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ON THE DISTRIBUTION OF THE LARGEST EIGENVALUE
IN PRINCIPAL COMPONENTS ANALYSIS1

By Iain M. Johnstone

Stanford University

Let x�1� denote the square of the largest singular value of an n × p
matrix X, all of whose entries are independent standard Gaussian vari-
ates. Equivalently, x�1� is the largest principal component variance of the
covariance matrix X′X, or the largest eigenvalue of a p-variate Wishart
distribution on n degrees of freedom with identity covariance.
Consider the limit of large p and n with n/p = γ ≥ 1. When centered

by µp = �
√
n− 1 + √p�2 and scaled by σp = �

√
n− 1 + √p��1/√n− 1 +

1/
√
p�1/3	 the distribution of x�1� approaches the Tracy–Widom law of

order 1, which is defined in terms of the Painlevé II differential equation
and can be numerically evaluated and tabulated in software. Simulations
show the approximation to be informative for n and p as small as 5.
The limit is derived via a corresponding result for complex Wishart

matrices using methods from random matrix theory. The result suggests
that some aspects of large pmultivariate distribution theory may be easier
to apply in practice than their fixed p counterparts.

1. Introduction. The study of sample covariance matrices is fundamen-
tal in multivariate analysis. With contemporary data, the matrix is often large,
with number of variables comparable to sample size. In this setting, relatively
little is known about the distribution of the largest eigenvalue, or principal
component variance, especially in null cases. A second impetus for this work
comes from random matrix theory, a domain of mathematical physics and
probability that has seen exciting recent development – for example the long
sought asymptotic distribution of the length of the longest increasing subse-
quence in a random permutation due to Baik, Deift and Johansson [see also
Deift (1999a) and Aldous and Diaconis (1999)]. Some of these remarkable tools
can be borrowed for covariance matrices. A surprise is that the results seem
to give useful information about principal components for quite small values
of n and p.
Let X be an n by p data matrix. Typically, one thinks of n observations

or cases xi of a p-dimensional row vector which has covariance matrix �. For
definiteness, assume that the rows xi are independent Gaussian Np�0	 ��. In
particular, the mean has been subtracted out. If we also do not worry about
dividing by n, then we can callX′X a covariance matrix. Under the Gaussian
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Key words and phrases. Karhunen–Loève transform, empirical orthogonal functions,

largest eigenvalue, largest singular value, Laguerre ensemble, Laguerre polynomial, Wishart
distribution, Plancherel–Rotach asymptotics, Painlevé equation, Tracy–Widom distribution,
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assumptions, X′X is said to have a Wishart distribution Wp�n	��. If � = I,
the “null” case, we call it a white Wishart, in analogy with time series settings
where a white spectrum is one with the same variance at all frequencies.
Large sample work in multivariate analysis has traditionally assumed that

n/p, the number of observations per variable, is large. Today it is common
for p to be large or even huge, and so n/p may be moderate to small and in
extreme cases less than one. For example:

1. Climate studies: n might be the number of time points, and p the number
of observation stations. Principal components analysis is widely used under
the name “empirical orthogonal functions.” Preisendorfer (1988) is a book-
length treatment that emphasises n/p moderate.

2. Financial data: large covariance and correlation matrices, with p ≈ 400
financial indicators, are publicly posted daily (e.g. riskmetrics.com) and
used for value-at-risk calculations.

3. Information Retrieval/search engines: A common search engine strategy
forms huge term by document incidence matrices (n and p at least in the
thousands) and then does a truncated singular value decomposition. This
example is far from the Gaussian, but illustrates the huge matrices that
arise.

4. Functional data analysis: Each data point is a curve, and so typically high
dimensional. In the example of Figure 1, extracted from Buja, Hastie,
Tibshirani (1995), a small speech dataset consists of 162 instances of a
phoneme “dcl” spoken by about 50 males. Each instance is calculated as a
periodogram on 256 points. So here n = 162 and p = 256.
Basic notation and phenomena. The eigenvalue–eigenvector decomposi-

tion of the sample covariance matrix

S =X′X = ULU′ =∑
ljuju

′
j	

with eigenvalues in the diagonal matrix L and orthonormal eigenvectors col-
lected as the columns of U. There is a corresponding decomposition of the
population covariance matrix � = ϒ�ϒ′ with eigenvalues λi.

Fig. 1. (a) a single instance of a periodogram from the phoneme dataset; (b) ten instances, to
indicate variability; (c) screeplot of eigenvalues in phoneme example.
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A basic phenomenon is that the sample eigenvalues li are more spread
out than the population λi. This effect is strongest in the null cases when
all population eigenvalues are the same. As a simple example, consider one
random draw of a 10 × 10 matrix X with i.i.d. N�0	1� entries. The ordered
sample eigenvalues li of S were

�lj� = 3�07	1�40	1�12	0�78	0�51	0�30	0�16	0�095	0�036	0�003�
In this case, extreme because n=p, the ratio of largest to smallest is about
1000.
While our focus is on eigenvalues, there are two essentially equivalent

points of view that are of importance. In the singular value decomposition
of a data matrix X = UDV′, the singular values D = diag�dj� are just the
square roots of the eigenvalues lj. The condition number ofX is just the ratio
of largest to smallest singular value. The distribution of the smallest singu-
lar value was given in certain cases by Edelman (1988, 1991) and studied in
detail by Forrester (2000) in the case n large and n− p fixed.
Eigenvalues also occur in principal components analysis, also widely known

as the Karhunen–Loève transform. One seeks the successively orthogonal
directions that maximally explain the variation in the data. In this case,

lj = max
{
u′Su
u′u

� u ⊥ u1	 � � � 	 uj−1

}
	 j = 1	 � � � 	minn	p��

Here a key practical question emerges: howmany principal components should
be retained as being “significant”?
The “scree plot” [e.g., Mardia, Kent and Bibby (1979)] is one of the many

graphical and informal methods that have been proposed. One plots the or-
dered sample eigenvalues or singular values, and looks for an “elbow,” or other
break between presumably significant and presumably unimportant compo-
nents. In the phoneme example, Figure 1(c) there are clearly three large val-
ues, but what about the fourth, fifth, etc.?
In the study of eigenvalue distributions, two general areas can be distin-

guished: the bulk, which refers to the properties of the full set l1 > l2 · · · > lp,
and the extremes, which addresses the (first few) largest and smallest eigen-
values. To provide context for later results, here is a brief and necessarily
selective account.

1.1. Bulk spectrum. For square symmetric random matrices, the celebra-
ted semicircle law of Wigner (1955, 1958) describes the limiting density of
eigenvalues. There is an analog for covariance matrices due to Marčenko and
Pastur (1967), and independently, Stein (1969).
The Marčenko–Pastur result is stated here for Wishart matrices with iden-

tity covariance � = I, but is true more generally, including nonnull cases.
Suppose that both n and p tend to ∞, in some ratio n/p→ γ ≥ 1. Then the
empirical distribution of the eigenvalues converges almost surely,

Gp�t� =
1
p
#li� li ≤ nt� → G�t�(1.1)
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(a) (b)

Fig. 2. Panel (a) limiting densities (1.2) corresponding to n = 4p	γ = 4 and n = p	γ = 1
(monotone line); (b) Wachter plot of the empirical singular values of the phoneme data (vertical
axis) versus quantiles.

and the limiting distribution has a density g�t� = G′�t�,

g�t� = γ

2πt

√
�b− t��t− a�	 a ≤ t ≤ b	(1.2)

where a = �1 − γ−1/2�2 and b = �1 + γ−1/2�2� Compare Figure 2(a). Thus,
the smaller n/p, the more spread the eigenvalues; even asymptotically, the
spread of the empirical eigenvalues does not disappear. For n = p, the largest
normalized eigenvalue approaches 4 and the smallest approaches 0, which
accounts for the large spread seen in the 10 × 10 example earlier. There has
been a significant literature rediscovering and extending this theorem, with
contributions, among others, by Bai, Girko, Grenander, Jonsson, Krishnaiaih,
Silverstein, Wachter and Yin. Bai (1999) provides details in a comprehensive
recent survey. For related work, see also Basor (1997) and Johansson (1998).
Wachter (1976) advocated a nice data-analytic use of this result to yield a

simple, but informative, modification of the screeplot: make a probability plot
of the ordered observed eigenvalues lp+1−i against the quantiles G−1� i−1/2p

� of
the predicted “semicircle”-type distribution, (1.1) and (1.2). Figure 2(b) shows
the phoneme data (actually on the singular value scale). One sees the three
large values as before, but it is notable that the bulk of the distribution in this
empirical data does appear to follow the semicircle law. There is an uptick at
the right hand edge, which looks like there is extra variance in the directions
corresponding to the fourth through twelfth eigenvalues. Without variability
information on the null distribution, one cannot say with rigor whether this
is real.

