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Abstract

This article provides a contemporary exposition at amoderately quantitative level of the distribution
theory associated with the matching and the birthday problems. A large number of examples, many
not well known, are provided to help a reader have a feeling for these questions at an intuitive level.
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1. Introduction

My first exposure to Professor Chernoff’s work was in an asymptotic theory class at
the ISI. Later I had the opportunity to read and teach a spectrum of his work on design
of experiments, goodness of fit, multivariate analysis and variance inequalities. My own
modest work on look-alikes in Section 2.8 here was largely influenced by the now famous
Chernoff faces. It is a distinct pleasure to write this article for the special issue in his honor.
This article provides an exposition of some of themajor questions related to thematching

and the birthday problems. The article is partially historical, and partially forward looking.
For example, we address a new problem that we call thestrong birthday problem. Section 2
takes the birthday problem, and gives a review of the major results in the canonical birthday
problem, including the asymptotic Poisson theory, and the case of unequal probabilities. It
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also discusses how the results change in a Bayesian formulation, with Dirichlet priors on
the probabilities of different birthdays.We also introduce a new problem, which we call the
strong birthday problem, and discuss an application of it to a problemof interest in criminol-
ogy and sociology. Section 3 addresses thematching problem, and gives a collection of new
and known results onPoisson asymptotics, including some very sharp bounds on the error of
the Poisson approximation. It also provides a review of themodern asymptotics on the prob-
lem of the longest increasing subsequence and some review of other interesting patterns in
randompermutations.Feller (1966)is still the best introduction to these charming questions.

2. Birthday and strong birthday problems

The classical birthday problem asks, what is the probability of finding at least one similar
pair having the same birthday in a group ofn individuals. This problem was initiated by
von Mises in 1932. The strong birthday problem asks, what is the probability that each one
in a group ofn individuals is a member of some similar pair. Another way to ask the same
question is what is the probability that everyone in a group ofn individuals has a birthday
shared by someone else in the group. In the classical birthday problem, the smallestn

for which the probability of finding at least one similar pair is greater than .5 isn = 23.
In the strong birthday problem, the smallestn for which the probability is more than .5
that everyone has a shared birthday isn = 3064. The latter fact is not well known. We
will discuss the canonical birthday problem and its various variants, as well as the strong
birthday problem in this section.

2.1. The canonical birthday problem

Let Iij be the indicator of the event that individualsi, j have the same birthday. Then,
the number of similar pairs, isW =∑

i<j Iij . TheIij are not independent. Thus the exact
distribution ofW is complicated, even for the case of all days being equally likely to be
the birthday of any given individual. However, the question originally raised by von Mises
is answered easily. Indeed,pn = P(at least one similar pair) = 1 − P(no similar pair) =
1−

∏n−1
i=1 (365−i)

365n−1 , discounting leap years, and making the equally likely and independence
among individuals assumptions. The probability of at least one similar pair is as follows for
various values ofn.

Example 1. Thus, in a gathering of 50 people, it is highly probable that at least one similar
pair will be found. As remarked before, the exact distribution ofW , the total number
of similar pairs is too complicated. Consider the more general case ofm equally likely
birthdays. Then, the distribution ofW can be well approximated by a Poisson distribution.

Table 1
P (at least one similar pair)

n 2 3 4 5 10 20 23 30 50
pn .003 .008 .016 .027 .117 .411 .507 .706 .970
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The Poisson approximation to the probability of at least one similar pair yields very good
results.

The following theoremcan be seen in various places, includingArratia et al. (1989, 1990),
Stein (1986), Barbour et al. (1992), andDiaconis and Holmes (2002).

Theorem 1. If m, n → ∞ in such a way thatn(n−1)
m

→ 2�, thenW
L⇒Poi(�).

If m, nare365and23, respectively, then taking2�= 22×23
365 =1.3863, andusing thePoisson

approximation we get,P(W �1) = 1− e−.69315= .500001. This is a good approximation
to the true value of .507 (Table 1).
A slightly different question is the following: if we interview people, one by one, until we

find a similar pair, how many should be interviewed? If we denote this number byN , then
E(N)=∑m

n=0(1−pn). Calculation using the formula above forpn givesE(N)=24.6166.
The variance ofN equals 148.64.

