
Some Background Material from Analysis1

1 Elementary point set topology

We denote by R the field of real numbers and C the field of complex numbers.

• If x, y ∈ R the distance between a and b is defined to be

d(x, y) := |x− y| .

If for z ∈ C we interpret |z| as the absolute value of z,2 then the same formula above
holds for the distance between two complex numbers z and w.

• A neighborhood of a point p is a set Nr(p) consisting of all points q such that d(p, q) < r.
The number r is called the radius of Nr(p).

• A point p is a limit point of the set E (a subset of either R or C) if every neighborhood
of p contains a point q �= p such that q ∈ E. (Note that p is not necessarily in the set
E.)

• The set E is said to be closed if every limit point of E is a point of E. Thus, for
example, the interval [a, b] := {x : a ≤ x ≤ b} is a closed set in R. We call [a, b] a
closed interval.

• A point p ∈ E is an interior point of E if there is a neighborhood N of p such that
N ⊂ E. For example, the point 1

2
is an interior point of [0, 1] where as 0 and 1 are not

interior points of [0, 1].

• A set E ⊂ X (X = R or X = C) is open if every point of E is an interior point of E.
For example, the interval (a, b) := {x : a < x < b} ⊂ R, a < b, is an open set in R.

• The complement of E ⊂ X (here X is either R or C) is the set of points p ∈ X such
that p /∈ E.

• A set E is bounded if there is a real number M and a point q such that d(p, q) < M
for all p ∈ E.

• A set E ⊂ X (X = R or X = C) is compact if it is both closed and bounded.3

1For full details see Principles of Analysis by Walter Rudin.
2Recall that if z = x+ iy, x, y ∈ R, then |z| = √

x2 + y2.
3In most analysis courses this is a theorem called the Heine-Borel theorem since a compact set is defined

as follows: An open cover of a set E ⊂ X is a collection {Gα} of open subsets of X such that E ⊂ ⋃
α Gα.

A set K is said to be compact if every open cover of K contains a finite sub cover. We will sometimes use
this property of compact sets.
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2 Continuity

As earlier, by X and Y we mean either R or C. Suppose f is a function whose domain E is
a subset of X and whose range is a subset of Y .

• We say f is continuous at the point p ∈ E if for every ε > 0 there exists a δ > 0 such
that

dY (f(x), f(p)) < ε

for all points x ∈ E for which dX(x, p) < δ. Here dX denotes the distance function in
X and similarly for dY . Given the definition of a limit, this is equivalent to

lim
x→p

f(x) = f(p).

• Suppose f : X → Y . We say that f is uniformly continuous on X if for every ε > 0
there exists a δ > 0 such that

dY (f(p), f(q)) < ε

for all p and q in X for which dX(p, q) < δ.

Uniform continuity is a property of a function on a set whereas continuity can be
defined at a single point. The choice of δ in the above definition of uniform continuity
can be taken to hold for all points in the set X .

An example here is useful. Consider the function f : (0, 1) → R defined by f(x) = 1/x.
Let x0 ∈ (0, 1) be a fixed point. We claim that f is continuous at x0. It’s pretty clear
intuitively that limx→x0

1
x
= 1

x0
, but let’s give an explicit ε − δ proof: Given an ε > 0

we wish to find a δ > 0 such that if |x− x0| < δ, then it follows that | 1
x
− 1

x0
| < ε. We

do a little computation:

|1
x
− 1

x0
| = |x− x0|

xx0
<

δ

xx0

We want the last quantity to be less that ε. Since x0 − δ < x, we have 1
x
< 1

x0−δ
. Thus

we want
δ

x0(x0 − δ)
< ε

Solving this inequality for δ gives that we can choose any δ satisfying

δ <
x2
0

1 + εx0

it follows by reversing the above computation that

|1
x
− 1

x0

| < ε.
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Note that as x0 becomes smaller, the choice of δ becomes smaller. It is not possible to
find one δ > 0 that works for all x0. Thus f(x) = 1/x is not uniformly continuous on
(0, 1).