1.2. Largest eigenvalue. Consider now the right-hand edge, and particu-
larly the largest eigenvalue. Why the interest in extremes? In the estimation
of a sparse mean vector, the maximum of n i.i.d. Gaussian noise variables
plays a key role. Similarly, in distinguishing a “signal subspace” of higher
variance from many noise variables, one expects the largest eigenvalue of a
null (or white) sample covariance matrix to play a basic role.
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The bulk limit (1.2) points to a strong law for the largest eigenvalue. Indeed,
Geman (1980) shows that

n−1l1→ �1+ γ−1/2�2 a.s.	

that is, l1 ∼ �
√
n + √p�2. Later Bai, Krishnaiah, Silverstein and Yin estab-

lished that strong convergence occurred iff the parent distribution had zero
mean and finite fourth moment. Bai (1999) has more details, full citations and
results on the smallest eigenvalue.
However, these results say nothing about the variability of the largest eigen-

value, let alone about its distribution. Muirhead [(1982), Section 9.7] surveys
existing results. For example, Constantine [(1963), page 1284] gives an exact
expression in terms of a zonal polynomial series for a confluent hypergeometric
function of matrix argument,

P�l1 ≤ nt� = dp	nt
pn/2

1F1
( 1
2n� 12�n+ p+ 1��− 1

2ntIp
)
	

where dp	n is a constant depending only on p and n [cf. also Muirhead (1982),
page 421]. There are explicit evaluations for p = 2	3 [Sugiyama (1972)], but
in general the alternating series converges very slowly, even for small n and p,
and so is difficult to use in practice. For fixed p and large n, the classic paper
by Anderson (1963) gives the limiting joint distribution of the roots, but the
marginal distribution of l1 is hard to extract even in the null case � = I�
Muirhead (1974) gives a series approximation again for p = 2	3. In general,
there are upper bounds on the d.f. using p independent χ2�n�� Overall, there is
little that helps numerically with approximations for large p.

1.3. Main result. We now turn to what can be derived from random matrix
theory (RMT) methods. Suppose thatX = �Xjk�n×p has entries which are i.i.d.
Xjk ∼N�0	1�. Denote the sample eigenvalues of the Wishart matrix X′X by
l1 > · · · > lp. Define center and scaling constants

µnp = �
√
n− 1+√p�2	(1.3)

σnp = �
√
n− 1+√p�

(
1√
n− 1 +

1√
p

)1/3
�(1.4)

The Tracy–Widom law of order 1 has distribution function defined by

F1�s� = exp
{
− 1
2

∫ ∞
s
q�x� + �x− s�q2�x�dx

}
	 s ∈ �	

where q solves the (nonlinear) Painlevé II differential equation

q′′�x�=xq�x� + 2q3�x�	
q�x�∼Ai�x� as x→+∞

(1.5)

and Ai�x� denotes the Airy function. This distribution was found by Tracy
and Widom (1996) as the limiting law of the largest eigenvalue of an n by n
Gaussian symmetric matrix.
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The main result states that the same limiting distribution applies to covari-
ance matrices XX′ derived from rectangular data matrices X where both
dimensions n and p are large. In fact, we assume that n = n�p� increases
with p in such a way that both µnp and σnp are increasing in p.

Theorem 1.1. Under the above conditions, if n/p→ γ ≥ 1, then

l1 − µnp
σnp

�→W1 ∼ F1

The theorem is stated for situations in which n ≥ p� However, it applies
equally well if n < p are both large, simply by reversing the roles of n and p
in (1.3) and (1.4). We write TW1�n	 p� for the law of µnp + σnpW1	 which we
use to approximate the distribution of l1.
The mean growth of l1 is as described earlier, except for a slight adjustment

in (1.3) which is suggested by the proof and makes a distinct improvement to
the quality of approximation for small n.
The scale behavior is noteworthy. A sum of i.i.d. variables with positive

mean grows with mean of order n and standard deviation of order
√
n. Here,

the lead eigenvalue of a p×p Wishart grows with mean of order p, but with
SD about that mean only of order p1/3� Thus its distribution is relatively much
more tightly clustered about its mean than in the case of sums.
From numerical work, Tracy and Widom (2000) report that the F1 distri-

bution, plotted in Figure 3, has mean �= −1�21, and SD �= 1�27. The density
is asymmetric and Section A.1 in the Appendix shows that its left tail has
exponential order of decay like e−�s�

3/24, while its right tail is of exponential
order e−

2
3 s
3/2
�

Numerical table look-up for this distribution is analogous to using the
traditional statistical distributions such as chi-square, normal or F. Work
is in progress to provide publicly downloadable MATLAB and S-PLUS routines

Fig. 3. Density of the Tracy–Widom distribution F1.
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for the Tracy–Widom cumulative, density and quantile functions [check www-
stat.stanford.edu/∼imj for availability].

Remarks. (1) Equation (1.5) is one of the six exceptional differential equa-
tions identified by Painlevé at the end of the 19th century. Further detail may
be found in the expository article Deift (1999a).
(2) A heuristic argument derives the p1/3 scaling for l1 from the bulk density

(1.2). Indeed, let f�t� denote the limiting density of ti = b − p−1li (where �
denotes exact order behavior). Suppose that the spacing of the smallest few ti
is of order p−α	 so that the interval �0	 p−α� containsO�1� out of p eigenvalues.
The cumulative of f	 namely F, then satisfies F�p−α� � p−1� But from (1.2)
we have f�t� � t1/2 for t→ 0	 so also F�p−α� � p−3α/2� This fixes α = 2/3	 so
that the largest few li should have spacing p · p−2/3 = p1/3�

Theorem 1.1 relies heavily on the random matrix theory (RMT) literature.
However, first we focus on some of its statistical consequences.

1.4. Statistical implications.
Quality of approximation for moderate n and p. As a check on the practical

applicability of Theorem 1.1, some simulations were done, first for square
cases n = p = 5	10 and 100, using R = 10	000 replications, with results
shown in Table 1 and Figure 4.
Even for 5 × 5 and 10 × 10, the approximation seems to be quite good in

the right-hand tail at conventional significance levels of 10%, 5% and 1%. At
100× 100, the approximation seems to be reasonable throughout the range.
The same general picture holds for n/p in the ratio 4�1. Even for 5 × 20

matrices, the approximation is reasonable, if not excellent, at the conventional
upper significance levels.
A further summary message from these computations is that in the null

Wishart case, about 80% of the distribution lies below µnp, and 95% below µnp
plus one σnp.

Nonnull cases: empirical results. In practice, as in the phoneme example,
there are often one or more large eigenvalues clearly separated from the bulk.
This raises the question: if there were, say, only one or a small number of
nonunit eigenvalues in the population, would they pull up the other values?
Consider, therefore, a “spiked” covariance model, with a fixed number, say r,
eigenvalues greater than 1,

�τ = diag�τ21	 � � � 	 τ2r	1	 � � � 	1��(1.6)

Write � � lk �n	p	�τ� for the distribution of the kth largest sample eigen-
value of the sample covariance matrix X′X where the n by p matrix X is
derived from n independent draws from Np�0	 �τ��
In fact, the �r+1�st eigenvalue in the spiked model is stochastically smaller

than the largest eigenvalue in the null model with p− r variables.
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Table 1

Simulations for finite n×p versus Tracy–Widom Limit. The first column shows the probabilities of
theF1 limit distribution corresponding to fractions in second column. The next three columns show
estimated cumulative probabilities for l1, centered and scaled as in (1.3) and (1.4), in R = 10	000
repeated draws from Wp�n	 I� with n = p = 5	10 and 100. The following three cases have n�p in
the ratio 4�1� The final column gives approximate standard errors based on binomial sampling.
The bold font highlights some conventional significance levels. The Tracy–Widom distribution F1
was evaluated on a grid of 121 points −6�0�1�6 using the Mathematica package p2Num written by
Craig Tracy. Remaining computations were done in MATLAB, with percentiles obtained by inverse
interpolation and using randn() for normal variates and norm() to evaluate largest singular values

Percentile TW 5× 5 10× 10 100× 100 5× 20 10× 40 100× 400 2 * SE

−3.90 0.01 0.000 0.001 0.007 0.002 0.003 0.010 (0.002)
−3.18 0.05 0.003 0.015 0.042 0.029 0.039 0.049 (0.004)
−2.78 0.10 0.019 0.049 0.089 0.075 0.089 0.102 (0.006)
−1.91 0.30 0.211 0.251 0.299 0.304 0.307 0.303 (0.009)
−1.27 0.50 0.458 0.480 0.500 0.539 0.524 0.508 (0.010)
−0.59 0.70 0.697 0.707 0.703 0.739 0.733 0.714 (0.009)
0.45 0.90 0.901 0.907 0.903 0.919 0.918 0.908 (0.006)
0.98 0.95 0.948 0.954 0.950 0.960 0.961 0.957 (0.004)
2.02 0.99 0.988 0.991 0.991 0.992 0.993 0.992 (0.002)

Fig. 4. Panel (a): Probability plots ofR = 10	000 observed replications of l1 drawn fromWp�n	 I�
for n = p = 10 and 100� That is, the 10	000 ordered observed values of l1 are plotted against
F−11 ��i − 0�5�/R�	 i = 1	 � � � 	R� The line for n = p = 10 is the one elevated in the left tail. The
vertical dashed lines show 5th, 95th and 99th percentiles. The dotted line is the 45 degree line of
perfect agreement of empirical law with asymptotic limit. Panel (b): Same plots for n = 40	 p = 10
and n = 400	 p = 100.
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Proposition 1.2. Assume r < p� Then � � lr+1 �n	p	�τ�
st
< � �l1�n, p− r,

Ip−r��

This nonasymptotic result follows directly from interlacing properties of
eigenvalues (Appendix, Section A.2). Use of � �l1�n	p − r	 Ip−r� provides a
conservative p-value for testing H0� τ2r+1 = 1 in the spiked model, in the
sense that the correct p-value for lr+1 is always smaller. It also follows from
Theorem 1.1 and the simulations that the p-value for � �l1�n	p−r	 Ip−r� can
be numerically approximated using TW1�n	p− r��
In fact, empirical evidence from Figure 5 suggests that if τ2r is well separated

from 1, then the distributions in Proposition 1.2 are approximately shifted by
a constant c = cn	p	 τ,