2.2. Matched couples

An interesting variation of the canonical birthday problem is the following question:
supposen couples are invited to a party. How surprised should one be if there are at least
two husband–wife pairs such that the husbands have the same birthdays and so do their
wives? The answer is that one should be considerably surprised to observe this in normal
gatherings. In fact, changingm to m2 in the canonical birthday problem, the probability
of finding no matched couples is

∏n−1
i=1 (1− i

m2 ). With m = 365, this is .9635 if there are
n = 100 couples in the party. The probability of no matched couples falls below 50% for
the first time whenn = 431.

2.3. Near hits

Abramson andMoser (1970)discuss the case ofnearly the same birthdays. Thus, one can
ask what is the probability of finding at least one pair in a group ofn people with birthdays
within k calendar days of each other’s? From the point of view of coincidences, the case
k = 1 may be the most interesting.
Let p(m, n, k) denote the probability that in a group ofn people, at least one pair with

birthdays withink days of each other’s exists, if there arem equally likely birthdays.
Abramson and Moser (1970)show that

p(m, n, k) = (m − nk − 1)!
(m − n(k + 1))!mn−1 . (1)

Example 2. Using formula (1), the probability of finding a pair of people with birthdays
within one calendar day of each other’s is .08 in a group of five people, .315 in a group of
10 people, .483 in a group of 13 people, .537 for 14 people, .804 for 20 people, and .888
for 23 people. A quite accurate approximation to the smallestn for whichp(m, n, k) is .5

is n = 1.2
√

m
2k+1; seeDiaconis and Mosteller (1989).
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2.4. Similar triplets andp of a kind

The answern=23, in the canonical birthday problem is surprising. People do not expect
that a similar pair would be likely in such a small group. It turns out that while a similar
pair is relatively easy to find, similar triplets are much harder to observe.
As before, one can ask for the distribution ofW = number of similar triplets, and the

smallestn such thatP(W �1)� .5. Or one can defineNp as the minimum number of
people one needs to interview beforep people with a common birthday have been found;
p = 3 corresponds to a similar triplet.
Using multinomial probabilities, one can write a messy expression forP(W �1):

P(W �1) = 1−
[n/2]∑
i=0

m!n!
i!(n − 2i)!(m − n + i)!2imn

. (2)

Example 3. If m = 365, P (W �1) = .013 for 23 people, .067 for 40 people, .207 for 60
people, .361 for 75 people, .499 for 87 people, .511 for 88 people, and .952 for 145 people.
These numbers show how much harder it is to find a similar triplet compared to a similar
pair.

A first-order asymptotic expression forE(Np) is given inKlamkin and Newman (1967).
They show that

E(Np) ∼ (p!)1/p�
(
1+ 1

p

)
m1−1/p (3)

for fixedp, and asm → ∞. Forp = 3, the asymptotic expression gives the value 82.87.
We suspect that it is not too accurate, as the exact value is about 88.

2.5. Unequal probabilities and Bayesian versions

Diaconis and Holmes (2002)give results on Bayesian versions of the canonical birthday
problem. The vector of probabilities(p1, p2, . . . , pm) of them birthdays is unknown, and
a prior distribution on the(m − 1) dimensional simplex�m is assumed. The questions of
interest are: The marginal probability (i.e., integrated over the prior) of finding at least one
similar pair for fixedn (the group size), and the limiting distribution (if one exists) of the
total number of distinct similar pairs whenn → ∞.
If the vector of cell probabilities has an exchangeable Dirichlet(�, �, . . . , �) prior, then

P(W �1)= 1−∏n−1
i=1

�(m−i)
m�+i

. This can be derived by direct integration or asDiaconis and
Holmes (2002)derive by embedding it into the Polya urn scheme.
Since there is an exact formula, the smallestn required for the marginal probability

P(W �1) to be� .5 can be calculated easily. The table below shows the requiredn as a
function of�. � = 1 corresponds to the uniform prior on the simplex; large� corresponds
approximately to the classical case, i.e., a point prior. Notice that a smallern suffices in the
Bayesian version. This is because the exchangeable Dirichlet priors allow some clumping
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(in terms of distribution of the people into the various birthdays) and so a similar pair is
more likely in the Bayesian version.

� .5 1 2 3 4 5 20
n 14 17 19 20 21 21 23

The Poisson limit theorem inDiaconis and Holmes (2002)explains more clearly why
similar pairs are more likely to be found in the Bayesian version. The theorem says the
following.

Theorem 2. Supposem, n → ∞ in such a way thatn(n−1)
m

→ 2�. Then, under the

exchangeableDirichlet(�, �, . . . , �) prior,W
L⇒Poi(�+1

� �).

