
Introduction to Mathematica

Mathematica is documented in The Mathematica Book, Version 4 by Stephen Wol-
fram. Any serious user should have a copy of this book. Some on-line documentation
can be found at

http://documents.wolfram.com/v4/

These notes provide a very brief introduction to the use of Mathematica.

Gettting Started. At the UNIX level simply type

mathematica

to start the Notebook version of Mathematica. Typing math starts the line
version. In the Notebook version you can read in a file by pulling down File

to Open... and finding the desired file. Another convenient way to read a file,
say file1, into the current session of Mathematica is

<<file1

When working on programs in Mathematica I prefer to write it to a file (using
an editor) and then read it into a Mathematica session. This way when mistakes
occur (and they do!), then I can edit the file in another window and re-read the
file into Mathematica. This is particularly easy using the Notebook version.

To exit Mathematica at the Notebook level pull down File and go to Quit. At
the line level type Exit[].

Arithmetic Operations. The arithmetic operations + and - are as usual addition
and subtraction. Multiplication of x times y is x*y and the division of x by y
is x/y. The operation of x to the power y, xy, is x∧y. A common beginner’s
error is to think x/y+2 is x

y+2
when in fact it is x

y
+ 2. To get the desired result

use parentheses: x/(y+2). Similarly, a∧b*c is ab c whereas a∧(b*c) is abc.

User Defined Functions. In Mathematica the function f(x) = x2 is defined by

f[x ]:=x∧2

On the left-hand side the x appears as x to denote that x is a variable. After
f has been so defined, typing f[4] on a command line will result in the output
16. Typing f[a+b] will result in the output (a + b)2.

To define, say, the function g(x, y) = x2 + 6y4 of two variables x and y:
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g[x ,y ]:=x∧2+6*y∧4;

Observe this example ended with a semicolon whereas the first example did not.
Ending with a semicolon tells Mathematica not to show the output. This rule
applies to all Mathematica inputs. (Sometimes the output is quite lengthy and
one does not want to see it printed on the screen.)

Built-In Functions. Mathematica has many built-in functions that are familiar
from calculus: sin x, cos x, exp x, log x, to name but a few. They are all called
with the same syntax, e.g. Sin[x], Log[x], etc. A function we will use in Math
131 is

Random[]

which when called produces a number x, 0 < x < 1, which is uniformly dis-
tributed on (0, 1). This is what we mean when we say informally, “pick a number
at random between 0 and 1.”

Mathematica has many functions which carry out algebraic operations. For
example, if we apply the Mathematica function Expand to our function f[a+b]

defined above, e.g.

Expand[f[a+b]]

the output will be a2 + 2ab + b2.

If we input Log[2], the output is log 2. If we want a numerical approximation
to log 2 we use the Mathematica function N, e.g.

N[Log[2]]

results in the output 0.693147. If we want accuracy to, say, 15 decimal places
we input

N[Log[2],15]

and we get the output 0.693147180559945.

Mathematical Constants. Mathematica has symbols for some common mathe-
matical constants: Pi (= π ≈ 3.14159), E (= e ≈ 2.71828), I (i =

√
−1) and

Infinity (∞). For example,

Sin[Pi]
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evaluates to 0 and

E∧(2*Pi*I)

evaluates to 1.

Incrementing Variables. Mathematica has commands that increment variables
which follow the programming language C. For example, i + + increments
the value of i by 1 and i+ = di adds di to the value of i. These constructions
are useful in the programming part of Mathematica.

Conditionals. Mathematica provides various ways to set up conditionals, which
specify that particular expressions should be evaluated only if certain condi-
tions hold. The most common such construction is the If statement which has
the general form If[test, then, else] which evaluates then if test is True, and
evaluates else if it is False. For example the input

If[7<8,x,y]

returns the output x.

The expression test is a Boolean variable that evaluates to either True or False.
Note that in Boolean expressions when testing whether x equals y one writes
x==y (note double equal sign).

A more interesting example is

If[Random[]<.5,1,-1]

Here the function Random is first called and if it returns a number less that 0.5
then the If statement returns the number 1 but if Random returns a number
greater than or equal to 0.5 the If statement returns the number -1. This
construction is useful for simulating the toss of a fair coin.

Loops. There are programming constructs that allow an expression to be evaluated
several times. The three most common are Do, While, and For. These are
explained beginning on page 328 of Wolfram’s book. Here are some typical
examples

Do[Print[f[j]],{j,1,3}]

If f is the function defined earlier (f(x) = x2), then the ouput of the above
statement is 1, 4, 9. The general form is
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Do[expr,{i,imin,imax}]

where expr is repetitively evaluated with i varying from imin to imax in steps
of 1. Writing {i, imin, imax, di} instead gives steps of di.

In many situations in probability one doesn’t know the number of total itera-
tions since this may be random. For example, toss a coin until the first Tail
appears. In these cases the While construction is particularly useful. The gen-
eral form is

While[test, body]

evaluates body repetitively so long as test is True.

For example, if we initialize the expression position to zero:

position=0

then the expression

While[Random[]<.5,position++]

counts the number of times, say, Heads consecutively appears in a given simu-
lation of coin tossing. (This information will be in the expression position).

The For loop has the form

For[i=1,i<=n,i++,expr]

which evaluates the expression expr for values of i = 1, 2, 3, . . . , n.

Modules. In an earlier example we showed how the user defines functions. The
construction used above is good for single line statements. Many times we wish
to define a function which requires several Mathematica statements. Also, in
the process we use expressions which are only necessary for the evaluation of
the function. It is a good habit to keep these internal expressions local to the
evaluation of the function we are defining. This can all be done in the Module

command. The general form is

Module[{a,b,. . . }, proc]
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that is, a procedure with local variables a, b, . . . .

As an example, suppose we toss a coin n times and we want to know the
proportion of heads to the total number of tosses. Also, we want this proportion
in decimal form. Here is a simple procedure to do this:

coin[n ]:=Module[{headcounter=0},
For[i=1,i<=n,i++,If[Random[]<.5,headcounter++]]; N[headcounter/n,10]]

The expression headcounter is a local variable that is initialized to the value
0. I ran this for 1000 tosses by inputing coin[1000] with the result 0.492. For
10,000 tosses I got the result 0.499.

Graphics. Here are two graphics commands frequently used: Plot and ListPlot.
For example,

Plot[Sin[x],{x,0,2*Pi}]

is the command to plot sin x for x in the domain 0 ≤ x ≤ 2π. There are
several options that allow the user to customize the resulting graph. Given a
list {{x1, y1}, {x2, y2}, . . . , {xn, yn}} of coordinates of points—let’s call this list
PointList—the command

ListPlot[PointList]

produces a plot of these points. If one wants consecutive points in the list joined
by a straightline (as we frequently do in probability), then one writes

ListPlot[PointList,PlotJoined->True]

If instead of the list {{x1, y1}, {x2, y2}, . . . , {xn, yn}}, one uses {y1, y2, . . . , yn}
then the x-coordinates are defaulted to the values 1, 2, . . . , n.
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