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Abstract. We consider the distributions of the lengths of the longest weakly increasing and
strongly decreasing subsequences in words of length N from an aphabet of k letters. (In
the limit as k — oo these become the corresponding distributions for permutations on N
letters.) We find Toeplitz determinant representations for the exponential generating func-
tions (on N) of these distribution functions and show that they are expressible in terms of
solutions of Painlevé V equations. We show further that in the weakly increasing case the
generating function gives the distribution of the smallest eigenvalue in the k x k Laguerre
random matrix ensemble and that the distribution itself has, after centering and normalizing,
an N — oo limit which isequal to the distribution function for the largest eigenvalue in the
Gaussian Unitary Ensemble of k x k hermitian matrices of trace zero.

1. Introduction

The last decade has seen aflurry of activity centering around connections between
combinatorial probability on the one hand and random matrices and integrable sys-
tems on the other. From the point of view of probability theory, the quite surprising
feature of these developments is that the methods came from Toeplitz determi-
nants, integrable differential equations of the Painlevé type and the closely related
Riemann-Hilbert techniques as they were applied and refined in random matrix
theory. Using these methods new, and apparently quite universal, limiting laws
have been discovered. One of the aims of this paper is to make these methods
accessible to a wider audience. Our story begins with a theorem of Gessel [16].
(There are earlier signs of these connections; see Regev [32].)

Let Sy bethesymmetric group on N letters and give each permutation o € Sy
probability 1/N!. Denoteby ¢y (o) thelength of thelongest increasing subsequence
ino and

Fp(n; N) =Prob(¢y(o) <n).
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Thenitisacorollary of Gessel’s theorem and the Robinson-Schensted-K nuth cor-
respondence! that

o0 IN
D Frs N)w = Da(0), (11)
N=0

where D, (¢) is the determinant of the the n x n Toeplitz matrix with the symbol
eV1 @+ (Recall that thei, j entry of a Toeplitz matrix equalsthei — j Fourier
coefficient of its symbol.)

It isin this work of Gessel, expressing the (exponential) generating function
of Fp asa Toeplitz determinant, and the subsequent work of Odlyzko et al. [28]
and Rains[31], that the methods of random matrix theory first appear in RSK type
problems.?

Starting with thisrepresentation, Baik, Deift and Johansson [2], using the steep-
est descent method for Riemann-Hilbert problems [12], derived a delicate asymp-
totic formulafor D, (¢) which we now describe. Introduce another parameter s and
suppose that n and r are related by n = [2tY/? + 5tY/6]. Thenast — oo with s
fixed one has

I|LI’TO10 e’ Dy 72, 16 (1) = Fa(s).

Here F» isthe distribution function defined by

Fals) = exp (— / . s)q(x)zdx> 12)

where ¢ isthe solution of the Painlevé Il equation
q" =sq+2q°

satisfying ¢(s) ~ Ai(s) ass — 0.2 Using a dePoissonization lemma due to
Johansson [22], these asymptotics for D, (¢) led Baik, Deift and Johansson to the

limiting law
. Iy(o) — 24N
]JI_)mOO Prob (T =< S) = F2(s).

It isaremarkable fact that this same distribution function F> was first encoun-
tered by the present authors [36] in random matrix theory where it arises as the
limiting law for the normalized largest eigenvalue in the Gaussian Unitary Ensem-
ble (GUE) of Hermitian matrices. More precisely, we have for this ensemble [36]

Jim_Prob ((,\max — V2N)W2NY5 < s) — Fa(s). (13)

! Thisisa bijection between permutations and pairs (P, Q) of standard Young tableaux
with the same shape. For expository accounts of the RSK algorithm, see [15, 26, 35].

2 Gessdl [16] does not mention random matrices, but in light of well-known formulas in
random matrix theory relating Toeplitz determinants to expectations over the unitary group,
we believe it is fair to say that the connection with random matrix theory begins with his
discovery.

3 Aiisthe Airy function. For aproof that such a solution exists and is unique, see[8, 17,
13].
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Here we see a connection with integrable systems — the appearance of a
Painlevell function. Yet another connectionisthat D,, (¢) itself hasarepresentation
in terms of the solution of a Painlevé V equation [18, 39].

Since the work of Baik, Deift and Johansson, several groups have extended
this connection between RSK type combinatorics and the distribution functions of
random matrix theory. The aforementioned result is equivalent to the determina-
tion of the limiting distribution of the number of boxesin the first row in the RSK
correspondence o <> (P, Q). In[3] the same authors show that the limiting distri-
bution of the number of boxesin the second row is (when centered and normalized)
distributed as the second largest scaled eigenvalue in GUE [36]. They then con-
jectured that this correspondence extends to all rows. This conjecture was recently
proved by Okounkov [30] using topological methods and by Borodin, Okounkov
and Olshanski [7] using analytical/representation theoretic methods.

Placing restrictions on the permutations o (that they be fixed point free and
involutions), Baik and Rains[4] have shown that the limiting laws for the length of
thelongest increasi ng/decreasing subsequence are now thelimiting distributions F1
and F, [38] for the scaled largest eigenval uesin the Gaussian Orthogonal Ensemble
(GOE) and the Gaussian Symplectic Ensemble (GSE). Generalizing to signed per-
mutationsand col ored permutationsthe present authorsand Borodin [ 39, 6] showed
that the distribution functions of the length of the longest increasing subsegquence
involve the same F». Johansson [23] showed that the shape fluctuations of a cer-
tain random growth model, again appropriately scaled, convergesin distribution to
F>. (Thisrandom growth model isintimately related to certain randomly growing
Young diagrams.)

Finally, we mention the work of Aldous and Diaconis [1] where they describe
a certain one-person card game, called “patience sorting,” which is connected to
these ideas linking Young tableaux with the length of the longest increasing subse-
guencein either arandom permutation or arandom word; and thenceto thelimiting
distributions of largest eigenvalues.