Thus, under the uniform prior, one would expect about twice as many similar pairs as in
the classical case. This is very interesting. For other references on the unequal probability
case,Camarri and Pitman (2000)is an excellent source.

2.6. Strong birthday problem

The “strong birthday problem” asks for the probability of a much stronger coincidence
than does the canonical birthday problem. It asks what is the probability in a group of
n people that everyone in the group shares his or her birthday with someone else in the
group? If we let the number of unique people beN , then the problem is to give a formula
for P(N = k). The strong birthday problem has applications to the interesting problem
of look-alikes, which is of interest to criminologists and sociologists. The material in this
section is taken fromDasGupta (2001).
Using our earlier notation, in the equally likely and independent case, writingSi =
m!n!(m−i)n−i

i!(m−i)!(n−i)!mn , we obtain

P(N = k) =
n∑

i=k

(−1)i−k i!
k!(i − k)!Si. (4)

This is a consequence of standard formulae for the probability of occurrence ofk out of
n events. Usingm = 365 andk = 0, one can compute the probabilitypn that everyone in a
group ofn individuals has a shared birthday.

Example 4. Thus, in a group of 3064 people, the probability is greater than half that
everyone has a shared birthday (Table 2).

An accurate iterative approximation of the smallestn required to makepn = p is n1
m

=
log

(
m

log 1
p

)
,

ni
m

= n1
m

+ log( ni−1
m

). Forp = .5, five iterations yield the value 3064. Thus,

five iterations give the correct value ofn.
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Table 2
P (each person has a shared birthday)

n pn

2000 .0001
2500 .0678
2700 .1887
2800 .2696
3000 .4458
3063 .4999
3064 .5008
3500 .7883
4000 .9334
4400 .9751

Under certain configurations ofm andn, the number of unique individuals has a Poisson
limit distribution. Underotherconfigurations, there can be other limiting distributions. By
linkingN to the number of cellswith exactly oneball in amultinomial allocation, the various
limiting distributions corresponding to various configurations ofm, n can be obtained from
the results inKolchin et al. (1978). We will report only the limiting Poisson case as that is
the most interesting one.

Theorem 3. Supposen
m

= log n + c + o(1). Then, under the equal probability and inde-

pendence(of the people) assumptions,N
L⇒Poi(e−c).

For example, ifm = 365 andn = 3064, then usingc = 3064
365 − log 3064= .367044,

one gets the Poisson approximationP(N = 0) = e−e−.367044= .50018, a remarkably good
approximation to the exact value .50077.

2.7. Bayesian versions

For general arbitrary birthday probabilitiesp1, p2, . . . , pm, the distribution ofN can
become very complicated. Of course, the mean and the variance are easy to find. We have

E(N) = n

m∑
k=1

pk(1− pk)
n−1

and

Var(N) = n(n − 1)
∑
i �=j

pipj (1− pi − pj )
n−2 + E(N) − (E(N))2. (5)

If we let the vector of cell probabilities have an exchangeable Dirichlet(�, �, . . . , �) prior
distribution, then the marginal expectation ofN is found to be

E�(N) = mn��(m�)�(�(m − 1) + n − 1)

�((m − 1)�)�(m� + n)
. (6)
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For a fixed vector of cell probabilitiesp1, p2, . . . , pm,

P(N = 0)=1−
min(m,n)∑

j=1

(−1)i−1 n!
j !(n − j)!

×
∑

i1 �=i2 �=···�=ij

pi1pi2 . . . pij (1− pi1 − pi2 − · · · − pij )
n−j .

This can be integrated with respect to a Dirichlet(�, �, . . . , �) density by using the Liou-
ville integral formula

∫
�s

p
a1
1 p

a2
2 . . . p

as
s f (p1+p2+· · ·+ps)dp1 . . .dps=�(1+a1)...�(1+as)

�(s+a1+···+as)
·∫ 1

0 xs+a1+···+as−1f (x)dx. The resulting expressions are still closed form, but messy.
Form<n, and the uniform prior, this works out to be

Pu(N = 0) = 1− (m − 1)!m!n!
(m + n − 1)!

m−1∑
j=1

(−1)j−1 (m + n − 2j − 1)!
j !(n − j)!(m − j − 1)!(m − j)! . (7)

However, for large values ofm, n, due to the alternating signs in the sum in formula
(7), the computation appears to turn unreliable. Thus, asymptotics would be useful again.
From formula (7), one can show that ifn ∼ �m2, thenP(N = 0) → e−1/�. This gives
n ≈ 192,000 as the required value ofn for the Bayesian probability that everyone has a
shared birthday to be 50%. On comparing this to the valuen= 3064 when all birthdays are
assumed equally likely, we see that amuchlarger group is needed in the Bayesian version
of the problem. This is because the uniform prior on the simplex allows the probability of
N =0 to be small over a large part of the simplex. Thus, the canonical birthday problem and
the strong birthday problem behave differently in the Bayesian formulation of the problem.