� �lr+1�n	p	�τ� ≈ � �l1�n	p− r	 Ip−r� − cn	p	 τ�

Fig. 5. (a) 10 unit roots and one with τ = 10 in model (1.6). p = 10	 n = 40, with N = 10	000
replications. The dashed line is a qq plot of the second largest value against the TW distribution.
For comparison, the solid line is the simulated null distribution for 10×40 white Wishart case. The
two lines essentially differ by a vertical shift. Dotted line is the 45 degree line of perfect agreement.
(b) 99 unit roots and one with τ = 10 in model (1.6). N = 1	000 replications. The dashed line is
second largest from this distribution, and the solid is the 100×100 white case. (c) Singular values
of phoneme data n = 256	 p = 161. (d) The dashed line is qq plot of fourth largest eigenvalue
from spiked covariance model with top three values set at the observed values in the phoneme
data. Solid line is qq plot of largest eigenvalue from a null Wishart with p = 158 and n = 256�
N = 1	000 replications.
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In the phoneme data example, of particular interest is a spiked model cor-
responding to the three obviously separated singular values. There are 161
cases (after centering) and 256 variables, so we interchange n and p, setting
p = 161	 n = 256� For �τ, set the top values τ1	 τ2	 τ3 equal to the observed
data, and the remaining τi all equal to one. The dashed line in Figure 5(d)
corresponds to the fourth largest eigenvalue from this distribution, and the
solid one to the largest eigenvalue from the 158× 256 white case.
Thus Proposition 1.2 shows that the fourth eigenvalue in the data is sig-

nificantly larger than would be expected under the null model, which would
specify that the eigenvalues are consistent with those of the scaled Wishart
distribution Wp−r�n	 τ2I� with τ2 a scale parameter to be estimated. Indeed
the fourth largest eigenvalue of the sample covariance matrix is 3447, whereas
the approximate 99th percentile of the scaled TW1�n	p − r� with n = 256
and p − r = 158 is given, from (1.3), (1.4) and the last row of Table 1, by
τ̂2�µn	p−r + 2�02σn	p−r� = 1768� Since E trWp�n	 τ2I� = npτ2	 we estimate τ̂2

by sum of the 158 eigenvalues divided by 256×158	 yielding τ̂2 = 2�0932� The
same argument may be applied down to the 12th eigenvalue. In summary, the
uptick in the Wachter plot Figure 5(c) appears to be a genuine departure from
equal variances.

PCA on correlations. Principal components analysis is not invariant to
changes in scale of the variables. For this reason, it is often recommended
that principal components be calculated after standardizing the variables to
have unit standard deviation. Equivalently, one performs PCA on the sample
correlation matrix. This is problematic for distribution theory [e.g., Anderson
(1963)]. In particular, Theorem 1.1 does not directly apply.
An ad hoc construction may, however, be based on the Tracy–Widom approx-

imation. Let the n×p data matrix X consist of n i.i.d. draws of a row vector
xi with distribution Np�0	 ��� View the data matrix in terms of its columns
X = �x1 · · ·xp�	 and standardize

wj =
xj

sj
	 sj = �xj��

SetW = �w1 · · ·wp�. Performing PCA onW′W amounts to PCA on the sample
correlations of the original data, with population correlations R = �ρjk�.
To create a test ofH0�R = I based onW, observe that underH0, the vectors

wj are i.i.d. on the unit sphere Sn−1� Now synthesize a standard Gaussian

data matrix X̃ = �x̃1 · · · x̃p� by multiplying each wj by an independent chi-
distributed length,

x̃j = rjwj	 r2j
indep∼ χ2n�

Under H0 the Tracy–Widom approximation then applies to the largest sam-
ple eigenvalue of S̃ = X̃′X̃	 so that l1�S̃� has approximately the TW1�n	p�
distribution.



THE LARGEST PRINCIPAL COMPONENT 305

1.5. Complex matrices. We now return to the main theorem. Data matrices
with complex Gaussian entries are also of interest in statistics and signal
processing. Suppose now thatX = �Xij�n×p, with ReXij	 ImXij ∼N�0	 12� all
independently of one another. The matrix S =X∗X has the complex Wishart
distribution, and we again suppose that its (real) eigenvalues are ordered
l1 > · · · > lp.
While studying a random growth model of interest in probability, Kurt

Johansson (2000) derived a limit theorem which could be reinterpreted as giv-
ing the limit behavior of the largest eigenvalue of a complex Wishart matrix.
First, define slight modifications of (1.3) and (1.4),

µ′np = �
√
n+√p�2	

σ ′np = �
√
n+√p�

(
1√
n
+ 1√

p

)1/3
�

Assume that n = n�p� increases with p so that both µ′np and σ ′np are increasing
in p.

Theorem 1.3 [Johansson (2000)]. Under the above conditions, if n/p →
γ ≥ 1 then

l1 − µ′np
σ ′np

�→ W2 ∼ F2�

The center and scale are essentially the same as in the real case (but see
Remark 4.1), however the limit distribution is now

F2�s� = exp
(
−
∫ ∞
s
�x− s�q2�x�dx

)
	(1.7)

where q is still the Painlevé II function defined at (1.5). This distribution
was also first found by Tracy and Widom in the Wigner matrix setting to be
recalled below.

Remarks. (1) The definition (1.7) implies d2

ds2
logF2�s� = −q2�s�	 and q2�s�

is monotone decreasing, asymptotic to �s�/2 as s→ −∞	 and to e− 4
3 s
3/2
/4π

√
s

as s→ ∞� (Appendix A1). This should be compared with the Pearson family
of distributions (which contains most of the familiar laws) and the extreme
value family, given respectively by

d

ds
log f�s� = − a+ s

c0 + c1s+ c2s2
and

logF�s� = −e−s� or − �s�k�
(2) The F2 limit was also derived in Baker, Forrester and Pearce (1998)

as the limiting distribution of the smallest eigenvalue of a complex Wishart
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matrix [albeit with different centering and scaling constants given at (5.2)
below] when n/p→ γ ≥ 1�

1.6. Remarks on proof and outline of paper. A central problem in random
matrix theory has been the study of so-called Wigner matrices. In the real case,
these are symmetric with i.i.d. elements, up to modifications on the diagonal.
For example, p× p Gaussian Wigner matrices have

Y = Y′	 Yjk

ind∼ N

(
0	
1
2
+ δjk

2

)
	 j ≤ k�

In fact, it is simpler to derive results for complex matrices first. A complex
Gaussian Wigner matrix is Hermitian, Y = Y∗	 with Yjj and Re Yjk	 ImYjk,
j < k all i.i.d. N�0	 12�� It was here that Tracy and Widom (1994) identified
the F2 distribution, and showed that

Wp =
l1 − 2√p
p1/6

�→ F2�

This was based on determinant representations of the distributions for finite
p, followed by asymptotics of Hermite polynomials Hp�µp + σps�, where
µp = 2√p and σp = p1/6. Finally, Tracy and Widom showed that the limiting
distribution satisfied the Painleve II equation.
Later, Tracy and Widom (1996) derived theF1 distribution for real matrices

as a consequence of the complex case. One cannot do justice to their method in
a single sentence, but essentially they derive the square of F1 as a low rank
perturbation of the complex setting.
For the covariance matrices S =X′X studied in this paper, the same broad

strategy works. Although the result for complex matrices is again the easier
to derive, the conclusion for real matrices is what is needed for most statis-
tical settings. A new aspect, also important in statistics, is that in the n × p
data matrix X, both p and n are separately large, which leads to nonstan-
dard asymptotics in Laguerre polynomials Lα

p�µnp + σnps�—large degree p,
large order α = n−p and argument near the largest zero. Along the way, we
give a separate proof of Johansson’s result, based on Liouville–Green asymp-
totics of differential equations, rather than steepest descent methods applied
to contour integrals.
Section 2 first describes some of the remarkable determinant formulas

that have been developed in RMT and then makes some heuristic remarks
about the Laguerre asymptotics. Section 3 assembles the operator theoretic
tools need to complete our alternate proof of the complex case, Theorem 1.3.
Section 4 establishes the main result, Theorem 1.1 by sketching how the
arguments of Tracy and Widom (1996) are extended from the Gaussian to
the Laguerre ensemble. Section 5 gives details of the Laguerre polynomial
asymptotics. The Appendix collects certain calculations and proof details.

1.7. Discussion. The main conclusion of this paper is that the Tracy–
Widom distribution F1 provides a usable numerical approximation to the null



THE LARGEST PRINCIPAL COMPONENT 307

distribution of the largest principal component from Gaussian data even for
quite moderate values of n and p. In particular, we have the following simple
approximate rules of thumb:

1. About 83% of the distribution is less than µnp = �
√
n− 1+√p�2.

2. About 95% and 99% lie below µnp + σnp and µnp + 2σnp respectively.
A second important conclusion is that, in nonnull cases in which the popula-

tion covariance � has precisely r eigenvalues greater than 1, the distribution
of the �r + 1�st sample eigenvalue lr+1 can be approximately bounded above
by the Tracy–Widom law appropriate to an n × �p − r� matrix, leading to
approximately conservative P-values.
Practical problems of data analysis often have covariance matrices with

much more structure than assumed here. It may be, however, that such struc-
ture can be decomposed into subparts to which the Tracy–Widom approxi-
mation is relevant. For example, separate spherical Gaussian models can be
appropriate for subsets of coefficients in an orthogonal wavelet decomposition
of nonwhite Gaussian process data. In this respect, it is encouraging that the
sizes of the subparts would not need to be particularly large. Specific examples
must, however, await future work.
This paper raises other issues for future work, among which we mention

the following.
(1) What happens if the elements of the data matrix X are i.i.d. from a

non-Gaussian distribution? Soshnikov (1999) established “universality” of the
Tracy–Widom limit for square Wigner matrices. Does the same hold for X′X
for large n and p? Preliminary simulations are encouraging, though the qual-
ity of approximation naturally appears to depend on the specific parent dis-
tribution.

