Math 135A: HW2 Due Monday, January 20

1. Two people toss a fair coin n times each.
(a) Show that the probability, p_{n}, that they will score the same number of heads is

$$
p_{n}=\frac{1}{2^{2 n}}\binom{2 n}{n}
$$

where $\binom{n}{k}$ is the binomial coefficient.
(b) Show that as $n \rightarrow \infty$,

$$
p_{n} \sim \frac{1}{\sqrt{\pi n}}
$$

(c) Hints: Let $E_{k}^{(1)}$ denote the event person 1 tosses exactly k heads; and similarly, $E_{k}^{(2)}$ denotes the probability person 2 tosses exactly k heads. Then $E_{k}^{(1)} \cap E_{k}^{(2)}$ is the event that each toss exactly k heads. Then

$$
p_{n}=\sum_{k=0}^{n} \mathbb{P}\left(E_{k}^{(1)} \cap E_{k}^{(2)}\right) .
$$

You will need to prove the binomial identity

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

You will also need Stirling's formula for n ! which says

$$
\log (n!)=n \log n-n+\frac{1}{2} \log n+\frac{1}{2} \log (2 \pi)+\mathrm{o}(1), \quad n \rightarrow \infty,
$$

where o(1) means an error that goes to zero as $n \rightarrow \infty$.
2. A biased coin is tossed repeatedly. Each time there is a probability p of a head turning up. Let p_{n} be the probability that an even number of heads has occurred after n tosses (by convention, zero is an even number). Show that $p_{0}=1$ and that

$$
\begin{equation*}
p_{n}=p\left(1-p_{n-1}\right)+(1-p) p_{n-1}, \quad n \geq 1 . \tag{1}
\end{equation*}
$$

Solve this difference equation for p_{n}. What is $\lim _{n \rightarrow \infty} p_{n}$? Plot p_{n} vs. n for $p=1 / 4$ and for $p=3 / 4$. Hint: Condition on the outcome of the first toss.
3. Let $A_{j}, j=1, \ldots, n$ be events in a probability space $(\Omega, \mathbb{P}, \mathcal{F})$.
(a) Prove

$$
\mathbb{P}\left(\bigcup_{j=1}^{n} A_{j}\right) \leq \sum_{j=1}^{n} \mathbb{P}\left(A_{j}\right) \text { and } \mathbb{P}\left(\bigcap_{j=1}^{n} A_{j}\right) \geq 1-\sum_{j=1}^{n} \mathbb{P}\left(A_{j}^{c}\right)
$$

(b) Ten percent of the surface of a sphere S is colored blue, the rest is red. Show that irrespective of the manner in which the colors are distributed, it is possible to inscribe a cube in S with all its vertices red.
(c) Hint for (b): Let A_{r} be the event that the r th vertex of a randomly selected cube is blue and note that $\mathbb{P}\left(A_{r}\right)=0.1$. The event $\cup_{j=1}^{8} A_{j}$ is at least one vertex is blue. Use the inequality of part (a) to estimate this probability. What can you now conclude?
4. Bayes's formula: Suppose $A_{1}, A_{2}, \ldots, A_{n}$ is a partition of the sample space Ω and each A_{j} has positive probability. Prove that

$$
\mathbb{P}\left(A_{j} \mid B\right)=\frac{\mathbb{P}\left(B \mid A_{j}\right) \mathbb{P}\left(A_{j}\right)}{\sum_{k=1}^{n} \mathbb{P}\left(B \mid A_{k}\right) \mathbb{P}\left(A_{k}\right)}
$$

5. $2 n$ points at equal distances are marked off on a circle. These points are randomly grouped into n pairs and the points of each pair are connected by a chord. What is the probability that each of the n chords constructed do not intersect?
(a) Hint: Let M_{n} denote the number of favorable outcomes for $2 n$ points. By direct enumeration we have

$$
M_{1}=1, M_{2}=2, M_{3}=5, \text { and } M_{4}=14,
$$

Note that

$$
M_{4}=1 \cdot M_{3}+M_{1} \cdot M_{2}+M_{2} \cdot M_{1}+M_{3} \cdot 1=1 \cdot 5+1 \cdot 2+2 \cdot 1+5 \cdot 1=14
$$

Defining $M_{0}=1$ show that

$$
\begin{equation*}
M_{n}=\sum_{r=0}^{n-1} M_{r} M_{n-r-1} . \tag{2}
\end{equation*}
$$

(b) Define

$$
\begin{equation*}
M(z)=\sum_{r=0}^{\infty} M_{r} z^{r} \tag{3}
\end{equation*}
$$

and show that (2) implies that

$$
\begin{equation*}
\frac{1}{z}(M(z)-1)=M^{2}(z) \tag{4}
\end{equation*}
$$

Solving this quadratic equation for $M(z)$ gives

$$
\begin{equation*}
M(z)=\frac{1}{2 z}[1-\sqrt{1-4 z}] \tag{5}
\end{equation*}
$$

(c) Using Taylor's formula applied (5) to show that

$$
M_{n}=\frac{(2 n-1)!!}{(n+1)!} 2^{n}
$$

and hence

$$
p_{n}=\frac{2^{n}}{(n+1)!}
$$

6. Background: Inclusion-Exclusion Principle: Let \mathbb{P} be a probability measure on the sample space Ω, and let $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ be a finite set of events. Then

$$
\begin{equation*}
\mathbb{P}\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)=\sum_{j=1}^{n} \mathbb{P}\left(A_{j}\right)-\sum_{1 \leq j<k \leq n} \mathbb{P}\left(A_{j} \cap A_{k}\right)+\sum_{1 \leq j<k<\ell \leq n} \mathbb{P}\left(A_{j} \cap A_{k} \cap A_{\ell}\right)-\cdots \tag{6}
\end{equation*}
$$

That is, to find the probability that at least one of n events A_{j} occurs, first add the probability of each event, then subtract the probabilities of all possible two-way intersections, then add the probability of all three-way intersection, and so forth down to adding $(-1)^{n+1} \mathbb{P}\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)$.
Random permutations: Recall that the number of permutations of n objects is $n!$. For example, there are 6 permutations of the letters a, b, and c; namely

$$
a b c, a c b, b a c, b c a, c a b, c b a
$$

and $4!=4 \cdot 3 \cdot 2 \cdot 1=24$ permutations of the letters a, b, c, and d. The number of permutations of n objects increases rapidly with n; for example, $10!=3628800$. Another example: A deck of cards consists of 52 cards and the number of shuffled decks is $52!\approx 8.06 \times 10^{67}$.
Let Ω_{n} denote the set of all permutations of the numbers $1,2, \ldots, n$. Thus Ω_{n} has $n!$ elements. By a random permutation we mean each permutation $\omega \in \Omega_{n}$ has probability $1 / n$! (this is the uniform measure). The number $j, 1 \leq j \leq n$, is called a fixed point of the permutation ω if ω maps j to j. For example, of the six permutations of three elements, four have at least one fixed point:

$$
123,132,213,321
$$

Exercise: What is the probability that a random permutation has no fixed points? For example the probability that a random permutation of three elements has no fixed point is $2 / 3!=1 / 3$ since there are only two out of six permutations that have no fixed point.
Hints: This problem is solved by using the Inclusion-Exclusion Principle to calculate the probability that a random permutation has at least one fixed point. Let A_{j} be the event that the j th element is a fixed point. Look at the event $A_{1} \cup A_{2} \cup \cdots \cup A_{n}$ (which is the event there is at least one fixed point) and apply the Inclusion-Exclusion Principle.