At last we come to the subject of the present paper, which is the question of
what can be said when instead of a random permutation on N letters we have a
random word of length N from an alphabet of k letters. This may be thought of as
afunction from {1, 2,---, N}to {1, 2,---,k} and it is clear what is meant by a
(strictly or weakly) increasing or decreasing subsequence. Unlike the case of per-
mutations there is a difference between the two. Given such aword w we define
Z{V(w) to be the length of the longest weakly increasing subsequence in w, and
define eﬁ’,(w) to be the length of the longest strictly decreasing subsequence in
w.* In anal ogy with permutations we define the distribution functions (giving each
word probability k=)

Fy(n: k, N) = Proby (z{v(w) < n) . Fp(n;k, N) = Proby (e}?,(w) < n)

4 We could just as well consider weakly increasing subsequences and strictly increas-
ing subsequences since reversing the order of the word takes increasing subseguences into
decreasing subsequences. In light of the RSK algorithm, our choice seems most convenient.
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and their generating functions

00 N o0 N
t t
N=0 N=0

Here are our results. We use the standard notation 7,,(f) for the n x n Toeplitz
matrix with symbol f.

Theorem 1. We have
Gi(n: k. k) =det T,(f1). Gp(n: k. kt) = det T, (fp).
where
f1@ = fi@t=e*A+2" fo@)=fon=e"A-27"

Theorem 2. G;(n; k,t) and Gp(n; k, t) haveintegral representationsin terms of
solutions of Painlevé V equations.

Theorem 3. G (n; k, t) isequal to e’ timesthe distribution function for the small-
est eigenval ueinthe Laguerreensembleof k x k matricesassociated with theweight
function x™ e~*.

Theorem 4. The limiting distribution for the random variable Z{V(w), centered
and normalized, is equal to that for the largest eigenvaluein the Gaussian Unitary
Ensemble ensemble of k x k hermitian matrices with trace zero.> More precisely,

lim Proby

N—o0

(z{v(w) — N/k

NI < s) = Prob (Amax < ).

The next four sections contain the proofs of these four theorems.

Theorem 1 is a consequence of Gessdl’s theorem, just as the permutation
analogue (1.1) is, and the RSK correspondence between words and pairs of Young
tableaux. For the convenience of the reader we include a complete proof of
Gessdl’ stheorem, containing the mainideas of the original but presented somewhat
differently. (For related devel opments, see [5].)

Theorem 2 is the heart of the paper. The equations are derived very much in
the spirit of [39]. The logarithmic derivative of the determinant involves a quantity
whose derivativesin turn involve other quantities. Recursion formulas relating the
various quantities allow the eventual derivation of a single differential equation
which, in the end, turns out to be reducible to Painlevé V.

The proof of Theorem 3 consists of showing that the Py function of Theorem
2 for G isexactly the one which gives the distribution of the smallest eigenvalue

5 The normalization we adopt for the GUE measure is the standard one defined in
Mehta[27]. Theprobability ontheright of thedisplayed formulaistheconditional probability
given that the matrix from GUE has trace zero.
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in the Laguerre ensemble [37]. The equation is the same, by inspection, and it isa
matter of checking the boundary condition at ¢ = 0.

Given the results of [3, 30, 7] for permutations, it is natural to conjecture that
the limiting distribution of the number of boxesin the j* row, 2 < j < k, appear-
ing in the Young tableaux P in the RSK bijection w <« (P, Q) is precisely the
distribution of the j*” largest eigenvalue in the finite k x k Hermite ensemble of
trace zero hermitian matrices.

Theorem 4 is proved by an asymptotic evaluation of the multipleintegral which
givesthedistribution function for the smallest eigenvaluein the Laguerreensemble.

After the completion of the original version of this paper there were several
relevant developments. Johansson [24] found an independent proof of Theorem 4,
infact of thefull conjecture stated above. A. Its, using Riemann-Hilbert techniques
applied to operator equivalents of our Toeplitz matrices, found another proof of
Theorem 2. J. L. Snell found an error in the original version of Theorem 4. (We
thank him for catching the error and so saving the authors from further embarrass-
ment.) C. Grinstead found arandom walk interpretation of the k = 2 problem and
used thisto determine the limiting distribution in this case. And Y. Chen alerted us
to the paper [14] of Forrester in which there appeared a formula equivalent (given
Theorem 1) to the statement of Theorem 3, obtained by using identities of Mac-
donald on hypergeometric functions of severa variables. Finally, A. Its together
with the authors [19, 20] have analyzed similar problems addressed here but in the
context of an inhomogeneous random word model.

2. Gessal'stheorem and its specializations
2.1. The Cauchy-Binet formula

We begin by recalling the Cauchy-Binet formulafor the determinant of the product
of two rectangular matrices A and B of sizesm x n and n x m, respectively. We
assumen > m.

Let %, denote the set of strictly increasing subsequences of length m that
can be chosen from {1, 2, ..., n}. For any matrix X of sizen x m andany S =
{s1, 82, ...,5m} € Lmn, denote by X (S|m) the m x m matrix obtained from X
by using al m columns of X and the m rows numbered by S. Similarly, if X is
m x n, denote by X (m|S) the m x m matrix obtained from al m rows of X and
the columns of X numbered by S. The Cauchy-Binet formulais

det(AB) = > det (B(S|m))det (A(m|S)). (2.1)
Seg/mn

Hereisaproof. Define
F(e) = ¢" det (1 n 8’1AB) .
Thisdeterminantism x m and lim,_,o F(¢) = det(AB). Thenadso

F(e) = &™ det (1 + g—lBA) .
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In the (Fredholm) expansion of thislast determinant, the term with coefficient e =
is
. (BA)iyiy (BA)iy, -+ (BA)ii,
(BA)iyiy (BA)iyi, =+ (BA)isi,
w2 L
B2 (BA)iyiy (BA)iyis -+ (BA)iminm
Inthissumwe can placetherestriction that no two indicesare equal sincewhenthey
arethedeterminantiszero. Them! different orderingsof {i1, . .., i,,} givethesame
determinant so we can drop the m! and sum over al i, withiy < iz < -+ < ip,.
The terms of order e/, j < m, in the Fredholm expansion do not contribute to
the limit ase — 0. The coefficients of theterms e/, j > m, are zero since the
rank of BA isat most m. Finally, each summand factorsinto the product of the two
determinants in the Cauchy-Binet formula.