Note in proof: Soshnikov (2001) has established universality for X′X when
X is nearly square, n − p = O�p1/3�, with symmetric entries that are sub
Gaussian.
(2) RMT has a formalism for deriving the distribution of the kth largest

eigenvalue (k fixed); see, for example, Tracy and Widom (1998, 1994), where
the latter carries this through for Gaussian Hermitian Wigner matrices. It is
likely that these formulas continue to apply in the Wishart case.

Note added in proof: This has now been established for both real and com-
plex cases by Soshnikov (2001).
Thus, let q�x�λ� be the solution of (1.5) with the boundary condition modi-

fied to q�x� ∼ √λAi�x� as x→∞� Set

D�s�λ� = exp
{
−
∫ ∞
s
�x− s�q2�x�λ� dx

}
�

Then ifF�k�2 �s� denotes the distribution function of the k−th largest eigenvalue
of a complex Wishart matrix, then

F
�k�
2 �s� =

k−1∑
j=0

�−1�j
j!

∂j

∂λj
D�s�λ��λ=1�
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Further work remains to give effective computational algorithms for these
distributions [Tracy and Widom (1994) plot the density of F�2�2 ] and their real
analogs.
(3) Many techniques of classical multivariate analysis are based on the

roots of determinantal equations such as det�A1 − l�A1 + A2�� = 0	 with
Ai ∼ Wp�ni	 I� independently. Thus, one might ask, for example, for an
approximation to the distribution of the largest canonical correlation when
p	n1 and n2 are large.

2. Determinant formulas, Laguerre heuristics. The joint density of
the latent roots of a real Wishart matrix was found in 1939, in a remark-
able instance of simultaneous publication, independently by each of Fisher,
Girshick, Hsu, Mood and Roy; see Wilks (1962) for citations, Anderson (1996)
for some history and Section 4 below. For reasons just given, we start with the
complex version of this density. So, let X be an n×N complex normal matrix
with Re Xij	 ImXij all independently and identically distributed as N�0	 12�
[Eaton (1983)]. The cross products matrixX∗X then has the complex Wishart
distribution with identity covariance matrix. The eigenvalues x = �x1	 � � � 	 xN�
of X∗X are real and nonnegative, and have density [James (1964)]

PN�x1	 � � � 	 xN� = c−1N	n
∏

1≤j<k≤N
�xj − xk�2

N∏
j=1

xαje
−xj	 α = n−N�(2.1)

(Warning! Notation change: in accordance with the RMT literature, we hence-
forth write the sample eigenvalues as x1 > · · · > xN, rather than l1 > · · · > lp.)
Here cN	n is a constant depending only on N and n.
Efforts to use density (2.1) directly to get information on the largest eigen-

value are frustrated by the high dimensionality and the Jacobian term∏
j<k�xj−xk�2� Random matrix theory (RMT) addresses this by starting with

the Vandermonde determinant identity∏
1≤j	 k≤p

�xj − xk� = det
1≤j	 k≤N

[
xk−1j

]
�(2.2)

Let w�x� = xαe−x be the Laguerre weight function, and φk�x� = φk�x�α� be
functions obtained by orthonormalizing the sequence xkw1/2�x� in L2�0	∞�.
In fact,

φk�x� =
√

k!
�k+ α�!x

α/2e−x/2Lα
k�x�	(2.3)

where Lα
k�x� are the Laguerre polynomials, defined as in, for example, Szegö

(1967).
A standard argument [e.g., Mehta (1991), Chapter 5; Deift (1999b),

Chapter 5] yields a remarkable determinant representation for the joint
density

PN�x1	 � � � 	 xN� =
1
N!

det
1≤j	 k≤N

�S�xj	 xk��	
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where the bilinear kernel S = SN is given by

S�x	y� =
N−1∑
k=0

φk�x�φk�y��(2.4)

A kernel A�x	y� defines an operator A on functions g as usual via �Ag��y� =∫
A�x	y�g�y�dy. For suitable functions f, denote by Sf the operator with

kernel S�x	y�f�y�� Let EN denote expectation with respect to the density
function (2.1). A further key RMT formula [e.g., Tracy and Widom (1998);
Deift (1999b)], valid in particular for (2.1), states that

EN

N∏
j=1
�1+ f�xj�� = det�I+Sf�	(2.5)

where the right side is a Fredholm determinant of the operator Sf [Riesz and
Sz.-Nagy (1955); Gohberg and Krein (1969), Chapter 4.].
The choice f = −χ	 where χ = Ix � x ≥ t�	 yields the determinantal

expression for the distribution of x�1�,

FN2�t� = P
(
max
1≤j≤N

xj ≤ t
)
= det�I−Sχ��(2.6)

[The subscript 2 recalls the exponent 2 in (2.1). In fact FN2 = FN	n	2 depends
on n also, but this will not always be shown explicitly.]
Tracy and Widom showed that these operator determinants satisfy differ-

ential equations which in the large N limit involve the Painlevé functions.
We refer to Tracy and Widom (1994, 1996) [and the expositions in Tracy and
Widom (1999, 2000)] for the full story and turn to indicating where the cen-
tering and scaling constants come from, as well as the Airy functions.

Laguerre Heuristics. Consider the mode x∗ of the density PN, with com-
ponents x∗1 > x∗2 > · · · > x∗N in decreasing order. According to Stieltjes’ “elec-
trostatic interpretation” [Szegö (1967), page 141], these components are pre-
cisely the zeros Lα−1

N �x∗i� = 0 of the degree-N Laguerre polynomial of order
α− 1� Thus, the “typical” positions of the eigenvalues correspond to the zeros
of orthogonal polynomials, and in particular the largest eigenvalue should be
sought in the neighborhood of the largest zero of Lα−1

N � The largest zero of an
orthogonal polynomial of high degree marks a transition in the behavior of the
polynomial from oscillation (x < x∗1) to rapid growth �x > x∗1�. In turn, this
can be studied using the differential equations that characterize the Laguerre
polynomials.
Begin with the Airy equation Ai′′�ζ� = ζAi�ζ�. This has a turning point

at 0: ζ positive corresponds to the region of exponential behavior of the solution
and ζ negative to the oscillatory zone.
Figure 6 shows that an appropriately weighted Laguerre polynomial

wN�x� = x�α+1�/2e−x/2Lα
N�x� looks very similar to the Airy function near the

largest zero: the polynomial passes from oscillation to exponential decay
(because of the damping factor e−x). Although the similarity does not extend
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Fig. 6. Top panel: Airy function Ai�ζ�. Lower panel: Laguerre polynomial wN�x� =
x�α+1�/2e−x/2LαN�x� as a function of x. Here n =N = 10�

throughout the range, it is the neighborhood of the largest zero that is of
interest here. Note also the relatively small values n =N = 10.
The center and scaling constants µN	σN arise through aligning these two

functions. Laguerre polynomials and hence the function wN satisfy a second-
order differential equation [e.g., Szegö (1967), Chapter V) and Section 5 below].
We write this in a form with a large parameter κ =N+ α+1

2 :

w′′�ξ� = �κ2f�ξ� + g�ξ��w�ξ�	
where ξ = x/κ, w�ξ� = wN�κξ� and

f�ξ� = �ξ − ξ1��ξ − ξ2�
4ξ2

	 g�ξ� = − 1
4ξ2

�

The function f�ξ� has upper turning point at ξ2 = 2 +
√
4− �α/κ�2 and it is

easily verified that µN ∼ �
√
n+√N�2. On the x scale, this occurs at x = κξ2 =

µN, and this fixes the centering constant. Now, transform the independent
variable ξ into ζ so that if g is ignored, then the Laguerre equation turns into
the Airy equation, using ζ1/2dζ = f1/2�ξ�dξ. Then wN can be approximated
by the Airy function in the new variable ζ,

w�ξ� = c�κ�Ai�κ2/3ζ� + error�
On the x scale, we are interested in values x = µN +σNs close to the turning
point. On the ξ scale, ξ = ξ2 + �σN/κ�s and we linearize ζ�ξ� about ζ�ξ2� =
0. The scale σN is then chosen so that κ2/3ζ�ξ� �= s. Calculations at (5.21)
and (5.22) below show that σN = κ1/3/ζ̇�ξ2�	 and so in particular σN is of
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order N1/3� This is certainly not a stochastic argument, but the picture does
give some of the flavor of an approximation valid for quite small N.
There is an explicit error term from the Liouville–Green method for asymp-

totic approximation of ordinary differential equations [Olver (1974)] and this
allows rigorous operator theoretic proofs to go through as in the Wigner
matrix case.

