
Confidence Intervals

In many applications one is given data

X1, X2, . . . Xn

with the a priori knowledge that the data are drawn from a normally dis-
tributed population. However, the theoretical mean µ = E(Xj) and the
theoretical variance σ2 = Var(Xj) are unknown and must be estimated from
the data. (In many real life applications the knowledge that the population is
normally distributed is also unknown. But we take as a working hypothesis
that the underlying data are normally distributed.)

The obvious estimate for the mean µ is the average of the data

µn =
1

n

n∑
j=1

Xj (1)

This is an unbiased estimator, the sample mean, in the sense that E(µn) = µ.
Furthermore, we know from the strong law of large numbers that

µn → µ, n →∞ a.s.

That is, as the sample size n tends to infinity our estimate µn converges to
the theoretical mean µ. Similarly, we construct the sample variance S2

n by

S2
n =

1

n− 1

n∑
j=1

(Xj − µn)2 . (2)

Note that in the sample variance we use the sample mean (since we don’t
know the theoretical mean µ). Also we divide by n − 1 instead of n. This
is done so that the expected value of the sample variance is σ2 (this forces
n− 1 in the denominator rather than n).1

For small sample sizes it is important to give an interval which we can say
with a given probability that the theoretical mean µ lies inside. That is, we
want to be able to say based solely upon the data that the theoretical mean
µ satisfies the inequalities a ≤ µ ≤ b with probability 1− α. (We assign the
value of α. To say it lies in the interval with 95% confidence we would take

1See if you can convince yourself of this fact.
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α = 0.05.) Thus we are looking for a statistic that constructs these intervals.
Let

tn =
µn − µ

Sn√
n

=

√
n(µn − µ)

Sn

(3)

The claim is that the distribution of tn is equal to the distribution the Student
T -statistic with n−1 degrees of freedom. (Note the change from n → n−1.)
The Student T -statistic of n degrees of freedom has density

fT (t) = cn

(
1 + t2/n

)−(n+1)/2
(4)

where the normalization constant cn is given in terms of the Γ function

cn =
1√
πn

Γ((n + 1)/2)

Γ(n/2)
.

Let X be a normally distributed random variable with mean 0 and variance
1. We compute the moment generating function of X2. Recall that for any
random variable Y the moment generating function is

MY (t) = E(etY ).

Thus

MX2(t) = E(etX2

)

=
1√
2π

∫ ∞

−∞
etx2

e−x2/2 dx

=
1√
2π

∫ ∞

−∞
e−x2(1−2t)/2 dx

=
1√

1− 2t
. (5)

Now let X1, X2, . . . , Xn be independent N(0, 1) random variables and define

χ2 = X2
1 + X2

2 + · · ·+ X2
n.

This random variable is called chi-squared with n degrees of freedom. The
moment generating function for χ2 is

Mχ2(t) = E(etχ2

)
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= E
(
et(X2

1+···+X2
n)

)
= E

(
etX2

1

)
E

(
etX2

2

)
· · ·E

(
etX2

n

)
, by independence

= E
(
etX2

1

)n
, since Xj are identically distributed

=
1

(1− 2t)n/2
by (5). (6)

We now wish to find a density whose moment generating function is given
by (6).2 Recall that the gamma density with parameters α and β is zero for
x < 0 and for x > 0 is by

fα,β(x) =
1

Γ(α)βα
xα−1e−x/β, x > 0, α > 0, β > 0. (7)

We showed earlier that it has mean αβ and variance αβ2. The moment
generating function is

Mgamma(t) =
∫ ∞

0
etxfα,β(x) dx

=
1

Γ(α)βα

∫ ∞

0
xα−1e−(1/β−t)x dx

make the substitution u = (1/β − t)x,

=
1

(1− βt)α

1

Γ(α)

∫ ∞

0
uα−1e−u du

=
1

(1− βt)α
(8)

Comparing the moment generating function (6) with the moment generating
function (8), we conclude that the distribution of χ2 with n degrees of freedom
has gamma density (7) with parameters α = n/2 and β = 2.

We need one further preliminary result. If X and Y are independent random
variables, Y > 0, with densities fX and fY , respectively, then the density of
the random variable

Z =
X

Y

2In an advanced course you will derive a formula that gives the inverse of a moment
generating function. That is we have a formula that goes from fX → MX ; namely, the
definition of MX . What we also need is a formula for MX → fX . Here we will have to
just verify that the gamma density gives the desired result.
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is
fZ(z) =

∫ ∞

0
fX(zy)yfY (y) dy (9)

(You can most easily prove this by first writing down the distribution function
FZ(z) = P (Z ≤ z) in terms of the densities fX and fY .)

We are now ready to prove the following theorem

Theorem: If X, Y1, Y2, . . .Yn are independent random variables with
common normal density (of mean zero and variance 1), the variable

Tn =
X
√

n√
Y 2

1 + · · ·+ Y 2
n

has density fTn given by (4).

To prove this we observe that X
√

n is a normal random variable with mean
0 and variance n. The denominator is the square root of the chi-squared
random variable. If fχ2 is the density for χ2, a simple calculation shows that
the density for

√
χ2 is

f√
χ2(x) = 2xfχ2(x2).

Thus we know the density of the random variable in the numerator and the
density of the random variable in the denominator. We can now apply (9) to
compute the density of Tn. This is straightforward manipulation of integrals.
The result if (4).

To apply the student T -statistic to (3) we must know that the sample mean
(1) is independent of the sample variance (2). As it turns out for normal
populations the sample mean is independent of the sample variance. To
prove this requires the use of the multivariate gaussian distribution. In the
process of proving this one finds that that if the sample population is of size
n, then the T -statistic used has n− 1 degrees of freedom.3 We will not prove
this result about independence.

3This is due to the fact that there is the constraint X1 + · · ·+ Xn = nµn.
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