The formularemains valid if n = oo if, for example, each row of A and each
column of B belongs to the sequence space ¢2. For then AB is well-defined, BA
isafinite rank operator on ¢2 and the preceding goes through without change. The
sum on theright side of (2.1) isthen the sum over all increasing subsequences S of
length m chosen from the positive integers.

2.2. Gessdl’stheorem

Let 2, denote the set of partitions of m, sequences (A1, A2, ..., A,) Of nonnega-
tiveintegerssuchthat A1 > - > Ay, A+ -+ Ay =m,and 2 = | J,,»0 Pnm.
(20 is the empty partition.) We also write A - m when A € 2, and denote by
£(2) the length of the partition, the largest k such that A, # 0. Let Ag (or A for
short) denote the algebra of symmetric functions over Q. This is a commutative
algebraand the vector space direct sum decomposition into homogeneous symmet-
ric functions gives A the structure of agraded algebra
Gessel introduces

o0
Ry(x.y) == Y s () =Y > si(x)si(y) (22)
rEP m=0 reZy
L(A)<n L(A)<n

where s, (x) is the Schur function.®
Gessdl’s theorem saysthat R, (x, y) isa Toeplitz determinant

Ru(x,y) = det(A;_)) (2.3)

1<i,j=zn
where

Ai=Aix,y) =Y heyi(he(y)
=0

& The combinatorial definition of the Schur function iss; (x) := Y, x” where the sum
is over all semistandard Young tableaux of shape A. The Jacobi-Trudi identity gives an
alternative representation in terms of determinants; namely, s; (x) = det(h;,—;+;) where h;
are the complete symmetric functions. The reader isreferred to Chp. 7 of Stanley [35] for a
beautiful account of Schur functions from the combinatorial point of view.
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and i, isthe rth complete symmetric function. (Wetake s, = Ofor r < 0.) Recall

that
Zh,t’ - l_[ (L—x;t)" L.
r>0 i>1
Hereis Gessel’s proof. Although (2.3) isan identity between two formal power
series it suffices to prove it when the x; are real numbers satisfying |x;| < 1. Let
M (x) bethe co x n matrix

(hi—j(x)), (=1 1<j=n).

Thiswill be the matrix B of (2.1) whereas A will be M’ (y). (We interchanged the
roles of m and n.) Since the entries of the columns of M (x) and rowsof M!(y) are
exponentialy small, the formula holds.

For any increasing subsequence S of positiveintegersof lengthn, let Mg(x) be
the determinant of then x n minor of M (x) obtained from the rowsindexed by the
elements of S. In the notation of (2.1) we have Mg(x) = det(B(S|n)), Ms(y) =
det(A(n]S)).

Now let A = (A1, A2, ...) beapartitionwith £(A) < n,andlet § = {Ap+1-; +
i|1 <i < n}.Observethat S isanincreasing subsequence of postiveintegers. Then

MS(X) = det (h)tn+1—i+i—j (x))lfi,jfi‘l .
Reversing the order of the rows and columns in this determinant yields
Ms(x) = det (hy,4j—i(x)) = s3.(x),

where the last equality is the Jacobi-Trudi identity. For such S, summing over all
partitions 1 with £(A) < n isthe sameassumming over all increasing subsequences
S of length n. Thus

Ra(x,y) =) Ms(x)Ms(y),
S
and by the Cauchy-Binet formulathisis equal to det(M’(y) M (x)). Since

(M' () M@))ij =Y he—i(¥) he—j(x) =Y hegie j(x) he(y) = A,
¢ ¢

the theorem follows.
For the applicationswhich follow it isimportant to know the the symbol of the
Toeplitz determinant appearing in (2.3). Itis

DA = )Y heiWhe) =) k() Y hi(0)Z
=0 =0

i=—o00 i=—00 i=—00

¥(2)

oo

T (@-we) [[a-xo™. (2.4)
n=1

n=1
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2.3. Cauchy’sidentity from Szegd’s theorem

A nice application of Gessel’s theorem is aderivation of Cauchy’sidentity in sym-
metric functions’ using the strong Szegd's limit theorem for Toeplitz determinants.
We have (log¢)o = 0 and, for n > 0,

1 n
(logg), = =3 (x)",

i>1
(logg)—, = 32@-)"
—n n i>l 1 .

(The subscripts denote Fourier coefficients, as usual.) Applying Szegd's theorem
(we may assume that the x; and y; are real numbers with absolute value less than
1) then gives

. =1 _
lim R, (x, y) = exp {Z p 2 yﬂn} =[T@-xy) ™",
n=1 i, j>1 i,J

and hence Cauchy’s identity

Y s@s) =[] @-xy) ™

reP ij

2.4. Dual version of Gessel’s theorem

Since (2.3) is an identity between two elements of the ring generated by the x;
and y;, any endomorphism of this ring yields another identity. Now the complete
symmetric functions &, are algebraically independent generators of A as are the
elementary symmetric functions e,. We consider the endomorphism « defined by

w(ey) = h,.
Then for any partition A = (A1, A2, ...) we have
w(ey) = hy,

with the usual notation
e;L:l—[e)”., hk:l_[h)»i'
i i

The action on the Schur function is given by w(s;) = sy where A’ is the partition
conjugateto A.