• A fundamental result in analysis says that if E is a compact subset of X and f is
continuous for each point p ∈ E, then f is uniformly continuous on E. Note that in
the above example the set E was not compact.

• Suppose f is a continuous function on the compact set E ⊂ X (and hence by the
previous item, uniformly continuous on E). Let

m = inf
x∈E

f(p), M = sup
p∈E

f(p)

then there exist points p1, p2 ∈ E such that f(p1) = m and f(p2) = M . Recall that
inf is the infinum which is the greatest lower bound and sup is the supremum which is
the least upper bound.

3 Uniform Convergence

Many times in analysis we have a sequence of functions {fn} and we define a new function by
f := limn→∞ fn; and we then ask questions about the properties of f . For example, suppose
each fn is a continuous function, then is f necessarily continuous? To make this question
precise we must first answer in what sense does fn converge to f .

The first notion of convergence is pointwise convergence; that is suppose fn are defined on
some set E, then we say fn converges pointwise on E to f if for each x ∈ E, limn→∞ fn(x) =
f(x). Since we are evaluating fn(x) at a point x, this is convergence of a sequence of
numbers (we assume fn are either real- or complex-valued). The following examples show
that pointwise convergence of a sequence of functions does not imply the limiting function
necessarily inherits the properties of the sequence functions:

1.
fn(x) := xn, 0 ≤ x ≤ 1.

For |x| < 1, limn→∞ fn(x) = 0. Since fn(1) = 1, limn→∞ fn(1) = 1. Thus the limiting
function is

f(x) =

{
0, x < 1
1, x = 1

which is clearly a discontinuous function of x.

2. Let
fm(x) := lim

n→∞
(cosm!πx)2n .
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When m!x is an integer, cos(m!πx) = ±1 so that fm(x) = limn→∞(±1)2n = 1. For
other values of x, the cosine of absolute value less than 1; and hence, fm(x) = 0 for
those values of x. Now let

f(x) = lim
m→∞

fm(x)

If x is a rational number; say x = p/q where p and q are integers, then for sufficiently
large m (namely, m ≥ q) m!x is an integer and hence f(x) = 1. If x is irrational, then
m!x is never an integer and we obtain for every m fm(x) = 0. Thus we’ve shown that

f(x) =

{
0, x irrational
1, x rational

Thus the limiting function f is neither continuous nor Riemann-integrable.

3. Let

fn(x) :=
sinnx√

n
, x ∈ R, n = 1, 2, 3, . . . .

Since the absolute value of the sine function is bounded by 1,

f(x) = lim
n→∞

fn(x) = 0, x ∈ R.

Thus f ′(x) = 0. However
f ′
n(x) =

√
n cos(nx)

so that {f ′
n} does not converge to f ′.

4. Let
fn(x) = n2x(1− x2)n, 0 ≤ x ≤ 1, n = 1, 2, . . . .

For 0 < x < 1, log fn(x) = n [log(1− x2) + 2 log x]+log x. Since the quantity in square
brackets is negative for 0 < x < 1, limn→∞ log fn(x) = −∞; and hence, limn→ı fn(x) =
0. Since fn(0) = fn(1) = 0, we get limn→∞ fn(x) = 0 for all 0 ≤ x ≤ 1. Now

∫ 1

0

x(1− x2)n dx =
1

2n+ 2

so that ∫ 1

0

fn(x) dx =
n2

2n + 2

Thus

lim
n→∞

∫ 1

0

fn(x) dx = ∞

but ∫ 1

0

f(x) dx = 0.
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Thus we have for this example

lim
n→∞

∫ 1

0

fn(x) dx �=
∫ 1

0

lim
n→∞

fn(x) dx.

We now introduce a stronger notion of convergence of a sequence of functions, uniform
convergence, that will guarantee nice limiting properties.

