Math 135B: HW \# 1

1. Statistical Hypothesis Testing: In class we showed that if

$$
S_{n}=X_{1}+\cdots+X_{n}
$$

where X_{j} are independent and identically distributed Bernoulli random variables and $1>a>p>0$ where $p=\mathbb{E}\left(X_{j}\right)$, then ${ }^{1}$

$$
\mathbb{P}\left(S_{n} \geq n a\right) \approx e^{-n \Lambda^{*}(a, p)}
$$

where

$$
\Lambda^{*}(a, p)=a \log \left(\frac{a}{p}\right)+b \log \left(\frac{b}{q}\right)
$$

where $q=1-p$ and $b=1-a$.
Suppose now that p is unknown and that there are two competing hypotheses concerning its value, the hypothesis H_{1} that $p=p_{1}$ and the hypothesis H_{2} that $p=p_{2}$ where $p_{1}<p_{2}$. Given the observed results X_{1}, \ldots, X_{n} of n Bernoulli trials, one decides in favor of H_{2} if $S_{n} \geq n a$ and in favor of H_{1} if $S_{n}<n a$, where a is some number satisfying $p_{1}<a<p_{2}$. The question is, how do we choose a ? Her is one strategy.
Given the hypothesis $H_{1}: p=p_{1}$, then

$$
\mathbb{P}\left(S_{n} \geq n a \mid H_{1}\right) \approx e^{-n \Lambda^{*}\left(a, p_{1}\right)}
$$

whereas given the hypothesis $H_{2}: p=p_{2}$,

$$
\mathbb{P}\left(S_{n}<n a \mid H_{2}\right) \approx e^{-n \Lambda^{*}\left(a, p_{2}\right)}
$$

These give us the probabilities of erroneously deciding in favor of H_{2} whe H_{1} is, in fact, true and of erroneously deciding in favor of H_{1} when H_{2} is in fact true.
Since we don't want to favor one event over another we choose a so that the two error probabilities are approximately equal, e.g.

$$
\Lambda^{*}\left(a, p_{1}\right)=\Lambda^{*}\left(a, p_{2}\right) .
$$

This gives an equation for the unknown a.
Show that the a that satifies this equation is

$$
a=\frac{\log \left(q_{1} / q_{2}\right)}{\log \left(p_{2} / p_{1}\right)+\log \left(q_{1} / q_{2}\right)}
$$

[^0]Let $p_{2}=p_{1}+t . t>0$. Show that for small t

$$
a=p+\frac{1}{2} t+\frac{p-q}{12 p q} t^{2}+\frac{1-2 p+2 p^{2}}{24 q^{2} p^{2}} t^{3}+\mathrm{O}\left(t^{4}\right)
$$

and that

$$
\Lambda^{*}(a, p)=\frac{t^{2}}{8 p q}+\frac{p-q}{16 p^{2} q^{2}} t^{3}+\frac{23-65 p+65 p^{2}}{576 q^{3} p^{3}} t^{4}+\mathrm{O}\left(t^{5}\right)
$$

You might want to use Mathematica to perform these last two computations.
2. Grimmett \& Stirzaker: page 219, \#1.
3. Grimmett \& Stirzaker: page 219, $\# 2$.

[^0]: ${ }^{1}$ If $a<p$ then a similar argument shows that

 $$
 \mathbb{P}\left(S_{n}<n a\right) \approx e^{-n \Lambda^{*}(a, p)}
 $$