7 See, for example, pg. 322 of [35].
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We define

Ry(x,y) = 0y oy Ry(x,3) = D sp(x)s(y).
AEDP
L(n)<n

Now for any partition » we have £(1) = A}, thelength of thefirst row of the Young
diagram of shape A/, and so

Ry(x,y) =Y su@su(y) = Y si(x)si(y).
rEDP AEDP
)Jlgn r<n

(Thus, in this sum we restrict the length of the first row rather than the length of
the first column.) Applying o, w, to (2.3) we obtain the dual version of Gessel’s
theorem,

rEP
A1<n

We record for use below

Wy @) =Y e(y) Y e
=0

i=—o00

= 1_[ (1+)’n Z_l) 1_[ A+x,2). (2'5)
n=1 n=1

We remark that w, R, (x, y) also equals a Toeplitz determinant. Then — oo
limit of this identity is, by an application of the strong Szego theorem, the dual
Cauchy identity

Yo m@sw =[[A+xiy).
LEDP l’,]‘

2.5. Specializations

If R isacommutative Q-algebra with identity, then a specialization of thering A
isahomomorphism ¢ : A — R. We aways assumethat (1) = 1.

(i) Exponential specialization. If p, = ), x/", the power sum symmetric functions,
then the exponential specialization is determined by

ex(pn) = té1n.

(Recall that the p,’s are agebraically independent generators of A. This homo-
morphism ex is denoted by 6 in Gessel.)

The fundamental property of this homomorphism is for any symmetric
function f

ex(f) = Yz nlf o

n>0
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where[x1x2 - - - x,,] f denotesthe coefficient of x1x2 - - - x, in f. Thusif A = N and
53, isthe Schur function, then

tN
ex(s) = f* =

where f* isthe number of standard Young tableaux of shape A. Hence

t2N

ek =3 T (P

N=0 AN
L(A)<n

By the Robinson-Schensted-Knuth (RSK) bijection [33, 34, 25]

()
Ln)<n

equalsthe number of permutationso on N letterssuchthat £y (o), thelength of the
longest increasing subsequencein o, isat most n. Hence if each such permutation
has probability 1/N! we have

1
Fp(n: N) i=Prob(¢x(0) <m) = o 3 (F4)2.
AN
L(A)<n

Thus we know that its generating function is given by

o IZN
Z Fp(n; N) T = exyexyRy(x,y).
N=0 ’

Gessel’stheorem tells usthat R, (x, y) isthen x n Toeplitz determinant with
symbol ¢(z) given by (2.4). This may be written

0 =Y h(Mz" Y b ()
r>0 s>0

Theimportant observationisthat sinceex isahomomorphism, ex, exy R, (x, y)
is the Toeplitz determinant with symbol

t ¢’ -1
. _ —r s t(z+z7)
fr@) i=excexy(p@) =) =27 Y ot = .
r>0 s>0
Thisis precisely (1.1) after changing ¢ to /7.
(it) Principal specializations. The principal specialization of order n of g isdefined

by

psa(@) =g(L.q.4%....4" 1. 0,0,...).
(Thuswereplace x; by ¢’ if i < n and by Oitherwise. If welet n — oo we obtain
the stable principal specialization of f.) Settingg = 1in ps, gives

psig) =¢1,1,...,1,0,0,...)
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where 1 appears n times.

Observe that

psi(s:) = (k)

where d, (k) isthe number of semistandard Young tableaux of shape A that can be
formed from an alphabet of & letters. (Recall that a semistandard tableau is weakly
increasing across rows and strictly increasing down columns; a standard tableau
isstrictly increasing across rows.) Thisis most easily seen from the combinatorial
definition of the Schur functions.

Applying the homomorphisms ps! and ex to R, gives

00 N
(pstrex, Rue ) = 30| 30 duto 1| (26)
N=0 AN '

O)<n

The RSK correspondence associates to each word w of length N formed from
an alphabet of k letters a pair of tableaux, (P, Q). Here the P are semistandard
Young tableaux of shape A = N made from the alphabet {1, 2, ..., k} and the Q
are standard Young tableaux of shape A - N onthe numbers{1, 2, ..., N}. Thus

> dik)

AN
)<n

counts the number of words w of length N with strictly decreasing subsequences
all of length lessthan or equal to n. Obviously,

> dnk) fr = kM.
AN
The symbol of the Toeplitz determinant that equals the generating function
(2.6)is

etz

k r
Fo@) = foz 0= (pshhex,(p@) = [[A= 27 Y Lar =

=%
i=1 r>0" " (1 Z)

Hence we have shown that if ef\}(w) denotes the length of the longest strictly
decreasing subsequencein word w, and if each word of length N isassigned prob-
ability 1/k", then the generating function of the distribution function

Fp(n: k, N) := Proby (zﬁ(w) < n)
is given by the Toeplitz determinant with symbol fp:

(k)™

o
> Foluk, N) =

N=0
Recalling (1.4) we see that thisis

=det (T,,(fp(z; 1)) .

Gp(n; k, kt) = det (T, (fp(z; 1)) 27)
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Since, under general conditions, changing the symbol of a Toeplitz matrix from
f(2) to f(az) is asimilarity transformation, the associated Toeplitz determinant
does not change. Therefore the symbol of the Toeplitz determinant in (2.7) may be
replaced by

eV1/z

(1— Vtz/k)k
whose k — oo limitisev? @< This shows that for fixed N,

fWiz/k; t/k) =

lim Fp(n; k, N) = Fp(n; N).
k—o00

Again, thisisintuitively clear since as the size of the a phabet approaches infinity,
any random word of length N isvery likely a permutation. (This also uses the fact
that the distribution of thelength of thelongest decreasing subsequence of arandom
permutation is the same as the distribution of the length of the longest increasing
subsequence.)