2.8. Eyewitness testimony and look-alikes

In criminal investigations, law enforcement often circulates a picture of a suspect drawn
on the basis of information provided by a witness on some key physical features. Instances
of erroneous apprehension are common, because an innocent person happens to look like
the person drawn in the picture. The various configurations of physical features can be
regarded as the cells of a multinomial and people regarded as balls. Thus, if we were to
consider 10 physical features, each with three different categories (such as tall-average-
short for height), then we have a multinomial withm = 310 cells. This is a huge number
of cells. Yet, ifn, the relevant population size, is large enough, then the number of cells
with 2 or more balls would be large too. This would imply that the person implied in the
picture may have alook-alike. Thus, the calculations in the strong birthday problem have
application to criminology, in particular, assessing the likelihood of misapprehension in
criminal incidents.

Example 5. Using a set of 14 physical features, such as sex, height, heaviness, facial shape,
nasal elevation, sizeof pupils, eyebrow thickness, sizeof head,etc.,with2–4divisionswithin
each feature, with a total of 1.12million cells in all, andmaking the (unrealistic) assumption
that all cells are equally likely, we found that in the city of NewYork (assuming a population
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sizeofn=8millions), thenumberof peoplewithouta look-alike is approximately distributed
as Poisson with a mean of about 6300. This is a consequence of general asymptotic theory
on number of cells with exactly one ball in an equiprobable multinomial allocation; see
Kolchin et al. (1978). A realistic probabilistic analysis would be difficult here because we
have no way to ascertain reliable values for the probabilities of the 1.12 million cells of
physical configurations. According to the equiprobable scheme, it would not be surprising
at all to find a look-alike of almost anyone living in NewYork city. Better models for this
problem which can be analyzed should be of interest to criminologists.

3. Matching problems

Cardmatching using two decks is themost common form of what are collectively known
as matching problems. Imagine one deck of 52 cards labeled as 1,2, . . . ,52 and another
deck shuffled at random. Pick the cards of the shuffled deck one at a time and if for a given
i, the card picked is numberedi, then its position in the shuffled deck matches its position
in the unshuffled deck. The basic matching problem asks questions about the total number
of matches, such as the expected value, and its distribution. The problem goes back to at
least Montmort in the early 18th century. Many surprising results are known about the total
number of matches. The problem is often stated in other forms, such as returning hats or
stuffing letters at random. The mathematics of the basic matching problem uses the elegant
combinatorics ofrandom permutations.

3.1. Unrestricted matching problem

The problem can be formulated as follows. Let� denote a random permutation of then
numbers 1,2, . . . , n; i.e., the probability that� is any of then! permutations of{1,2, . . . , n}
is 1

n! . We call the numberi a fixed point of� if �(i) = i. Denote byZ the total number of
fixed points of�. Obviously,Z can take the values 0,1, . . . , n.
One canwrite the exact distribution ofZ for anyn. By standard combinatorial arguments,

P(Z = k) = 1
k!
∑n−k

i=0 (−1)i 1
i! . In particular, the probability of no matches,P(Z = 0) =∑n

i=0
(−1)i

i! ; this converges, asn → ∞ to e−1 ≈ .36788. The convergence is extremely
rapid, and with two decks of 52 cards each, the probability of nomatches is almost identical
to the limiting value .36788. Note that e−1 is the probability that a Poisson random variable
with mean 1 assumes the value zero. Noting that the exact mean ofZ isalways1, this might
lead us to suspect thatZ has a limiting Poisson distribution with mean 1. This is true, and
in fact many strong results on the convergence are known. For purpose of illustration, first
we provide an example.