Definition. We say that a sequence of functions {fn}, n = 1, 2, . . . converges uniformly on
E to a function f if for every ε > 0 there is an integer N such that n ≥ N implies

|fn(x)− f(x)| ≤ ε

for all x ∈ E.

The difference between pointwise convergence and uniform convergence is that in point-
wise convergence the N can depend both upon ε and x whereas for uniform convergence the
N can depend only upon ε; that is, we can find one integer N that holds for all x ∈ E.

Definition. We say that the series
∑

n fn(x) converges uniformly on E if the sequence of
partial sums {Sn} defined by

Sn(x) :=
n∑

j=1

fj(x)

converges uniformly on E.

The Cauchy criterion for uniform convergence is as follows:

Theorem. The sequence of functions {fn}, defined on E, converges uniformly on E if and
only if for every ε > 0 there exists an integer N such that m ≥ N , n ≥ N , x ∈ E implies

|fm(x)− fn(x)| ≤ ε.

Proof. Suppose {fn} converges uniformly to f on E. Then there is an integer N such that
for all n ≥ N and all x ∈ E,

|fn(x)− f(x)| ≤ ε

2
.

Then for all m,n ≥ N and all x ∈ E

|fm(x)− fn(x)| ≤ |fm(x)− f(x)|+ |fn(x)− f(x)| ≤ ε

2
+

ε

2
= ε.

(We used the triangle inequality |x − y| ≤ |x − z| + |z − y|.) This proves one-half of the
theorem.

Now suppose {fn} satisfies the above Cauchy criterion. By the Cauchy criterion for
convergence of a sequence of numbers, we have the existence (pointwise) of a limiting function

5



f . We must show the convergence to f is uniform. Let ε > 0 be given and choose N such
that for all x ∈ E and all m,n ≥ N we have

|fm(x)− fn(x)| ≤ ε.

Since fm(x) −→ f(x) pointwise, we take the limit m → ∞ in the above inequality to obtain

|f(x)− fn(x)| ≤ ε

which holds for all x ∈ E and all n ≥ N .

It is sometimes useful to introduce the sup-norm: Suppose f is defined on a set E, the

‖f‖ = sup
x∈E

|f(x)|

Theorem. The sequence {fn} converges uniformly on E if and only if ‖fn − f‖ → 0 as
n → ∞.

Proof. Suppose ‖fn − f‖ → 0 as n → 0, then for every ε > 0 there exists an integer N such
that for all n ≥ N we have

sup
x∈E

|fn(x)− f(x)| ≤ ε.

Since for all x ∈ E
|fn(x)− f(x)| ≤ sup

x∈E
|fn(x)− f(x)|

by definition of sup (the least upper bound), the sequence {fn} converges uniformly to f on
E.

Now suppose {fn} converges uniformly to f on E. Let ε > 0 be given. Then there exists
an integer N such that for all x ∈ E and all n ≥ N

|fn(x)− f(x)| ≤ ε

2
< ε

The least upper bound of this inequality satisfies

sup
x∈E

|fn(x)− f(x)| ≤ ε

for all n ≥ N .

Theorem.(Weierstrass M-test). Suppose {fn} is a sequence of functions defined on E, and
suppose there exist nonnegative real numbers Mn such that

|fn(x)| ≤ Mn, x ∈ E, n = 1, 2, . . . .

Then
∑

n fn converges uniformly on E if
∑

nMn converges.
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Proof. If
∑

nMn converges then for arbitrary ε > 0

∣∣∣∣∣
m∑

j=n

fj

∣∣∣∣∣ ≤
n∑

j=n

Mj ≤ ε

provided m,n are large enough. By the Cauchy criterion we obtain uniform convergence of
the series.

Examples of the use of the Weierstrass M-test:

1. Let

f(x) :=

∞∑
n=1

sinnx

n2
, x ∈ R.

For any closed interval [a, b] ⊂ R

|sinnx
n2

| ≤ 1

n2

and since the series
∑

n 1/n
2 is convergent, the above series converges uniformly on

every closed interval of R.

