Math 135B: HW \#3

\#1. Consider random walk on the simple cubic lattice \mathbb{Z}^{3} where now the probability of transition to one of the six neighboring sites is p and the probability to the next-neighboring sites is q. For example (see picture below), from the site $(0,0,0)$ the walker hops to the sites $(\pm 1,0,0),(0, \pm 1,0)$ and $(0,0, \pm 1)$ with probability p and to the sites $(\pm 2,0,0),(0, \pm 2,0)$ and $(0,0, \pm 2)$ with probability q. Clearly we must have

$$
6 p+6 q=1
$$

and so $0 \leq p \leq 1 / 6$.

1. Show that the probability that the walker starting at the origin $(0,0,0)$ will sooner or later return to the origin is given by

$$
f(p)=1-\frac{1}{g(p)}
$$

where

$$
\begin{equation*}
g(p)=\frac{1}{(2 \pi)^{3}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{1}{1-2 p \sum_{j=1}^{3} \cos \left(k_{j}\right)-2 q \sum_{j=1}^{3} \cos \left(2 k_{j}\right)} d k_{1} d k_{2} d k_{3} \tag{1}
\end{equation*}
$$

2. Using (1) show that $f(1 / 6)=f(0)$. Do you expect this? Explain. Hint: What problem corresponds to $p=1 / 6$ and what problem corresponds to $p=0$. Are they really different? Why?
3. As a numerical project, produce a graph of $f=f(p)$ for $0 \leq p \leq 1 / 6$.