3. Complex case. The goal of this section is to establish Theorem 1.3,
the Tracy–Widom limit for the largest eigenvalue of a large complex Wishart
matrix. First, the strategy: the starting point is the fixed N formula (2.6)
which we write as det�I − S�, regarding S as an operator on L2�t	∞�. To
show the existence of a limit, adopt the scaling t = τ�s� = µN+σNs suggested
earlier. Define therefore

Sτ�x	 y� = σNS�µN + σNx	µN + σNy��
As an operator onL2�s	∞�,Sτ has the same eigenvalues as doesS onL2�t	∞�.
Hence

FN2�µN + σNs� = det�I−Sτ��
Let �S denote the Airy operator on L2�s	∞� with kernel

�S�x	y� = Ai�x�Ai′�y� − Ai�y�Ai′�x�
x− y �(3.1)

Tracy and Widom (1994) showed that the distribution F2 satisfies F2�s� =
det�I− �S�, so that Theorem 1.3 follows if we show

det�I−Sτ� → det�I− �S��(3.2)

Since the Fredholm determinant det�I −A� is a continuous function of A in
the trace class norm on operators [e.g., Gohberg and Krein (1969), page 160],
it suffices to show that Sτ → �S in trace class norm.
Now for the details. Let D denote the differentiation operator, �Df��x� =

f′�x�. Widom (1999) derives a formula for the commutator �D	S� = DS−SD
in a class of unitary ensembles: for the Laguerre ensemble (2.1), this operator
has kernel (

∂

∂x
+ ∂

∂y

)
S�x	y� = −φ�x�ψ�y� − ψ�x�φ�y��(3.3)

Here φ is a function required to belong to �N = spanφ0	 φ1	 � � � 	 φN−1� and
ψ turns out then to be orthogonal to �N and to satisfy

∫∞
0 ψ = 0. Let ξN�x� =

φN�x�/x and aN = √
N�N+ αN�� For the Laguerre ensemble, Widom finds

that

φ�x� = �−1�N
√
aN
2

{√
N+ αNξN�x� −

√
NξN−1�x�

}
	(3.4)

ψ�x� = �−1�N
√
aN
2

{√
NξN�x� −

√
N+ αNξN−1�x�

}
(3.5)



312 IAIN M. JOHNSTONE

[of course φ�x� = φ�x�αN	N� and ψ�x� = ψ�x�αN	N� depend on N and αN	
but this is not shown explicitly].
From (3.3) follows a useful integral representation,

S�x	y� =
∫ ∞
0
�φ�x+ z�ψ�y+ z� + ψ�x+ z�φ�y+ z��dz�(3.6)

This is proved in the same manner as the formula for Gaussian unitary ensem-
bles [Tracy and Widom (1996), Section VII].

Laguerre asymptotics. The large N behavior of φ and ψ in the scaling
x = µN + sσN is determined by the asymptotics of the Laguerre polynomials
L
αN
N and the corresponding weighted polynomials φN near the turning point

µN� Using the notation φτ�s� = σNφ�µN+sσN�	 in Section 5 we show for each
fixed s	 that as N→∞	

φτ�s�	 ψτ�s� →
1√
2
Ai�s�(3.7)

and, uniformly in N and in intervals of s that are bounded below,

φτ�s�	 ψτ�s� = O�e−s��(3.8)

Operator convergence. It follows from (3.6)–(3.8) that

Sτ�x	y� =
∫ ∞
0
�φτ�x+ u�ψτ�y+ u� + ψτ�x+ u�φτ�y+ u��du(3.9)

→
∫ ∞
0
Ai�x+ u�Ai�y+ u�du = �S�x	y�	(3.10)

where �S is shown in Tracy and Widom (1994) to be the Airy kernel (3.1).
In terms of operators on L2�s	∞�, the integral formulas (3.9) and (3.10)

may be written

Sτ = GτHτ +HτGτ	 �S = 2G2	
where the corresponding kernels are defined as follows:

Gτ�x	y� = φτ�x+ y− s�	 G�x	y� = 2−1/2 Ai�x+ y�	
Hτ�x	y� = ψτ�x+ y− s��

Write �A�1 for the trace class norm on operators (C1 norm on singular values),
and �A�2 for the Hilbert–Schmidt norm (C2 norm on singular values). Then by
a standard inequality (Cauchy–Schwarz on singular values),

�Sτ − �S�1 ≤ 2�Gτ�2�Hτ −G�2 + 2�Gτ −G�2�G�2→ 0

since (3.7) and (3.8) show that Gτ and Hτ → G in Hilbert–Schmidt norm on
L2�s	∞�. This completes the proof of (3.2) and hence of Theorem 1.3. ✷

Remark 3.1. The scaling limit (3.1) for Sτ�x	y� was stated by Johansson
(2000), and for fixed α by Forrester (1993).
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4. Real case. In this section, suppose that X is an N × n real normal
matrix with Xij all independently and identically distributed as N�0	1�. The
cross products matrix A = XX′ has the real Wishart distribution WN�n	 I�.
The eigenvalues �x1	 � � � 	 xN� of A are real and nonnegative, and according
to the classical formula of Fisher, Girshick, Hsu, Mood and Roy [see Wilks
(1962)] have density [e.g., Muirhead (1982), page 106]

PN�x1	���	xN�=d−1N	n
∏

1≤j<k≤N
�xj−xk�

N∏
j=1

x
α/2
j e−xj/2	 α=n−1−N�(4.1)

This is again an example of a Laguerre ensemble, now corresponding to the
orthogonal case (sometimes abbreviated LOE), with the differences xj − xk
raised to power β = 1, in contrast with the complex Wishart case, which
corresponds to the Laguerre unitary ensemble (LUE) with β = 2.
A determinant representation for β = 1 analogous to (2.5) was developed

by Dyson (1970). We refer to Tracy and Widom (1998), which gives a self-
contained derivation of the formula

EN

N∏
j=1
�1+ f�xj�� =

√
det�I+KNf�	(4.2)

where the 2 × 2-matrix valued operator KN is described more fully at (4.4)
below. In consequence, for f = −χ	

FN1�t� = P
{
max
1≤j≤N

xj ≤ t
}
=

√
det�I−KNχ��(4.3)

Remark 4.1. As in the complex case, FN1 depends on n also, and should
be written more carefully as FN	n−1	1 to emphasize that the exponent in (4.1)
is α = n−1−N. Here, the appropriate complex distribution is FN	n−1	2 and so
in determining the centering and scaling constants µN and σN, the indicated
value for γ = �n− 1�/N.

The major differences from (3.3) are the appearance of the square root, and
the fact that KN is now an operator with kernel a 2 × 2 matrix. Building
on Tracy and Widom (1998), Widom (1999) shows that KNf� L22�0	∞� →
L22�0	∞� can be represented as a matrix of operators

KNf =
(

S+ ψ⊗ εφ SD− ψ⊗φ
εS− ε+ εψ⊗ εφ S+ εφ⊗ ψ

)
f�(4.4)

Here S	ψ and φ are as defined earlier at (2.4), (3.5) and (3.4), respectively.
The function ε�x� = 1

2 sgnx and the operator ε denotes convolution with the
kernel ε�x− y�. The notation α⊗ β denotes the rank one operator defined by
�α⊗ β�f = �β	f�α.
Formula (4.4) has exactly the same form as that derived for the Gaussian

orthogonal ensemble in Tracy and Widom [(1996), Section V], hereafter
[TW96]. Indeed, it turns out that much of the limiting argument can be made
to follow the pattern of [TW96] exactly, so only a brief summary is given here.
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The strategy is to derive the real case from the complex. Thus the complex
Wishart probability FN2�t� = det�I − Sχ� is treated as “known”. The same
manipulations as in [TW96] convert the matrix determinant appearing in (4.3)
and (4.4) into a scalar determinant. After factoring out I−Sχ	 one obtains a
rank two perturbation of the identity:

FN1�t�2/FN2�t� = det�I−α1⊗β1−α2⊗β2� = det
1≤j	 k≤2

�δjk−�αj	βk���(4.5)

To write out this determinant explicitly, we define certain quantities asso-
ciated with the operator �I − Sχ�−1. The notation is patterned after [TW96],
though the formulas now refer to the Wishart setting.

P = �I−Sχ�−1ψ	 Qε = �I−Sχ�−1εφ	
ṽε = �Qε	χψ�	 qε = Qε�t�	(4.6)

cφ = 1
2

∫ ∞
0
φ�

Let R�x	y� be the kernel of the resolvent operator for Sχ; thus �I−Sχ�−1 =
I+R� Set

� =
∫ t

0
P�x�dx	 � =

∫ t

0
R�x	 t�dx�(4.7)

Then (4.5) is given by

FN1�t�2/FN2�t� = �1− ṽε��1− 1
2 �� − 1

2 �qε − cφ�� �(4.8)

Note that all the quantities just defined depend on t (with the exception of cφ),
though this is not shown explicitly. The right side of (4.8) is a finiteN formula,
although we do not have a more explicit evaluation for it. Nevertheless, by
using the same scaling t = µN + σNs, s fixed, as in the complex case, we
may evaluate the largeN limit. Indeed, there is an invariance principle: (4.8)
converges to the same limit as occurs in the GOE setting.
Define

a�x� = 2−1/2 − 2−1/2
∫ ∞
x
A�y�dy	 �Q = �I− �Sχ̄�−1a�

Then, as N→∞, arguing as in [TW96],
qε → q̄ = �Q�s�	 ṽε → ū = 2−1/2� �Q	 χ̄A�

and similarly, � → �� and � → �� , where in view of (3.7) and (3.8) and
what has been said, the barred quantities are exactly those occurring in the
GOE case. A separate argument (Section A.7) is required to establish that
cφ → 2−1/2 as N→∞ through even values. It follows then that

limF2N1�t�/FN2�t� = F21�s�/F2�s� = �1− ū��1− 1
2
��� − 1

2 �q̄− 2−1/2� �� �

Setting µ = ∫∞
s q�x� dx, [TW96] identify

2ū = �� = −
√
2 �� = 1−

√
2q̄ = 1− e−µ
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and so

F21�s�/F2�s� = e−µ = exp
(
−
∫ ∞
s
q�x�dx

)
�

Remark 4.2. [TW96] derive systems of differential equations satisfied by
the functions in (4.6) and (4.7). The scaling limit of these finite N equations
is then shown to exist and is solved to yield explicit formulas for the scaling
limit of (4.6). In the Wishart–Laguerre setting, similar finite N differential
equations could be derived, though this is not necessary for this proof; all we
need is to show that the limit of (4.6) is the same as the GOE limit, which
is already identified. [Of course, if the finite N equations, including those for
FN2�t� could be solved exactly or numerically, then one would have a direct
evaluation of FN1�t�.]