Finaly we apply the same specialization ( pskl)x exy to the dual version of
Gessel’s theorem. We see that (2.6) is replaced by

(ps)xexy Rae,y) = 3 [ Y0 st f* | 7 (2.8)
N=0 \ 21=n '

rEP

(We used here the fact that f* = f*, which follows immediately from the hook
length formulafor £*.) Thuswe obtain the generating function for the distribution
of thelength of the longest weakly increasing subsequence. Using (25) wefind that
the symbol of the Toeplitz determinant that gives (2.8) is

f1@) = fiz: 1) == (pspxexy Y e ()2 Y es(y)z™*

r>0 s>0
= (psprexy [ [(L+x2) Y ez = A+ el
Jj s>0

To summarize, we have shown that if Zf\, (w) denotes the length of the longest
weakly increasing subsequence in word w of length N, and if each such word has
probability 1/ k", then the generating function of the distribution function

Fy(n: k, N) := Proby (z{v(w) < n)
is given by the Toeplitz determinant with symbol f;. Precisely,

(k)N

o0
Grlnik, k)= Fi(n k, N) =

N=0

= det (T;,(f1(z; 1)) . (2.9)

The same k — oo remarks hold here as in the strictly decreasing case.
Relations (2.7) and (2.9) are the assertions of Theorem 1.
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3. Recursion and differentiation formulas
3.1. Universal recursion relations

In this section f will be an arbitrary function, with Fourier coefficients f; and
associated n x n Toeplitz matrix

We assume 7, (f) is invertible and obtain several relations connecting various
inner productsinvolving 7, ( ) 1. Most of theserel ations actually appeared in[39].
Thereour T,,(f) was symmetric and unfortunately some of the relations derived in
[39] used thisfact. Since this does not happen here, everything has to be modified
for the more general case. A reader of the earlier article will find familiar much of
what we now do. Below we introduce various inner products which satisfy certain
recursion relations (which we classify into “universal” and “nonuniversal” rela-
tions). We then show that one of these inner products, denoted U, below, equals
the logarithmic derivative of the Toeplitz determinant we want, see (3.22) below.
We introduce the n-vectors

1 0 fl fn
0 0 f2 fn—l
B P N PRA B P B
0 0 S 12
0 1 fn fl

and define f by f(z) = f(z™1), sothat T, (f) isthetranspose of T;,( f). We write
A=T,h, A =T.
Thus A isthe backward shift and A’ isthe forward shift. It is easy to see that
L NH=T(NA+fTR@FT=AT.(N+s"®f, (B

Tz f) =T )N +F ®5 =AT,(f)+5"® f*. (32)

These identities explain why the vectors f= and f* arise.
Theinner productsinvolving 7;,(f)~* are

Uf = (T, ()T, 6%, vE=THtst, §%).

If one of these quantities defined in terms of f is given atilde, then f isto be
replaced by f everywhere in its definition. Thus, for example,

UF = (@O, 8.
Notethat V.t = V;t = D,_1/D,, where

D, = Dn(f) = det Tn(f)
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Some other inner products may be expressed in terms of these using the isometry
that reversesthe order of the components of avector (and replaces a Toeplitz matrix
by itstranspose). Thus, for example,

(T(Hf s =@H ™t s =u,. (3.3)

We shall use thisisometry from time to time below without comment.
Thebasisfor all the universal relationswe shall obtain isthefollowing formula
for theinverse of a2 x 2 block matrix:

AB\ Y [A-BD )1«
- . (3.4)
CD X X

Herewe assume A and D are square and the various inverses exist. Only one block
of the inverse is displayed and the formula shows that A — BD~1C equals the
inverse of this block of the inverse matrix.

We apply (3.4) first to the (n + 1) x (n + 1) matrix

0 0 -~ 1
fi fo - fonpa
];nfn.—l"' ];0

withA = (0, D =T,(f), B= @O --- 01, C = fT.Inthiscase
A—BD7IC = —(T,(f)~t f*, 87) = —U, . Thisequas the reciprocal of the
upper-left entry of the inverse matrix, which in turn equals (—1)" times the lower-
leftn x n subdeterminant divided by D,,. Replacingthefirstrowby (fo f-1 -+ f-n)
gives the matrix

fo fo1 - fon
fi fo - fonna
C : = Th+1(f)- (3.9
Jo facr-- fo
Thelower-left entry of itsinverseequalsontheonehand (7, (f) =%, §7) = Vi1

and on the other hand (—1)" timesthe same subdeterminant as arose above divided
by U, ;- This gives the identity

U =vV" Dn+l _ Vn+1
n T "n+l D - V+ .
n n+1

(3.6)

If wetake A to bethe upper-left corner of (3.5) and D the complementary 7;,(f)
thenC = fTand B = (f_1 --- f_,), and we deduce that

~ 1
fo= (TN T = 37)
n+1
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Next we consider
fo fo1 - fon fona
fl fO "’f—n+1 f—n
: Lo : = Thy2(f).
fao focio foo faa

Jorr fu - 1 SO

We apply to this an obvious modification of (3.4), where A isthe 2 x 2 matrix
consisting of thefour corners of thelarge matrix, D isthecentra 7,,(f), C consists
of thetwo columns £+ and f~ and B consists of the rowswhich are the transposes
of /* and f~. Then wefind

. ( fo— (Tu(HLfH Y foner — ()7L, f*))
A—BD C =

faorr = (O ) fo— (T(HHL f)
and our formulatells us that thisis the inverse of

+ -
( Vn+2 Vn+2)
— + ’
Vn+2 Vn+2

This gives the two formulas
+

~ \%
fo= @MY T = —52——,
Vn+2 - Vn+2Vn+2
-V
forr— (T(HTLfH, f = — 2
Vi S—vVo. Vo
n+2 n+2"n+2

