
Central Limit Theorem

These notes give a heuristic derivation of the central limit theorem. They
are heuristic since we need to be more careful1 with the error estimates as
well as some other points discussed below. However, these “gaps” can be
filled in (and they are in an advanced course); the ideas presented here are
the basic ideas that go into the proof of the central limit theorem. This
derivation shows why only information relating to the mean and variance of
the underlying distribution function are relevant in the central limit theorem.
(That is, one sees why, for instance, the third moment does not appear in
the statement of the central limit theorem.)

Let Xj, j = 1, 2, . . . be independent random variables with common contin-
uous density function fX . We assume that all the moments of Xj are finite;
that is, we assume

µn :=

∫
R

xnfX(x) dx <∞

for n = 0, 1, 2, . . .. Of course, µ0 = 1. We introduce the moment generating
function

MX(ξ) =
∑
n≥0

µn

n!
ξn

=
∞∑

n=0

1

n!

(∫
R

xnfX(x)

)
ξn dx

=

∫
R

(∑
n≥0

(xξ)n

n!

)
fX(x) dx

=

∫
R

exξfX(x) dx.

To get some feeling for the moment generating function let’s compute it in
the special case of a gaussian distributed random variable of mean µ and
variance σ2. The density is

fX(x) =
1

σ
√

2π
e−(x−µ)2/(2σ2).

1The estimates we give are correct pointwise, but we need some uniform estimates
since we integrate the estimates. A careful treatment of the central limit theorem can be
found in Feller, Vol. 2.
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Denote the moment generating function by Mµ,σ; thus for the special case of
µ = 0 and σ = 1

M0,1(ξ) =
1√
2π

∫
R

e−x2/2+xξ dx

=
1√
2π

∫
R

exp

(
−1

2

(
(x− ξ)2 − ξ2

))
dx

= eξ2/2 1√
2π

∫
R

e−(x−ξ)2/2 dx

= eξ2/2

More generally,
Mµ,σ(ξ) = eσ2ξ2/2+ξµ

as can easily be proved from the above result.

Let
Sn = X1 + X2 + · · ·+ Xn

then it’s moment generating function is

MSn(ξ) = E
(
eξSn

)
= E

(
eX1+···+Xn

)
=

[
E
(
eξX1

)]n
where the last equality follows from the independence of the Xj. Define

S∗n =
Sn − nµ1

σ
√

n

where σ2 is the variance of X1. Then

MS∗
n
(ξ) = E

(
eξS∗

n
)

= E

(
exp

(
ξ√
nσ

Sn −
µ1

σ

√
nξ

))
= e−(µ1/σ)

√
n ξ E

(
exp

(
ξSn

σ
√

n

))
= e−(µ1/σ)

√
n ξ MSn(

ξ√
n σ

)

= e−(µ1/σ)
√

n ξ

[
MX(

ξ√
n σ

)

]n

(1)
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We now take n → ∞ in the expression for the moment generating function
for S∗n. We will show that

MS∗
n
(ξ) → eξ2/2 (2)

as n → ∞. The generating function on the right is the moment generating
function of the gaussian of mean zero and variance one. We then appeal to
a result (which we don’t prove) that says all the moments of S∗n converge
to the moments of the gaussian; and hence the distribution function of S∗n
converges to the distribution function of the gaussian. That is,

P

(
Sn − nµ1

σ
√

n
≤ x

)
→
∫ x

−∞

1√
2π

e−t2/2 dt as n →∞.

This last result is the central limit theorem.

We now show (2). Returning to (1) and taking the logarithm of both sides
gives

log
(
MS∗

n
(ξ)
)

= −µ1

σ

√
n ξ + n log

(
MX

(
ξ

σ
√

n

))
(3)

Now
MX(ξ) = 1 + µ1ξ +

µ2

2
ξ2 + O(ξ3)

so that

MX

(
ξ

σ
√

n

)
= 1 + µ1

ξ

σ
√

n
+

µ2

2σ2

ξ2

n
+ O(

ξ3

n3/2
)

We now use
log(1 + x) = x− x2/2 + O(x3)

to find that

n log

(
MX

(
ξ

σ
√

n

))
= n

{
µ1

ξ

σ
√

n
+

µ2

2σ2

ξ2

n
− µ2

1

2σ2n
ξ2 + O(

1

n3/2
)

}
=

µ1

σ
ξ
√

n +
1

2
ξ2 + O(

1√
n

)

(In the last step we used that µ2−µ2
1 = σ2.) Substituting this last expression

into (3) and noting that the term involving
√

n cancels shows that

lim
n→∞

log
(
MS∗

n
(ξ)
)

=
1

2
ξ2

or
lim

n→∞
MS∗

n
(ξ) = eξ2/2

which was to be proved.
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