2. Suppose f is defined by the power series

f(z) =
∞∑
n=0

anz
n, |z| < R,

where R is the radius of convergence (which may be infinite). Let 0 < r < R. Then
the series converges uniformly in the disk |z| ≤ r. To see this note that

|
∑
n

anz
n| ≤

∑
n

|an|rn

The series on the right-hand side (a series of real numbers) converges since r is less than
the radius of convergence. (It is a fact that if the power series converges it converges
absolutely.)

3. If s = σ + it, σ > 1, then the Riemann zeta-function ζ(s) is defined by setting

ζ(s) =
∞∑
n=1

1

ns
. (�)

If σ ≥ σ0 > 1, the the series on the right in (�) converges uniformly and absolutely in
the half-plane σ ≥ 1+ σ0 for all σ0 > 0. This follows from the following estimates and

7



the Weierstrass M-test:∣∣∣∣∣
∞∑
n=1

1

nσ+it

∣∣∣∣∣ ≤
∞∑
n=1

1

|nσ+it| =
∞∑
n=1

1

nσ

≤
∞∑
n=1

1

nσ0
< 1 +

∫ ∞

1

dx

xσ0

= 1 +
1

σ0 − 1
< ∞.

Theorem. Suppose {fn} converges uniformly on E. Let x be a limit point of E, and
suppose that

lim
t→x

fn(t) = An, n = 1, 2, . . . .

Then {An} converges, and

lim
t→x

f(t) = lim
n→∞

An = lim
n→∞

lim
t→x

fn(t).

Proof. Let ε > 0 be given. By the uniform convergence of {fn}, there exists N such that
n ≥ N , m ≥ N , t ∈ E imply

|fn(t)− fm(t)| ≤ ε.

Let t → x in the above to obtain
|An − |Am| ≤ ε

for m,n ≥ N . Thus {An} is a Cauchy sequence and therefore converges to a number, say
A. Now

|f(t)− A| ≤ |f(t)− fn(t)|+ |fn(t)−An|+ |An − A| (�)

by use of the triangle inequality. We first choose n such that

|f(t)− fn(t)| ≤ ε

3

for all t ∈ E (this is possible by the uniform convergence), and such that

|An − A| ≤ ε

3
.

Then, for this n, we choose a neighborhood V of x such that t ∈ V implies

|fn(t)− An| ≤ ε

3
.

Substituting these three inequalities into the inequality (�) implies

|f(t)−A| ≤ ε

3
.
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An immediate corollary of this theorem is

Corollary. If {fn} is a sequence of continuous functions on E, and if fn −→ f uniformly
on E, then f is continuous on E.

The following theorem shows we can interchange the limit with integration under the
hypothesis of uniform convergence.

Theorem. Suppose fn are Riemann integrable on [a, b] for n = 1, 2, . . ., and suppose
fn −→ f uniformly on [a, b], then f is Riemann-integrable on [a, b] and∫ b

a

f(x) dx = lim
n→∞

∫ b

a

fn(x) dx. (1)

Proof. We first show that the limiting function f is Riemann integrable.

Let ε > 0 be given. Choose η > 0 such that

η(b− a) ≤ ε

3
.

By the uniform convergence, there exists an integer n such that

|fn(x)− f(x)| ≤ η, a ≤ x ≤ b.

For this fixed n, we choose a partition P of [a, b] such that

U(P, fn)− L(P, fn) ≤ ε

3

where U and L are the upper and lower Riemann sums, respectively. Now f(x) ≤ fn(x) + η
for all a ≤ x ≤ b. Thus

U(P, f) ≤ U(P, fn) + (b− a)η ≤ U(P, fn) +
ε

3
.

Similarly, the inequality f(x) ≥ fn(x)− η implies

L(P, f) ≥ L(P, fn)− ε

3
.

Thus

U(P, f)− L(P, f) ≤
{
U(P, fn) +

ε

3

}
−

{
L(P, fn)− ε

3

}
= {U(P, fn)− L(P, fn)}+ 2ε

3
≤ ε

This proves that f is Riemann integrable.

