
Craig A. Tracy Winter 2017

Mathematics 22B

The Final Examination, March 24, 2017

Instructions: Work all four problems in your bluebook. Only the bluebook will be collected.

?Useful Information You May Assume as Given ?

• For a > 0 and b ∈ C ∫ ∞
−∞

e−ax
2+2bx dx =

√
π

a
eb

2/(2a).

• The heat kernel for the line R is given by

K(x, y; t) =
1√
4πt

e(x−y)
2/(4t), x, y ∈ R, t > 0.

• For all integers m,n = 1, 2, 3, . . . and all L > 0

2

L

∫ L

0

sin
(mπ
L
x
)

sin
(nπ
L
x
)
dx =

{
1 if m = n,
0 if m 6= n.

(1)

#1. (40 pts.) Suppose u(x, t), x ∈ R, t > 0, satisfies the heat equation

∂u

∂t
=
∂2u

∂x2

with initial condition
u(x, 0) = e−αx

2

, α > 0, x ∈ R.

Find explicitly the value of u at x = 0 for all t > 0; that is, find u(0, t).

#2. (40 pts.) Quantum Harmonic Oscillator: We showed in class that if

H = − d2

dx2
+ x2,

then the orthonormal eigenfunctions of the time-independent Schrödinger equation

Hψn = εnψn, n = 0, 1, 2, . . .

are given by

ψn(x) =
[√
π n! 2n

]−1/2
Hn(x) e−x

2/2, n = 0, 1, 2, . . .

where Hn(x) are the Hermite polynomials and εn = 2n+ 1.

It was proved (and you may assume as given) that for n = 0, 1, 2, . . .

x ψn(x) =

√
n

2
ψn−1(x) +

√
n+ 1

2
ψn+1(x), (2)

d

dx
ψn(x) =

√
n

2
ψn−1(x)−

√
n+ 1

2
ψn+1(x). (3)

Here ψ−1(x) ≡ 0.
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• Find an expression for x2 ψn(x), n = 0, 1, 2, . . . that is the analogue of (2). Hint: Apply x to (2) and then
use (2) again.

• Compute for all n = 0, 1, 2, . . . (
x4ψn, ψn

)
:=

∫ ∞
−∞

x4 (ψn(x))
2
dx.

Hint: First note this is equivalent to computing
(
x2ψn, x

2ψn
)

(why?). Now use your result from the previous
part and the fact that {ψn}n≥0 is an orthonormal basis.

#3. (40 pts.) There are three tanks that hold water. Tank I flows into Tank II at rate λ1 > 0. Tank II flows into
Tank III at rate λ2 > 0 and Tank III flows into Tank I at rate λ3 > 0. If x1(t) denotes the amount of water
in Tank I at time t, x2(t) the amount of water in Tank II at time t and similarly for x3(t), then the system is
modeled (in dimensionless units) by the system of differential equations

dx1
dt

= −λ1 x1(t) + λ3 x3(t),

dx2
dt

= λ1 x1(t)− λ2 x2(t),

dx3
dt

= λ2 x2(t)− λ3 x3(t).

• Define the column vector

x(t) =

 x1(t)
x2(t)
x3(t)

 ∈ R3.

Find a 3× 3 matrix A so that the matrix equation

dx

dt
= Ax

is equivalent to the system of three equations above.

• For the special case λ1 = 1, λ2 = 2 and λ3 = 1, the eigenvalues of the matrix A found in the previous part
are 0, −2 + i and −2 − i . We now use our linear algebra algorithms to compute exp(tA). To make the
results easier to read, define

fc(t) = e−2t cos t and fs(t) = e−2t sin t.

Then we have

exp(tA) =


2
5 + 3

5fc(t) + 1
5fs(t)

2
5 −

2
5fc(t)−

4
5fs(t)

2
5 −

2
5fc(t) + 1

5fs(t)

1
5 −

1
5fc(t) + 3

5fs(t)
1
5 + 4

5fc(t)−
2
5fs(t)

1
5 −

1
5fc(t)−

2
5fs(t)

2
5 −

2
5fc(t)−

4
5fs(t)

2
5 −

2
5fc(t) + 6

5fs(t)
2
5 + 3

5fc(t) + 1
5fs(t)

 . (4)

• If the initial condition is

x(0) =


1
2

1
2

0

 (50% of the water is initially in Tank I and 50% in Tank II) (5)

find x(t). Express your answer in terms of fc(t) and fs(t). Hint: You should be able to find x(t) with
minimal computations.
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#4. (80 pts.) Consider the one-dimensional heat equation

∂u

∂t
=
∂2u

∂x2
.

In class we solved this equation on the real line R, the half-line R+ and the circle S. In this problem you are
asked to solve the heat equation on the line segment [0, L] subject to the boundary conditions

u(0, t) = 0 and u(L, t) = 0 for all t > 0 (6)

with initial condition
u(x, 0) = f(x) for 0 < x < L. (7)

We assume f(x) is a continuous function with f(0) = f(L) = 0.

• If we assume a solution of the form (separate variables)

u(x, t) = X(x)T (t),

find ODEs that X(x) and T (t) must satisfy. Solve these ODEs. (The arithmetic is a bit easier if you call
the separation constant −k2.)

• Using the solutions found in the first part, apply the boundary conditions (6) and find the allowed values
of the constant k. This should give you a sequence of solutions un(x, t) = Xn(x)Tn(t).

• Show that the solution u(x, t) satisfying the boundary conditions (6) and the initial condition (7) can be
written as

u(x, t) =

∫ L

0

KL(x, y; t)f(y) dy (8)

where

KL(x, y; t) =
2

L

∞∑
n=1

sin(
nπ

L
x) sin(

nπ

L
y) e−(π

2n2/L2)t (9)

• We write (8) symbolically as an operator Kt acting on functions f by

(Ktf) (x) :=

∫ L

0

KL(x, y; t)f(y) dy.

Show that for t > 0 and s > 0 that
Kt+s = KtKs,

that is, show
(Kt+sf) (x) = (KtKsf) (x) (10)

for all f satisfying the above given conditions.

Hint: First show that (10) is equivalent to showing

KL(x, y; t+ s) =

∫ L

0

KL(x, z; t)KL(z, y; s) dz. (11)

Then show (11) follows from (9). See also helpful information (1).

End of Examination
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