Comparing the first with (3.7) we see that

+ 2 _yt+t y+t
Vn+2 - Vn+2 n+2 — Vn+1 Vn+2’ (3.8)

and therefore that the preceding relations can be written

~ 1 1 YV
fo— (O FH = farr— @O )= - 22,
Vn+1 Vn+l Vn+2
(39
Notice that (3.6) and (3.8) give
o +
1- Uy O = (3.10)
n+1
Next, we apply (3.4) to the matrix
o1--- 0

f1fo- fonta

];n fn ];0
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Now wehave A = (0), D =T,(f), B=(1 --- 00), C = ftadso
A—BD7IC = —(T,(f)"L f+, 8%) = —U;. Therefore this equals the inverse
of the 0, 0 entry of the inverse of the matrix, which in turn equals its determinant
divided by D,,. But its determinant equals — K, where K isthe 0, 1 cofactor. Thus

Uf=—.
n Dn
Now look at the matrix (3.5) and consider the 1, 0 entry of itsinverse. It equalson
the one hand (7;,.1(f)~1 8%, A’s1) and on the other hand —K /D,,+1. This gives
the identity
D 1
UF = =25 ()18, A6 = ——— (Tuia(f)"15%, A'sT).
Dy Vn+1
(3.11)

To evaluate the inner product on the right side we for the moment replacen + 1

by n so that we can apply earlier formulas. The inner product becomes

(To(H7L6F, A'sT) = (AT ()18, 7).
Multiplying the second identity of (3.1) left and right by 7,,( /)1 gives
AT () T, (H T = T(H L A+T.(H 8 T, (H 1.
(3.12)

Applying thisto 7 (observing that A§*™ = 0) and taking the inner product with
8t wefind that

(AT, ()Yt sH=V- U - -UVr .

Here we used (3.3). Replacing n by n + 1, we see that (3.11) becomes

-
n+l ;,—
Ul =- v Untl + U
n+1
This gives
Urj_ - U;r+1 =U, U1 (313
by (3.6).
Next we apply (3.4) to then x n matrix
0 fa1 - fan
0 fo - fontt
1fo—2- fa
0fu-1--- fo

The formula says that the inverse of the upper-left entry of itsinverse equals

—(T(H)7tAs™, f).
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Thisinverse also equals (—1)"~1 D, /K where K isthen — 1, 0 cofactor of the
matrix (3.5). But (T,+1(f)"1A8~, 81), the 0, n — 1 entry of the inverse of (5),
equals (—1)"~1 K /D, 1. We have shown

Dn+1
D,

(T2 (f)"PAS™, 8) = —(T(f) T AS™, ).
This may be written

(T, AT1(H)7187) = =Vapr 61, AT(H ).
To compute the |eft side we use the fact that

f—n-i—l

AF=| F |l =mpns - fos.

Hence
TN PN =8 = fo ()74,
Therefore applying (3.12) to f~ gives

AT () =6 - fo Tn<f>*l~5* (A, ) T(H7I8™
—~(Tu(H 76T, O T(H T

Taking inner products with §* we find
@ AT T == (fo— (DY ) Ty =Ty U

But (3.9) gives

~ ~ ~ 1
fo— A =fo— T(H T FH= T
n+1
Hence
@, AT (L) = -~ — U
n+1

G AT (H ) =V, + U, U VL (3.14)
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3.2. Nonuniversal recursion relations

Here we restrict to our symbol
f1(@) =e* (142

but write f instead of f; for notational convenience. We shall obtain relations
which follow from the representation

1 .
fi= %fet/z L+ 777tz
upon integrating by parts. The fact

1 (d .
— [ £ ief/z 1+ z)k+lz_’} dz =0
21i dz

gives
—t(firr+f)+&+D fia—j(fj+ fi-1) =0,
G+ fi+G—k=1 fia+tfi+1=0.
Replacing j by i — j we obtainthe i, j entry of amatrix identity:
(M+DT(f) = T(HM+ M~k =1 T,f) = Ty )M+t T(z 1 f) =0.

Here M denotes the diagonal matrix with diagonal entries 1, 2, -- -, n. We use the
identities (3.1) and (3.2) to write thisas

M+DT,(f) =T ()M + M —k—1) (A T,(f)+ 6" @ )

—(L(AHAN+F @IM+t(Ti(fH)A+ fFest) =0,
M+ T(f) —T(HM+A—-k)AN T, (f) = T(/) AN+t T,(f) A
kTR ft—nfT R +1fTest =0
We multiply this left and right by 7;,( £)~1, obtaining

T T M+1) = MT,(H T+ T(H M-k -1 A
AN MT,(f) P+t AT, ()T

— kT (H) BT QT AT —nT(H @ Tu(H 18
+ 1T (H @ T(H st =0. (3.15)

This is the basic matrix identity. Applying this matrix identity to 6+ and taking
inner products with §* gives identities for scalar quantities. We shall need three of
the four.

First we apply (3.15) to §* and take the inner product with §+. If we recall our
definitions and the fact A§™ = O we obtain
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VI A=k (T ()TN 8T, 6T+t (AT, ()~ 6T, 1)

—kVIUF —n(T(HF sH v +utvi=o. (3.16)
But ~ o ~
(T(H L 8H =@H e =0,
so (3.6) gives
Vo =-VfUu_,.
Thus

(DO 89V ==V, 0, Uy,
Next, by (3.11) we have
(T(HEA 8T, 60 ==V U (AT(H T s ==V Ul
Substituting these relations into (3.16) and dividing by Vv, gives
t+ k-0, —tU, —kUS +nU, U +1U} =0.

