Math 135B: HW \#6

1. Let $\left\{X_{n}\right\}_{n \geq 1}$ be random variables such that the partial sums $S_{n}=$ $X_{1}+\cdots+X_{n}$ determine a martingale. Show that $\mathbb{E}\left(X_{i} X_{j}\right)=0$ if $i \neq j$.
2. Let $\left\{X_{n}\right\}_{n \geq 0}$ denote a Markov chain with countable state space \mathcal{S} and transition matrix P. Let $f: \mathcal{S} \rightarrow \mathbb{R}$ denote any bounded function on the state space \mathcal{S}. (Bounded means there exists a constant C so that $|f(i)|<C$ for all $i \in \mathcal{S}$.) The transition matrix P acts on bounded functions $f: \mathcal{S} \rightarrow \mathbb{R}$ as follows:

$$
(P f)(i)=\sum_{j \in \mathcal{S}} p_{i j} f(j), \quad i \in \mathcal{S} .
$$

If $f: \mathcal{S} \rightarrow \mathbb{R}$ is a bounded function, define the process

$$
M_{n}^{f}=f\left(X_{n}\right)-f\left(X_{0}\right)-\sum_{m=0}^{n-1}(P-I) f\left(X_{m}\right), n=1,2, \ldots
$$

(One can set $M_{0}^{f}=0$.) Show that the process $\left\{M_{n}\right\}$ is a martingale with respect to $\left\{X_{n}\right\}$. Recall you must show (i) $\mathbb{E}\left(\left|M_{n}^{f}\right|\right)<\infty$ and the martingale property (ii) $\mathbb{E}\left(M_{n+1}^{f} \mid X_{0}, X_{1}, \ldots, X_{n}\right)=M_{n}^{f}$.
3. Let $S_{n}=a+\sum_{j=1}^{n} X_{j}\left(S_{0}=a\right)$ be a simple symmetric random walk on \mathbb{Z}. The walk stops at the earliest time T when it reaches either of the two positions 0 or K where $0<a<K$. Show that

$$
M_{n}=\sum_{j=0}^{n} S_{j}-\frac{1}{3} S_{n}^{3}
$$

is a martingale and deduce that

$$
\mathbb{E}\left(\sum_{r=0}^{T} S_{r}\right)=\frac{1}{3}\left(K^{2}-a^{2}\right) a+a .
$$

4. An urn (called Polya's urn model) contains b black balls and r red balls. A ball is drawn at random. It is replaced and, moreover, c balls of the color drawn are added. Let

$$
Y_{0}=\frac{b}{b+r}
$$

and let Y_{n} be the proportion of the black balls attained by the nth drawing.
(a) Show that $\left\{Y_{n}\right\}$ is a martingale. (With respect to what?)
(b) What is $\mathbb{E}\left(Y_{n}\right)$?
(c) Does $Y:=\lim _{n \rightarrow \infty} Y_{n}$ exist? If so, why and in what sense (what sense of convergence). What can you say about $\mathbb{E}(Y)$?
(d) Let $X_{j}=1$ if the j th drawing results in a black ball, and $X_{j}=0$ if the result is a red ball. Let

$$
S_{n}=X_{1}+\cdots+X_{n}
$$

Show that

$$
Y_{n}=\frac{b+c S_{n}}{b+r+n c}
$$

Conclude from this

$$
\lim _{n \rightarrow \infty} \frac{S_{n}}{n}=Y
$$

