢e
UP f)—L(P, f) < {U(P,fn) + §} — {L(P,fn) — §} = {U(P, f,) — L(P, f,)} + S<e

This proves that f is Riemann integrable.

We now prove (1). Choose N such that n > N implies
fu(2) = f(z)] <&, a<a<b

Then for n > N

/abf(x) dx — /ab fn(z) dx /ab(f(x) — fo(z)) dz

Since ¢ is arbitrary, (1) follows. O

b
< / F(x) — ful@)| dz < (b — a)




As a corollary of this theorem we have

Corollary. If f, are Riemann-integrable on [a, b] and if the series

f(ZE):an(ZE), anSb?

converges uniformly on [a, b], then

/abf(x) i — g /ab f.(x) da.

Example. Suppose we define

fa)=d =3 o<z

n=1

We showed earlier that the above series converges uniformly on [0, 7]. By use of the above
corollary we can compute

/Oﬂf(x)dx = /07r 2

> sinnx
E 5 dx
n=1 n

™

=S /0 S sin(ne)dr = 3" /0 " sin(na) dz

n=1 n=1
w1 1—cosnm _i 114 (—1)*+!
- n? n N n? n
n=1 n=1
> 1
= 2
Z (2n _ 1)3
n=1
- i (2n — 1)3 T Qi (2n)? Y (2;)3
=1 n=1 n=1
Sl I R |
S O BE IR
n=1 n=1
7
- 3
")

where ((s) =7, 1/n°, R(s) > 1, is the Riemann zeta-function.
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For differentiation some additional hypotheses beyond uniform convergence are required.
The following theorem can be found in Rudin.

Theorem. Suppose {f,} is a sequence of functions, differentiable on [a,b] and such that
{fn(z0)} converges for some point zg on [a,b]. If {f'} converges uniformly on [a,b], then
{fn} converges uniformly on [a, b], to a function f, and

f(x) = lim fi(z), a <z <b.

n—oo

Remarks: Note that the above analysis on interchange of limits does not apply to

o0 .
S1n T
E , 0<z<m,
n

n=1

since the obvious bound ‘
sin nx < 1

n n

does not lead to a useful bound to which we can apply the Weierstrass M-test. This series
will be studied in the lectures and we will show that the convergence is not uniform on [0, 7.
To get some preview of the difference between the two series, let’s define the partial sums

Si(n,x) = ZM and Sy(n,z) = ZM, 0<z<I.

2
=1 7 =17

In Figures 1 and 2 we plot the partial sums for n = 10, 20, 50, 100. As these pictures indicate,
the nature of convergence is quite different for these two series.

To see better the behavior near zero, we plot the partial sums for n = 500 in the interval
0 <2 <1/10 in Figures 3 and 4.
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[ 0.2 0.4 0.6 0.8 1.0

Figure 1: The partial sums 22:1 sin(jrx)/j for 0 < x <1 and n = 10, 20, 50, 100.

L 0.2 0.4 06 0.8 1.0

Figure 2: The partial sums Z?:l sin(jrwz)/j? for 0 <z <1 and n = 10, 20, 50, 100.
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1.5
1.0

0.5

0.02 0.04 0.06 0.08 0.10

Figure 3: The partial sum 2?0201 sin(jmz)/j for 0 <z < 1/10.

0.7}
0.6 -
0.4 -
0.3 -
0.2 -

0.02 0.04 0.06 0.08 0.10

Figure 4: The partial sum Z?‘iol sin(jmz)/j% for 0 <z < 1/10.
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