The Coupon Problem

The Problem: There are n different types of coupons and the collector
wishes to collect all n coupons. At each trial a coupon is chosen at random.
Each coupon is equally likely and the choices are independent. The question
is what is the waiting time to collect all n coupons?

The Solution: Let 7, denote the random variable defined to be the num-
ber of trials required to collect all n coupons. Our first task will be to
compute E(T,). Let Cy,Cy,...,Cr, denote the sequence of trials where
C; € {1,2,...,n}. (The coupons are labelled 1 through n.) The process
stops when we have all n different coupons. Define C; to be a success if the
type C; was not drawn in any of the first ¢+ — 1 selections. Clearly, C; and
Cr, are always successes.

We divide the time interval [0,7T,,] into n subintervals of time. Subinterval
is, by definition, the time following the i** success and ends with the trial on
which we obtain the (i + 1) success. Let X; denote the number of trials in
the ** subinterval. Thus X, = 1. Then

n—1
T, =% X;.
=0

The X; are independent random variables with geometric distribution. The
probability of success during the epoch i is

n—1
pi = ,2':0,1,...,n—1.
n

We know that if X is a random variable with geometric distribution then
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Here H,, is the harmonic series

H, ::i

In calculus it is proved that for large n
H, =logn++vy+ ! + O( = )
n = logn — —
& ™ n?

where v = 0.57721 ... is Euler’s constant. Thus for n — oo

1 1
E(T,) =nlogn +yn + 5T O(ﬁ)

For example, if n = 100 an exact evaluation gives 100 Hioy = 518.738 the

asymptotic expansion gives 518.739.

We can also calculate the variance of T;,,. We first recall that if X is a random
variable with geometric distribution that

q
Var(X) = el

This is easy to prove once one establishes
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Since the X; are independent,

n—1
Var(T,) = > Var(X;)
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Figure 1: Histogram of waiting times for n = 50 and 5000 simulations.

Since

£1_w

= S 6
we have

2

Var(T,,) = " n? — nlogn + O(n),
and hence
T
arn. ~ —=T1.

"V

This is a large variance so we can expect to see considerable fluctuations
from the mean F(T,). We turn to simulations to see what is happening.
For n = 50 (number of coupons) a simulation was run 5000 times. The
maximum waiting time observed was 592 and the minimum waiting time
observed was 99. The average of the 5000 waiting times was 225.161. This
should be compared with the theoretical result E(T5y) = 50 Hsy = 224.96.
The standard deviation is 61.95. In Figure 1 a histogram of the 5000 waiting
times is shown.

A second set of simulations were performed this time for n = 100 (number of
coupons) and 10, 000 simulations. Here the maximum waiting time observed
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Figure 2: Histogram of waiting times for n = 100 and 10, 000 simulations.

was 1346, the minimum waiting time was 250 with an average waiting time of
519.73. This last number compares well with the theoretical result 100H oy =
518.74. The standard deviation was 125.8. In Figure 2 a histogram of the
10,000 observed waiting times is shown. The distribution in both cases is
asymmetric thus ruling out a gaussian distribution.



Here is the Mathematica program that produced the simulation of one wait-
ing time.

(* Coupon Problem -- simulates the time required to collect n coupons

waitingTime [noCoupons_] :=Module[{couponList={},i,remainingCoupons,
coupon, j,time=0},

For[i=1,i<=noCoupons,it++,

couponList=Append [couponlList,i]];
remainingCoupons=couponlList;
While[remainingCoupons!={},
coupon=Random[Integer,{1,noCoupons}];time++;
If [MemberQ[remainingCoupons, coupon]==True,
j=Position[remainingCoupons, coupon];
remainingCoupons=Delete [remainingCoupons, j1]
1;time];

mean[n_] :=N[n*Sum[1/i,{i,1,n}]1];

stdDev[n_] :=N[n*xSum[(n-i)/i~2,{i,1,n}]1];



