Math 135B: HW \# 2

1. Grimmett \& Stirzaker, page 226, \#3.
2. In a sequence of Bernoulli trials we say that at time n the state E_{1} is observed if the trials number $n-1$ and n result in SS. (SuccessSuccess). Similarly, E_{2}, E_{3} and E_{4} stand for SF, FS, FF. Find the transition matrix P and all its powers. Referring to Theorem (17) on page 232 of GS, find the mean recurrence time for each of these states.
3. Consider the three-state Markov chain defined by the transition matrix

$$
P=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right)
$$

(a) Diagonalize the matrix P. That is, write

$$
P=U D U^{-1}
$$

where D is a diagonal matrix. (You can use Mathematica to do these computations.)
(b) Explain why

$$
P^{n}=U D^{n} U^{-1}, \quad n=1,2,3, \ldots
$$

(c) Show that

$$
p_{11}^{(n)}=\left(P^{n}\right)_{11}=\frac{1}{5}+\left(\frac{1}{2}\right)^{n}\left\{\frac{4}{5} \cos (n \pi / 2)-\frac{2}{5} \sin (n \pi / 2)\right\}
$$

(d) Find the invariant distribution π; that is, find the row vector satisfying

$$
\pi P=\pi
$$

Show that from the previous result that $\lim _{n \rightarrow \infty} p_{11}^{(n)}=\pi_{1}$ where $\pi=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$.
4. A die is 'fixed' so that each time it is rolled the score cannot be the same as the preceding score, all other scores having probability $1 / 5$. If the first score is 6 , what is the probability p that the nth score is 6 ? What is the probability that the nth score is 1 ?
5. Explain why the most general two-state Markov chain has a transition matrix P of the form

$$
P=\left(\begin{array}{cc}
1-\alpha & \alpha \\
\beta & 1-\beta
\end{array}\right)
$$

where $0 \leq \alpha, \beta \leq 1$. Find P^{n} (assume $0<\alpha, \beta<1$).