5. Laguerre polynomial asymptotics. In this section, we establish (3.7)
and (3.8). The key to these results are certain asymptotics for Laguerre polyno-
mials of both large order and large degree, in the neighborhood of the largest
zero. These asymptotics are nonstandard since statistical applications require
αN = n−N large, as well as N.
Specifically, consider the Laguerre polynomials Lα

N�x�, as defined in Szegö
(1967), but with α = αN ∼ �γ − 1�N for N large and γ ≥ 1 fixed. With the
abbreviations N+ = N + 1/2 and n+ = n + 1/2 = N + αN + 1/2	 define a
rescaling x = µN + σNs with

µN =
(√

N+ +
√
n+

)2
	

σN =
(√

N+ +
√
n+

)( 1√
N+

+ 1√
n+

)1/3
�

Writing ρ = γ−1/6�1+√γ�4/3	 we show that, as N→∞	 with x = µN + σNs,

�−1�NN−1/6
√
N!/�N+ αN�! x�αN+1�/2e−x/2LαN

N �x�{→√
ρAi�s�	 ∀ s ∈ �,

= O�e−s�	 uniformly in �s0	∞�	 s0 ∈ �.

(5.1)

Compare Figure 6. Note that when αN ≡ α is fixed, the pointwise result
reduces to the classical Plancherel–Rotach type formula of Szegö [(1967),
page 201]; for example, µN = 4N+ 2α+ 2+O�N−1�� Also helpful for fixed α
is Erdélyi (1960).
We use a standard differential equation approach, based on heuristics

sketched in Section 2 and exploiting existing literature. Indeed, pointwise con-
vergence was studied by Temme (1990), based on work of Dunster (1989), in
turn building on Olver (1974). We give an account starting from Olver (1974)
(1) to correct a consequential typographical error in the first two references,
(2) to derive the uniform bound in (5.1), which is needed for the operator theo-
retic arguments of Section 3 and (3) to focus on real asymptotics for Laguerre
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polynomials rather than the more general setting of Whittaker functions in
the complex domain of Dunster (1989).

Remark 5.1. The pointwise analog of (5.1) for expansions about the small-
est zero was given by Baker, Forrester and Pearce (1998), also using the dif-
ferential equation (5.3) below. If n�N�/N → γ > 1, then the centering and
scaling for the smallest zero are given by

µ̃N =
(√
n−

√
N

)2
	 σ̃N =

(√
n−

√
N

)( 1√
N
− 1√

n

)1/3
�(5.2)

The differential equation satisfied by wN�x� = x�α+1�/2e−x/2Lα
N�x� is, from

Szegö [(1967), page 100],

d2wN

dx2
=

{
1
4
− κ

x
+ λ2 − 1/4

x2

}
wN	 κ =N+ α+ 1

2
	 λ = α

2
�(5.3)

Rescaling the x axis via ξ = x/κ and writing w�ξ� = wN�x� puts this equation
into the form

d2w

dξ2
= {

κ2f�ξ� + g�ξ�}w	(5.4)

where

f�ξ� = �ξ − ξ1��ξ − ξ2�
4ξ2

	 g�ξ� = − 1
4ξ2

�(5.5)

The turning points of the equation are given by zeros of f, namely

ξ1 = 2−
√
4−ω2	 ξ2 = 2+

√
4−ω2	(5.6)

with

ω = 2λ
κ
= α

N+ �α+ 1�/2 �(5.7)

Since N and n = γN are large, κ ∼ 1
2�1 + γ�N will be a large parameter,

while ω approaches a finite limit, ω→ 2�γ − 1�/�γ + 1� ∈ �0	2�.

Liouville–Green. This classical method, modified to the case of turning
points, describes how the solutions of equations such as (5.4) and (5.5) are
approximated by Airy functions. This theory, along with error bounds, is
described in detail by Olver (1974), referred to as [O] below. We summarize
and specialize the part we need here. A change of independent variable in
(5.4) is made by the Liouville–Green transformation ζ�ξ� defined on an inter-
val containing ξ2 [say �2	∞�] by

2
3ζ
3/2 =

∫ ξ

ξ2

f1/2�t�dt�(5.8)
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Define also a new dependent variableW by w = �dζ/dξ�−1/2W. These choices
put (5.4) into the form

d2W

dζ2
= κ2ζ + ψ�ζ��W	(5.9)

where the perturbation term ψ�ζ� = f̂−1/4�d2/dζ2��f̂1/4� + g/f̂. Here f̂ is
defined by

f̂�ξ� =
(dζ
dξ

)2
= f�ξ�

ζ
	(5.10)

with the second equality following from (5.8). [O], Lemma 11.3.1, guaran-
tees that ζ�ξ�/�ξ − ξ2� is positive and twice continuously differentiable for
ξ ∈ �2	∞�.
If the perturbation term ψ�ζ� in (5.9) were absent, the equation d2W/dζ2 =

κ2ζW would have linearly independent solutions in terms of Airy functions,
traditionally denoted by Ai�κ2/3ζ� and Bi�κ2/3ζ�. Our interest is in approxi-
mating the recessive solution Ai�κ2/3ζ�, so write the relevant solution of (5.9)
as W2�ζ� = Ai�κ2/3ζ� +η�ζ�� In terms of the original dependent and indepen-
dent variables ξ and w	 the solution W2 becomes

w2�κ	 ξ� = f̂−1/4�ξ�Ai�κ2/3ζ� + ε2�κ	 ξ���(5.11)

[O], Theorem 11.3.1, provides an explicit bound for η�ζ� and hence ε2 in
terms of the function � �ζ� = ∫∞

ζ �ψ�v�v−1/2�dv� (Section A.3 has more on � .) To
describe this error bound even in the oscillatory region of Ai�x�, [O] introduces
a modulus function M�x� and a positive weight function E�x� such that if
E−1�x� = 1/E�x� then Ai�x� ≤M�x�E−1�x� for all x. In addition,

Ai�x� = 1√
2
M�x�E−1�x�	 x ≥ c �= −0�37	(5.12)

and the asymptotics as x→∞ are given by

E�x� ∼
√
2e

2
3x

3/2
	 M�x� ∼ π−1/2x−1/4�(5.13)

The key bound of [O], Theorem 11.3.1, is then

�ε2�κ	 ξ�� ≤M�κ2/3ζ�E−1�κ2/3ζ�
[
exp

{
λ0
κ
� �ζ�

}
− 1

]
	 ξ ∈ �2	∞�	(5.14)

where λ0
�= 1�04. For ξ ≥ ξ2, (5.12) shows that the coefficient is just

√
2Ai

�κ2/3ζ�.

Identifying Laguerre polynomials. Equation (5.14) has a useful double
asymptotic character in κ and ξ. First, suppose that N and hence κ are
held fixed. As ξ → ∞, we have ζ → ∞ also, since f�ξ� ∼ 1/4. Consequently
� �ζ� → 0 and so from (5.14) and its following remark,

ε2�κ	 ξ� = o�Ai�κ2/3ζ�� as ξ→∞�(5.15)
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Since the weighted Laguerre polynomial wN�x� = x�α+1�/2e−x/2Lα
N�x� is a

recessive solution of (5.3), it must be proportional to w2,

wN�κξ� = cκw2�κ	 ξ�	(5.16)

and we can use (5.11), (5.15) and the asymptotics of Ai�x� to evaluate cκ (see
Section A.4). This yields

cκ =
�−1�N
N!

�2π�1/2κκ+1/6eκc0	(5.17)

where c0 = c0�ω� is given explicitly at (A.3) below.
Let us summarize the situation so far. Recalling from (2.3) that φN�x� =√
N!/�N+ α�! xα/2e−x/2Lα

N�x�	 observe that the left side of (5.1) becomes
�−1�NN−1/6x1/2φN�x�� From (5.16) and (5.17) we have

x1/2φN�x� =
√

N!
�N+ α�!wN�x� = �−1�Nκ1/6rNw2�κ	 ξ�	(5.18)

where

rN �= �−1�N
cκ
κ1/6

√
N!