We now prove (1). Choose N such that n ≥ N implies

|fn(x)− f(x)| ≤ ε, a ≤ x ≤ b.

Then for n ≥ N∣∣∣∣
∫ b

a

f(x) dx−
∫ b

a

fn(x) dx

∣∣∣∣ =
∣∣∣∣
∫ b

a

(f(x)− fn(x)) dx

∣∣∣∣ ≤
∫ b

a

|f(x)− fn(x)| dx ≤ ε(b− a)

Since ε is arbitrary, (1) follows.
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As a corollary of this theorem we have

Corollary. If fn are Riemann-integrable on [a, b] and if the series

f(x) =
∞∑
n=1

fn(x), a ≤ x ≤ b,

converges uniformly on [a, b], then

∫ b

a

f(x) dx =
∞∑
n=1

∫ b

a

fn(x) dx.

Example. Suppose we define

f(x) =

∞∑
n=1

sin nx

n2
, 0 ≤ x ≤ π.

We showed earlier that the above series converges uniformly on [0, π]. By use of the above
corollary we can compute

∫ π

0

f(x) dx =

∫ π

0

∞∑
n=1

sinnx

n2
dx

=

∞∑
n=1

∫ π

0

1

n2
sin(nx) dx =

π∑
n=1

1

n2

∫ π

0

sin(nx) dx

=

∞∑
n=1

1

n2

1− cos nπ

n
=

∞∑
n=1

1

n2

1 + (−1)n+1

n

= 2
∞∑
n=1

1

(2n− 1)3

= 2
∞∑
n=1

1

(2n− 1)3
+ 2

∞∑
n=1

1

(2n)3
− 2

∞∑
n=1

1

(2n)3

= 2

∞∑
n=1

1

n3
− 1

4

∞∑
n=1

1

n3

=
7

4
ζ(3)

where ζ(s) =
∑∞

n=1 1/n
s, 
(s) > 1, is the Riemann zeta-function.
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For differentiation some additional hypotheses beyond uniform convergence are required.
The following theorem can be found in Rudin.

Theorem. Suppose {fn} is a sequence of functions, differentiable on [a, b] and such that
{fn(x0)} converges for some point x0 on [a, b]. If {f ′

n} converges uniformly on [a, b], then
{fn} converges uniformly on [a, b], to a function f , and

f ′(x) = lim
n→∞

f ′
n(x), a ≤ x ≤ b.

Remarks: Note that the above analysis on interchange of limits does not apply to

∞∑
n=1

sinnx

n
, 0 ≤ x ≤ π,

since the obvious bound ∣∣∣∣sinnxn

∣∣∣∣ ≤ 1

n

does not lead to a useful bound to which we can apply the Weierstrass M-test. This series
will be studied in the lectures and we will show that the convergence is not uniform on [0, π].
To get some preview of the difference between the two series, let’s define the partial sums

S1(n, x) :=

n∑
j=1

sin(jπx)

j
and S2(n, x) :=

n∑
j=1

sin(jπx)

j2
, 0 ≤ x ≤ 1.

In Figures 1 and 2 we plot the partial sums for n = 10, 20, 50, 100. As these pictures indicate,
the nature of convergence is quite different for these two series.

To see better the behavior near zero, we plot the partial sums for n = 500 in the interval
0 ≤ x ≤ 1/10 in Figures 3 and 4.
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Figure 1: The partial sums
∑n

j=1 sin(jπx)/j for 0 ≤ x ≤ 1 and n = 10, 20, 50, 100.

Figure 2: The partial sums
∑n

j=1 sin(jπx)/j
2 for 0 ≤ x ≤ 1 and n = 10, 20, 50, 100.
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Figure 3: The partial sum
∑500

j=1 sin(jπx)/j for 0 ≤ x ≤ 1/10.

Figure 4: The partial sum
∑500

j=1 sin(jπx)/j
2 for 0 ≤ x ≤ 1/10.
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