Example 6. Consider the distribution ofZ whenn=10. By using the formula given above,
the distribution is as follows (Table 3).
The rest of the probabilities are too small. The most striking aspect ofTable 3is the

remarkable accuracy of the Poisson approximation. The other intriguing thing one notices
is that the Poisson approximation appears to alternately under and overestimateP(Z = k)

for successive values ofk for k�4. It is interesting that these empirical phenomena are
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Table 3
Accuracy of Poisson approximation

k P (Z = k) Poisson approx.

0 .36788 .36788
1 .36788 .36788
2 .18394 .18394
3 .06131 .06131
4 .01534 .01533
5 .00306 .00307
6 .00052 .00051

in fact analytically provable. SeeDasGupta (1999)and also consultDiaconis and Holmes
(2002).

3.2. Error of Poisson approximation

Theorem 4. (a)LetdT V = 1
2

∑∞
k=0 |P(Z= k)−P(Poisson(1)= k)|.ThendT V admits the

integral representation

dT V = 1

n!
∫ 1

0
e−t tn dt + 1

(n − 1)!
∫ 1

0
(2− t)n−1t−n−1�(n + 1, t)dt, (8)

where�(n + 1, t) denotes the incomplete Gamma function
∫ t

0 e
−xxn dx.

(b) dT V � 2n

(n + 1)! f or every n�2.

The integral representation in (a) implies the error bound in (b). The error bound explains
why the Poisson approximation inTable 3is so sharp. Although much easier proofs can be

given, the error bound also implies thatZ
L⇒ Poisson(1) asn → ∞. It should be added that

error bounds on the Poisson approximation can also be found by the coupling method of
Stein-Chen (seeArratia et al. (1990)for a lucid exposition), but they are not as strong as
the more direct bound in part (b) above.
The sign-change property of the error in the Poisson approximation is stated next.

Theorem 5. (a)For n even, P(Z = k)< (>)P (Poisson(1) = k) according ask <n is odd
or even; the opposite inequalities hold for n odd.
(b) The inequalities of part(a) hold when(Z = k), (Poisson(1) = k) are replaced by

(Z�k), (Poisson(1)�k).

Another fascinating fact about the matching problem is that the firstnmoments ofZ and
of the Poisson(1) distribution exactly coincide! This provides another proof ofZ having a
limitingPoisson(1) distribution. Howabout the subsequentmoments?They do not coincide.
In fact, the difference diverges.
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Table 4
P (no matches)

Expected deck size Uniform deck Geometric deck

5 .315 .435
25 .357 .382
50 .363 .375

3.3. Random deck size

How is the total number of matches distributed if the size of the two decks (which we
assume to be equal) is random? Under certain assumptions on the size of the deck, the
convergence of the total number of matches to the Poisson(1) distribution is still true, but
it need not be true in general. For geometric decks with empty decks allowed, a very neat
result holds.

Theorem 6. Suppose the size N of the deck is distributed asGeometric(p), with mass
functionp(1− p)n, n�0. Then the(marginal) distribution of Z is a Poisson, with mean
1− p.

If p is parameterized bym, with pm → 0, then, still,Z
L⇒Poisson(1).

How does the probability of at least one match behave for random decks? For geometric
decks, matches get less likely, as is evident from Theorem 6. But, interestingly, for certain
other types of random decks, such as uniform or Poisson decks, matches becomemore
likely than the nonrandom case. Here, is an illustrative example (Table 4).

Example 7.

3.4. Near hits

Suppose a person claiming to have psychic powers is asked to predict the numbers
on the cards in a shuffled deck. If the person always predicts the number on the card
correctly or misses the correct number by 1, how surprised should we feel? Thus, if� is a
random permutation of{1,2, . . . , n}, what is the probability that|�(i) − i|�1 for every
i = 1,2, . . . , n? More generally, one can ask what isP(max1� i�n |�(i) − i|�r), where
r�0 is a fixed integer?

Example 8. For r = 0,1,2 a relatively simple description can be given. Of course, for
r =0, the probability is1

n! , and thus even withn=5, one should be considerably surprised.

If r = 1, the probability isFn+1
n! whereFn is thenth Fibonacci number. This works out to 1,

.5, .208, .067, .018 and .004 forn= 2,3,4,5,6,7, respectively. Thus, if someone was able
to call the numbers within an error of 1, we should be considerably surprised even whenn

is just 6. How aboutr = 2? In this case, the probabilities work out to 1, 1, .583, .258, .101,
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.034, .01 and .0026 forn = 2,3, . . . ,9 respectively. Thus, calling the numbers within an
error of 2 should be of considerable surprise ifn is 8.

SeeTomescu (1985)for these results.