�N+ α�! → 1 as N→∞(5.19)

(and the convergence is shown in Section A.5). Bringing in (5.11), we have
then, for fixed N and x,

�−1�NN−1/6x1/2φN�x� = rN�κN/N�1/6f̂−1/4�ξ�Ai�κ2/3ζ� + ε2�κ	 ξ���(5.20)

N1/3 scaling about the largest zero. On the original x scale, we are inter-
ested in values x = µN + σNs, where µN = κξ2 is the upper turning point.
We now choose the scale σN so that Ai�κ2/3ζ� → Ai�s�� Expand ζ�ξ� about the
turning point ξ2	 at which ζ�ξ2� = 0	 and put ζ̇ = ζ̇�ξ2�� For s fixed, we have
the approximation

κ2/3ζ�ξ� = κ2/3ζ�ξ2 + σNκ−1s� �= σNκ
−1/3sζ̇�(5.21)

Equating the right side with s yields the N1/3 scaling,

σN = κ1/3/ζ̇ ∼ ρN1/3	(5.22)

where the final limit follows from explicit evaluation of ζ̇�ξ2� in Section A.6.
As noted earlier, ξ → ζ�ξ�/�ξ − ξ2� is positive and C2 near ξ2, and from this
it follows that uniformly in s ≤ δN2/3	 we have κ2/3ζ = s +O�N−2/3�� Since
Ai is continuous, for each fixed s,

lim
N→∞

Ai�κ2/3ζ� = Ai�s��(5.23)
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Negligibility of error term. Return to the error term in Olver’s bound (5.14).
First note that s ≥ s0 is equivalent to ξ ≥ ξ2+s0σN/κ = ξ2+O�N−2/3�. On the
ζ scale, this means for any fixed ζ0 < 0	 and for N large enough, that s ≥ s0
entails ζ ≥ ζ0� Letting c1 = λ� �ζ0�, the final term in (5.14) can be bounded

expλ� �ζ�/κ� − 1 ≤ ec1/κ − 1 =� εN → 0 as N→∞�
Consequently, (5.14) becomes, uniformly in s ∈ �s0	∞�,

�ε2�κ	 ξ�� ≤M�κ2/3ζ�E−1�κ2/3ζ�εN = o�Ai�κ2/3ζ���(5.24)

Pointwise limit in �5�1�. From (5.20), by combining (5.19), (5.23) and (5.24)
with the limit �κN/N�1/6f̂−1/4�ξ� → √

ρ [see (A.11) in Section A.6],

�−1�NN−1/6x1/2φN�x� →
√
ρAi�s��(5.25)

As remarked earlier, the definition of φN shows that this is (5.1).

Uniform bound in �5�1�. From (5.20) and (5.24), and recalling that Ai ≤
ME−1	 we have

��−1�NN−1/6x1/2φN�x�� ≤ C�γ�f̂�ξ�−1/4M�κ2/3ζ�E−1�κ2/3ζ��
It remains to show that the right side, which we denote by TN�s�, satisfies
TN�s� ≤ Ce−s for s ≥ s0. This is done in A.8. We remark here only that for
ζ > 0	 (5.13) shows that E−1�κ2/3ζ� ≤ c0e

− 2
3κζ

3/2
	 and a (by no means sharp)

argument shows that �2/3�κζ3/2 ≥ s for s large enough.
Large N asymptotics of φτ and ψτ	 needed for Section 3, are now straight-

forward to derive from (5.25). Returning to (3.4) and (3.5), write

φτ = φI	N +φII	N	 ψτ = ψI	N + ψII	N	(5.26)

where, for example,

�−1�NφI	N�x� = σN�aN�N+ αN��φN�x�/
√
2x

=N−1/6x1/2φN�x� · dN�x�	
(5.27)

where

dN�x� = dN · �x/µN�−3/2	 dN = σNN
1/6+1/4�N+ αN�3/4/

√
2µ3/2N �

As N→∞, it is easily seen that x/µ = 1+ sσN/µN → 1 and

√
ρdN ∼

ρ3/2γ3/4√
2�1+√γ�3 =

√
γ√

2�1+√γ� =� 2
−1/2bγ�

Using (5.25), this establishes the first part of

φI	N�µN + σNs�
{→ 2−1/2bγAi�s�	
≤ C�γ�e−s�(5.28)
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The second part follows from (5.27), the second part of (5.1) and the simple
bound

�x/µN�−3/2 = �1+ sσN/µN�−3/2 ≤ e−�3σN/2µN�s�
It is easily verified that all the other terms (5.26) can be written in terms

of φI	N. Indeed, setting uN = �σN/σN−1�
√
aN/aN−1, then nN = N + αN and

vN = �N/nN�1/2, we have
ψI	N=vN φI	N	

φII	N=uNvN−1 φI	N−1	
ψII	N=uNv−1N vN−1φI	N−1�

(5.29)

Let us show how (3.7) and (3.8) follow from these and (5.29). First, note that
writing µN + σNs = µN−1 + σN−1s′ yields

s′ = s+ µN − µN−1
σN−1

+ σN − σN−1
σN−1

s = s+O�N−1/3��(5.30)

From this it follows that limN→∞ φI	N−1�µN + σNs� is the same as (5.28).
Since uN → 1 and v−2N = nN/N→ γ as N→∞, we obtain immediately from
(5.29),

lim
N→∞

φII	N�µN + σNs� = 2−1/2�1− bγ�Ai�s��(5.31)

Adding (5.28) and (5.31) yields (3.7) for φτ. The corresponding result for ψτ
follows from (5.29) in a similar way. Turning now to the uniform bounds (3.8),
note first that since µN and σN are increasing with N, (5.30) implies that
s′ ≥ s, and so, for example,

φI	N−1�µN + σNs� = φI	N−1�µN−1 + σN−1s′� ≤ Ce−s
′ ≤ Ce−s�

Now (3.8) follows directly from this, (5.26) and (5.29).

Remark. It can be shown if n2/N is increasing inN	 then so also are both
µN and σN.

APPENDIX

A.1. Tails of the Tracy–Widom density of order 1. Write f�s� ≈ g�s�
when f�s� ∼ r�s�g�s� and r�s� involves at most rational powers of s. The
density of F1 is

f1�s� = 1
2F1�s�

(
q�s� +

∫ ∞
s
q2�x�dx

)
�

For large positive s, from (1.5), q�s� ∼ Ai�s� ∼ 2−1π−1/2s−1/4e−
2
3 s

3/2
. Since∫∞

s q2�x�dx ∼ �8πs�−1e−
4
3 s

3/2 = o�q�s��, we have f1�s� ≈ q�s� ≈ e−
2
3 s
3/2
as
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s→∞. For large negative s, Hastings and McLeod (1980) show that q�s� ∼√−s/2, so it follows that ∫∞s q ∼ �√2/3��s�3/2 and ∫∞
s �x−s�q2�x� dx ∼ �s�3/12.

Hence, f1�s� ≈ e−�s�
3/24 for large negative s.

A.2. Proof of Proposition 1.2. For a square symmetric p×p matrix A	
write l1�A� ≥ l2�A� ≥ · · · ≥ lp�A� for the ordered eigenvalues. Let r be an
integer with 1 ≤ r ≤ p	 and let Ap−r be a �p−r�×�p−r� submatrix obtained
by deleting r rows and the corresponding columns fromA. Then the “inclusion
principle” [e.g., Horn and Johnson (1985), Theorem 4.3.15] states that for each
integer k such that 1 ≤ k ≤ p− r,

lr+k�A� ≤ lk�Ap−r� ≤ lk�A��(A.1)

Now let Y be an n × p data matrix with rows independently drawn from
N�0	 �τ�, where �τ = diag�τ21	 � � � 	 τ2r	1	 � � � 	1�. Partition Y = �Y1� Y2� with
the n×r matrix Y1 containing the first r columns and Y2 the remaining p−r
ones. Now simply apply (A.1) with k = 1 to A = Y′Y and Ap−r = Y′2Y2. On
recognizing that Y2 is a matrix of the form considered in Theorem 1.1, the
Proposition follows from the first inequality in (6.1).

A.3. Details on �� (�). Since ψ�ζ� is continuous, finiteness of � �ζ� follows
from the continuity of ψ�ζ� in �ζ�2�	∞� ([O], Lemma 11.3.1) together with
observation that ψ�ζ� ∼ −1/�4ζ2� as ζ →∞. [The latter comes from calcula-
tion with the formula for ψ preceding (5.10) after observing that f̂�ζ� ∼ 1/�4ζ�
for large ζ and that ζ3/2 ∼ 3ξ/4 for large ξ.]

A.4. Evaluation of c�. Since wN�x� = x�α+1�/2e−x/2Lα
N�x� and Lα

N�x� ∼
�−1�NxN/N! for large x, we have

wN�κξ� ∼ e−κξ/2�κξ��α+1�/2 �−1�
N

N!
�κξ�N	 ξ→∞�

From (5.13), Ai�x� ∼ 2−1π−1/2x−1/4e− 2
3x

3/2
for large x, and so

w2�κ	 ξ� ∼
1

2
√
πκ1/6f1/4�ξ� exp

{
−2
3
κζ3/2

}
	 ξ→∞�

Since κ = α+1
2 +N	

�−1�Ncκ =
2
√
πκ1/6

N!
lim
ξ→∞

f1/4�ξ��κξ�κ exp
{
κ

(
2
3
ζ3/2 − ξ/2

)}
�(A.2)

To evaluate this limit, we need the large ξ asymptotics of ζ�ξ�. Set R�ξ� =
�ξ − ξ1�1/2�ξ − ξ2�1/2. According to Dunster [(1998), formula (4.6)], (5.8) is
given by

2
3
ζ3/2 = 1

2
R�ξ� + ω

2
ln

ξ

ξ2

(
2ξ2 −ω2

2ξ −ω2 −ωR�ξ�
)
+ ln

{
ξ2 − 2

ξ − 2+R�ξ�
}
�
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Noting that R�ξ� = ξ−�ξ1+ ξ2�/2+O�ξ−1� and that ξ1+ ξ2 = 4, we arrive at
2
3
ζ3/2 = ξ

2
− ln ξ + c0 +O�ξ−1�	

where

c0 = −1+
ω

2
log

2ξ2 −ω2
ξ2�2−ω�

+ log
(
ξ2
2
− 1

)
�(A.3)

(The value of c0 corrects Dunster [(1989), formula (4.7)], which omits the −1.)
Since f�ξ� ∼ 1/4 as ξ→∞	 the previous display and (A.2) yield

�−1�Ncκ =
√
2πκ1/6

N!
κκ lim

ξ→∞
exp�κc0 +O�ξ−1��

which reduces to (5.17).