But (3.13) gives U, U, , = U, , — U}, from which we see that the above
becomes

t+k+n-DU" —k+n)Uf +1WU, -UF =0

The derivation holds also for n = 1 when one defines U™ = U~ = 0, as one can
easily check. Therefore summing over n gives

nt—k+n) U +1UF =0. (3.17)

For the next relation we apply (3.15) to 6~ and take the inner product with §*
to obtain

n+t—DV +t(AT,(f) L6, 67—k ViU —nU; VS +1tUF V™ =0.
If we applying (3.14), divide by V," and use (3.6) we obtain

~

DU e k U- +0- . =0
—+ 1= DU+ (AU O ) = ke O =10 O =0,

n

But

V- Vo, vV ~ ~
-1 —1 Va1 - - o~
. - - = _Un—2 1- Un—l Un—l)’

Vi VL vl

by (3.6) and (3.10). Replacing n by n + 1 and introducing the function
&, =1-U; U
we obtain

—t+m Uy +t W, Uy —U; @)~ k+n+1 U, —tUS U =0.



Longest monotone subsequences in random words 369

By (3.13) this may be written
~t+m) Uy +tU)2U;—tU,_ &y~ (k+n+1U, ;=0 (318
Finaly we apply (3.15) to 6~ and take the inner product with §~ to obtain
nVE— =D (T(f) 8 A —kV U - —nUfVi+1U V™ =0.

From (3.11) we see that (7, (f) 26—, A8™) = —U.' , V;*. Substituting this
into the above identity, dividing by V,, and using (3.6) gives

t+m-1U0}  +kU, U —nUf —tU, U, _,=0. (3.19)
Using (3.13) we can write
kU U =nU; Uy +(k—n) (U, —U5.
Substituting this into the preceding and replacing n by n + 1 give
t+*k-DUF++DU, Uy —kUH —1tU U7 =0.  (3.20)

Another identity can begotten by using (3.13) toreplacen (U, , —U,,), which
weseein (3.19), by n U,_, U, . Thisgives

t—UF  +k+m)U; —tU; U, ,=0.
Replacing n by n + 1, multiplying by 17,,— and adding to (3.18) gives
nU, +U; U5+ @, (k+n+DU, ,+1U,_;)=0. (3.22)
3.3. Differentiation formulas

Wecontinuetotake f (z) = e'/? (14z)* andwrite D, (¢) for D, (f) Sincedf/dt =
z71f wehave

% log Du(t) =tr T, () ' T 1) = tr (A + (O e 8*)
by (3.1), and so
< 10g D,0) = Uy (3.22)

which iswhy this quantity arises. Others will arise from further differentiation.
We use

—T N t=-nH e tH TN
= —AT,(H =TT @ T, (H st

df~t
P @ = AT s
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Hence

AUt

- =—(A ()7L 60 — @), oh (m(H 7t

T ()AL 8D + fura (T ()18, 81).
By (3.12) the two termsinvolving A combineto give
(T(H7Lf, 85 (T(H 7Y, 1) = (@(H 77, 85 @(H 1, 5.

Using this we find that the preceding simplifiesto

~ ~ 1 ~_ ~ 1 V.
VGO D+ fua V= -V o 22
Vn+1 Vn+2

by the second part of (3.9). This equals

Vn_ Vn+ Vn+2

Tyt vt vt
Vi Vn+1 Vn+2

=-U,,A-U,U)U, ;.

by (3.6) and (3.10). We have shown

du; NI
= =, U, Uy, (3.23)

In completely anal ogous fashion (we spare the reader the details) we compute

du,; >
_Ef.z-—wf(ﬂﬁfyﬁf_,f+)+:ﬂ+1Vj,

and using again the second part of (3.9), (3.6) and (3.10) we find that

dU; _
dt =@, Un+1‘

(3.24)

To find formulas for the derivatives of U+ we use

d ~
ETn(f)‘l = T, () 1 T(zf) T (f) 72
= AT, (H 4+ T(H - @T(H 1,
dft

—— =GN =N+ fosT,
dt
At the appropriate points in the computations we use the analogue of (3.12) with
A’ instead of A, and the first part of (3.9) rather than the second. Again we spare
the reader the details. The results are somewhat simpler:
dU+
Un = @, (3.25)
dt
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dU;
dt
Observe that from (3.22), (3.17), and (3.25) we have

=0, 0, (3.26)

d
d—td—logD w(t) = (k+n) P, —n.

This gives the representation
t
log D, (t) = (k +n) / log(t/t") ®,(t)dt' — nt
0

4, PainlevéV and the Laguerre ensemble
4.1. Derivation of the differential equation

We begin by showing how differentiation formulas (3.24) and (3.26) have ana-
loguesin which only indicesn and n — 1 appear on theright side of (3.24) and only
indicesn and n + 1 appear on the right side of (3.26).

Solve (3.17) for U, ;. The solution involves U +1» Which we can solve for in
(3.20). Thus U, 4, and so dU, /dt, can be expressed in terms of quantities with
indicesn or n — 1. To obtain adifferentiation formulafor U that involves only n
and n + 1 simply solve (3.20) for U‘ 1. Theresults of th|sare

dUu,; n_ 1 ~ U, o, ~ 72
=—=U, +- (U -t L u._,U, 4.1
dt t "+t(” ")CI>n—1+d>—1”1 (4.3
dU; ~ 1~
— ;U + =00+ (k+1+n)<b ;. (4.2)
Now compute @/, using (3.24) and (4.2). The result can be put in the form
o, n®, -1 10f(®,—1) S~ 1 ~
En_; D, t - D, =-U, 11U, __(n+k+1)Un+1Un' (4.3