3.5. Longest increasing subsequence

Consider a random permutation of{1,2, . . . , n}. Should we be surprised if we see a long
increasing (or decreasing) subsequence? To answer this question with precision, one would
need to have information about the distribution and asymptotic growth rate of the length of
the longest increasing subsequence.
It has been known for a long time that a monotone sequence of length of the order of

√
n

always exists for any real sequence of lengthn (Erdös and Szekeres (1935)); actually Erdös
and Szekeres prove a more general result. One may suspect because of this that the length
of the longest increasing subsequence of a random permutation grows asymptotically at the
rate

√
n; seeUlam (1961). But an actual proof, for example, a proof of the existence of aweak

limit or a proof that the expected length grows at the
√
n rate involve intricate arguments.

Thus, letIn denote the length of the longest increasing subsequence of a randompermuta-
tion� of {1,2, . . . , n}. Then, In√

n
converges in probability to 2, and furthermore,E(In)√

n
→ 2.

In fact, even second order asymptotics forE(In) are known; settling a longstanding conjec-
ture founded on Monte Carlo and other evidence,Baik et al. (1999)established the result
E(In)−2

√
n

n1/6
→ c0, wherec0 is the mean of theTracy–Widom distributionon the reals. An

approximate numerical value forc0 is −1.7711. The CDF of the Tracy–Widom distribu-
tion does not have closed form formula, but numerical evaluation is possible, by numerical
solution of a corresponding differential equation. In fact, one has the remarkable result

that (In−2
√
n)

n1/6
L⇒L,L having the Tracy–Widom distribution. SeeTracy andWidom (1994),

Baik et al. (1999)andAldous and Diaconis (1999)for these results. A very readable review
of these results is available in theAldous and Diaconis (1999)reference.
It is also possible to describe, for each fixedn, the distribution ofIn by linking it to a

suitable distribution on the possible shapes of aYoung tableaux. Evolution of these results
can be seen inHammersley (1972), Baer and Brock (1968), Logan and Shepp (1977), and
Versik and Kerov (1977). It is also true that for ‘most’ random permutations, the length
of the longest increasing subsequence stays ‘close’ to the 2

√
n value. Precise statements in

terms of large deviations can be seen inTalagrand (1995), Steele (1997)and the references
mentioned above.
Computing the actual value of the length of the longest increasing subsequence of a given

permutation is an interesting problem, and there is substantial literature on writing efficient
algorithms for this problem. The interested reader should consultSteele (1995)for a survey.

3.6. Surprise in seeing other patterns

Numerous other interesting patterns in sequence matching have been discussed in the
literature. We will briefly discuss the case offalls, and up-down permutationsand the
surprise factor associated with each one.
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Table 5
P (an up-down permutation)

n

2 .5
3 .333
4 .208
5 .133
7 .054
10 .014
15 .001
20 .00015

A permutation� of {1,2, . . . , n} has afall at locationi if �(i + 1)<�(i), with the
convention that the last locationn is always counted as a fall. Seeing about how many falls
should surprise us? Surprisingly, for every fixedn, the distribution of the total number of
falls can be explicitly described. It is related to the sequence of Eulerian numbersA(n, k)=
(n + 1)!∑k−1

i=0
(−1)i

i!(n−i+1)! (k − i)n (not to be confused with Euler numbers); seeBlom et al.

(1991). Denoting the number of falls in a random permutation byNf , P (Nf =k)= A(n,k)
n! .

Calculation using the Eulerian numbers shows that seeing 4 falls whenn = 6,5 falls when
n = 7, and 6 falls whenn = 8 would not be much of a surprise. Of course, the expected
number of falls isn+1

2 .

Example 9. In terms of permutations with structures, up-down permutations are among
the ones that should surprise an observer mostly.

A permutation� is called an up-down permutation if�(1)<�(2)>�(3)<�(4)> · · ·;
obviously, such a permutation is extremely patterned and one would feel surprised to see
it. If un denotes the number of up-down permutations of{1,2, . . . , n}, then the exponential
generating function of the sequenceun, i.e.,Gn(t) =∑∞

n=0
unt

n

n! equals sect + tan t ; see

Tomescu (1985). Thus,un= dn
dtn (sect + tan t)|t=0. For example,u5=16, andu10=50521.

The probability of seeing an up-down permutation is listed in theTable 5for some selected
values ofn; it would be an extreme surprise to observe one ifn was 15 or so.
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