A.5. Proof of (5.19). We first rewrite the constant c0, using (5.6) along
with ω2 = ξ1ξ2	 (5.7) and (5.3) and n =N+ α to obtain

2ξ2 −ω2
ξ2�2−ω�

= 2− ξ1
2−ω =

(
2+ω
2−ω

)1/2
=

(
2κ+ α
2κ− α

)1/2
=

(
n+ 1/2
N+ 1/2

)1/2
and

ξ2
2
− 1 = �2+ω�

1/2�2−ω�1/2
2

= �2κ+ α�
1/2�2κ− α�1/2
2κ

= �n+ 1/2�
1/2�N+ 1/2�1/2
κ

�

Since ωκ/2 = α/2	 it follows that

κ2κe2c0κ = e−2κ�n+ 1/2�n+1/2�N+ 1/2�N+1/2�(A.4)

By Stirling’s formula,

N!�N+ α�! ∼ 2π e−2N−α nn+1/2NN+1/2	(A.5)

and so as N→∞,

r2N =
2πκ2κe2κc0

N!�N+ α�! ∼ e−1
(
1+ 1

2n

)n+1/2(
1+ 1

2N

)N+1/2
∼ 1�

A.6. Evaluation of �̇	 �N and �N . We first derive formulas for fixed N
and then evaluate the largeN limits. From (5.8), and using l’Hôpital’s rule as
ξ→ ξ2	

ζ̇�ξ� = 1
2ξ

[�ξ − ξ1��ξ − ξ2�
ζ�ξ�

]1/2
→ 1
2ξ2

(
ξ2 − ξ1
ζ̇

)1/2
�
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Solving for ζ̇ yields

ζ̇ =
[
ξ2 − ξ1
4ξ22

]1/3
�(A.6)

We use the abbreviations N+ = N + 1/2	 n+ = n + 1/2. It follows from (5.3)
that

κ = N+ + n+
2

	 κ2 − λ2 =N+n+�

Hence, since κω = 2λ	

µN = κξ2 = 2κ+ 2
√
κ2 − λ2 =

(√
N+ +

√
n+

)2
�(A.7)

Note that

κ�ξ2 − ξ1� = 4
√
κ2 − λ2 = 4

√
N+n+�

Using (5.22) and (A.6),

σ3N =
κ

ζ̇3
= 4�κξ2�2
κ�ξ2 − ξ1�

=
(√
N+ +√n+

)4√
N+n+

	

so that

σN =
(√

N+ +
√
n+

)( 1√
N+

+ 1√
n+

)1/3
�(A.8)

We now turn to large N approximations. Since n = γN	 we immediately find
from (A.7) and (A.8),

µN ∼
(√
N+√n)2 ∼ (

1+√γ)2N	(A.9)

σN ∼ ρN1/3	 ρ = γ−1/6
(
1+√γ)4/3�(A.10)

In addition, (5.10) again shows that f̂−1/4�ξ� = ζ̇−1/2�ξ� and so, as N→∞,
κ1/6f̂−1/4�ξ� ∼ �κ1/3/ζ̇�1/2 ∼ √ρN1/6�(A.11)

A.7. Limiting value of c�. Throughout this argument, α = αN = �γ −
1�N	 and we set β = �γ− 1�/2� We will assume γ > 1� [For γ = 1	 (essentially
α fixed) the same result can be established by a more direct argument.] From
(4.6) and (3.4), we have

√
2cφ = 1

2
√
aN

[√
N+ α

∫
ξN −

√
N

∫
ξN−1

]
�

Since
∫
ψ = 0	 (3.5) yields √N+ α ∫ ξN−1 = √N ∫

ξN	 and hence

√
2cφ =

(
N

N+ α
)1/4α

2

∫
ξN =

α

2

(
N

N+ α
)1/4( N!

�N+ α�!
)1/2

cN�(A.12)
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The large N behavior of

cN =
∫ ∞
0
xα/2−1e−x/2Lα

N�x�dx
follows via generating functions and the saddlepoint method. By Szegö [(1967),
equation (5.1.9)],

∞∑
N=0

Lα
N�x�tN = �1− t�α−1 exp−xt/�1− t��	

and so, after evaluating a gamma integral,

h�t� �=
∞∑
N=0

cNt
N = 2α/2N�α/2��1− t�−1�1− t2�−α/2�

By Cauchy’s theorem, for a suitable contour � encircling 0,

cN =
1
2πi

∫
�

h�t�
tN+1

dt = 2α/2N�α/2�
2πi

IN	(A.13)

where, on setting p�t� = logt�1− t2�β� and q�t� = t−1�1− t�−1,
IN =

∫
�
e−Np�t�q�t�dt�

The saddlepoints, being the (simple) zeros of p′�t�, are given by t± = ±γ−1/2.
On the circular contour t = t�u� = γ−1/2eiu, traversed counterclockwise,
2Rep�t� = − log γ + β log1 + γ−2 − 2γ−1 cos 2u� has equal global minima at
t±. Consequently, the saddlepoint approximation [e.g., Olver (1974), Theorem
4.7.1] yields, as N→∞	

IN ∼
(
2π
N

)1/2∑ q�t±�
�p′′�t±��1/2

e−Np�t±�	(A.14)

where the sum is over the two cases t+ and t−. In forming �p′′�t±��1/2	
the branches ω0	± of argp′′�t±�� are chosen to satisfy �ω0	±+2ω±� ≤ π/2,
where ω± = ±π/2 are limiting values of arg�t− t±� as t→ t± clockwise
along the contour. Thus, since p′′�t±� = −2γ2/�γ−1�, we have ω0	± = ∓π
and so �p′′�t±��−1/2 = ±i√γ − 1/γ√2. Since e2p�t±� = �γ − 1�γ−1γ−γ and
q�t±� = ±γ�√γ ± 1�−1, we have, for large even N, after combining the two
terms in (A.14), (

IN
2πi

)2
∼ 1
πN

γ

γ − 1
[

γγ

�γ − 1�γ−1
]N
�

Returning at last to cφ, collecting (A.12) and (A.13) gives
√
2cφ = bNIN/�2πi�,

where

b2N =
(

N

N+ α
)1/2 N!

�N+ α�!
[(α
2

)
!
]2
2α

∼ π

2
NN+1αα+1

�N+ α�N+α+1 = πN
γ − 1
γ

[�γ − 1�γ−1
γγ

]N
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after using Stirling’s formula. Since bN and IN/�2πi� > 0, it follows that
cφ → 1/

√
2.

A.8. Uniform bound for TN�s�� In the following, the constant c = c�γ�
is not necessarily the same at each appearance.
(1) We first construct s1 such that if N is large and s ≥ 2s1, then

E−1�κ2/3ζ� ≤ Ce−s. Indeed, writing ξ = ξ2 + sσN/κ and using the definition
of f, we find

σ2N
4
f�ξ� = s

4
σ3N
κ

ξ2 − ξ1 + sσN/κ
�ξ2 + sσN/κ�2

∼ s

c�γ� as N→∞�

For a fixed δ > 0	 set s1 = c�γ��1 + δ�� For large N and s ≥ s1 we then have√
f�ξ� ≥ 2/σN and hence

2
3
κζ3/2 = κ

∫ ξ

ξ2

√
f ≥ κ · 2

σN
· �s− s1�

σN
κ
= 2�s− s1� ≥ s	

if s ≥ 2s1� Since E�x� ≥ c0e
2
3x

3/2
for x ≥ 0	 we have E−1�κ2/3ζ� ≤ c−10 e−

2
3κζ

3/2 ≤
c−10 e−s as claimed.
(2) For s ≥ 2s1, f�ξ� ≥ f�ξ2 + 2s1σN/κ� ≥ c�σN/κ�f′�ξ2�. Since f′�ξ2� =

ξ−22 �ξ2 − ξ1� → c�γ� > 0 as N → ∞	 we have for large N and such s,
κ2/3f�ξ� ≥ c. Since M�x� ≤ cx−1/4 for x ≥ 0	 we have (using the definition
of f̂)

f̂�ξ�−1/4M�κ2/3ζ� ≤ c�f�ξ�κ2/3�−1/4 ≤ c�(A.15)

Combining with (1) we obtain the bound for TN�s� for s ≥ 2s1�
(3) For s ∈ �s0	2s1�, we have ξ ∈ �ξ2+s0σN/κ	 ξ2+2s2σN/κ� = ξ2+O�N−2/3�.

But limξ→ξ2
f̂�ξ� = ζ̇2, so for large N, f̂�ξ�−1/4 ≤ cζ̇−1/2. Since M ≤ 1 and

E ≥ 1	 we obtain from the definition of TN that TN�ξ� ≤ cζ̇−1/2 ≤ C�
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