Now solve (3.18) for U, _ 1U and insert the result in the right hand side of (4.3).
Theresult can be Wr|tten as

o, -1 Ut (®, —1)

kﬁ,j+1—(2n+2+k)U,;z7,;+l:qu:—n o >, +t-Uf =6,
(4.9)
say. Noting that
Uy Uy =05 =0 (4.5)
we have
(Ur Uya) = @0 — P

by (3.25). Therefore differentiating the left side of (4.4) gives

&' =—2n+2+k) Py +20k+n+1) Ppyq,
2k +n+D) @, 1= +@n+2+k) D,.
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Computing &’ using the right side of (4.4) we obtain the representation

oy ( /)2 CD”
2n+k+1) @, 41 = 242(n+k) ©,—(n+U -, q)’z’ a2 +th (4.6)
n

Simply integrating the preceding equation using (3.25) gives

¥, D, -1 ~. U
2m+k+ 1) n+1=tg:—n o, +2(k+n)Un+¢T;+t. 4.7

We now write out the last relation from which the differential equation will
follow.
UaaU) U U, p) _. Y 1) WU, U 1)

o = 1—U U =1-
n+1 n+1 Uy U, 1_ o,

(4.8)
Use (4.5) and (4.7) to express U, U, ; interms of U, &, and ®/,. Similarly use
(4.3), (4.5) and (4.7) to express 17,; U, ., intermsof thesamequantities. Finally, on
theleft hand side of (4.8) use (4.6). The result isathird-order differential equation
for U,". (Recall (3.25).) Thisthird-order equation is

1/1 1 , 1 2(k +n) 2(k + n) )
w/// — E <J w/ — 1> (w//) _ ; w// + p w/ _ p (w/)
t4n (n+w)?  (—w)?
— (m—t+2w) — - . 4.9
T e T T T 22w — 1) 49

Cosgrove tells us? that the equation integrates to

2 (w)? = =k + )1 () + {4+ myw o+ 222k + 3 1+ 2] (w)?

—{2(t+2k+3n)w+2nt+2n2} w + (w+ n)2. (4.10)

The 0 = o () form of Painlevé V as given by equation (C.45) in Jimbo-
Miwa[21] (seeaso[29]) is, after changing o to —o and taking the specia parameter
vauesvg=v1 =0, vy =k, v3=k +n,

(10”)" = {U —10’ =20+ 2k +n) o’}2 — 402 (0" — k) (6" —k —n).
(4.12)

If
o

T k+n)

8 Cosgrove, in hisanalysis of certain third-order differential equations, has shown that the
third order differential equation of Chazy Class | (see (A.3) in [10]) can be integrated to a
second order and second degree “ master Painlevé equation” (see(A.21) in[10]). Thismaster
Painlevé equation, called SD-I in[9], contains all the Painlevé equations|-VI. Our (4.9) isa
special case of Cosgrove's (A.3). Carrying out thisreduction [11] in this special case results
in (4.10). Cosgrove's integration constant equals —n2/4 in our case. This follows from the
boundary conditions derived below in (4.14).



Longest monotone subsequences in random words 373

then (4.10) and (4.11) are equivalent. Notice that since w = l7,jf , (3.17) says that
o =kt —t U, and therefore by (3.22)

_ d —kt
o =—t = log (e Dn(t)>
and therefore
t /
e XD, (1) = exp (—/ # dt’) . (4.12)
0

This, with Theorem 1, gives Theorem 2 for G,. For G p itissimply amatter of
changing k to —k and r to —+.

4.2. Laguerre ensemble interpretation of Dy, (¢)

In order to specify which solution of (4.11) our o is, we must determine the bound-
ary condition o satisfiesat + = 0. We have by (3.25) and (3.6)

~

~ V..V,
k+nU U =(k+n Zrtl Tndd
Gt m U O = Gm =50

drr_

dt

Now Vntrl isthe upper-left entry of 7, 1(f) ! where, recall, f(z) = ¢'/* (1+z)F.
Ast — 0thisapproachesthe upper-left entry of (1 + A’)~%, whichisclearly equal
to 1. Equally clearly, the lower-l€eft entry of the inverse has limit (’n"), so that

. _ —k
rlfc]) Vit = n)
To determine the behavior of 17”;1, the the upper-right entry of T,,.1(f)%, we
write
N P (K A 0-0)
Lii(f) = +A)+ Y — o, (4.13)
p>0,4>0 P\

where A denotes A7 if j < 0and (A")~/ if j < 0. Factoring out (I + A’)* and
taking the inverse gives

-1
Tua(H7H = (1+(1+A/)k 3 ﬂ(k) <pq>) U+ A,

|
p>0,¢4>0 P \4

If weexpand out theinverseswe get asum of products. Each product hasfactors
of theform¢7i A(Pi—4) and other factorswhich are nonnegative powersof A’. Such
aproduct will have anonzero upper-right entry only if Y " (p; +¢;) > n. Therefore,
sinceeach p; > 1, thelowest power of ¢ which can occur isn. Moreover this power
occursonly when al g; = 0and all the nonegative powersof A’ which occur inthe
product are 0. This means that we get the same lowest power of ¢ in the upper-right
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entry of theinverseif in (4.13) we replace (I + A’)* by I and in the sum we only
take the termswith ¢ = 0. This amountsto replacing 7,,1(f) by

tP

Z—A":e“\.

I
pzop'

The inverse of this operator is e~ and the upper-right corner of this matrix is
exactly (—1)" t" /n!l. Thus

~_ (_t)n

n+l = nl

+ 0(fn+1),

ast — 0, and so

do_ (k+n) <_k) (_n—tl)n +o@"h = * (n :k> "+ 0.

dt n n!

Since s (0) = 0,

_ k n+k n+1 n+2
U(t)——(n+1)!< i )t + 01", (4.14)

Here is the remarkable fact: the same function o which satisfies the equation
(4.11) together with the boundary condition (4.14) gives a representation for the
Fredholm determinat which equals the distribution function for the smallest
eigenvaluein the Laguerre ensemble of k x k matrices associated with the weight
function x" e~*. Precisely, we have

Prob (Amin > 1) =det(I — K1),

where K, istheintegral operator on (0, ¢) with kernel

12 PLk(X) 9L k1Y) — @ k—1(x) oL k(¥)

Kp(x,y) = [k(k +n)]

X =Yy
Here
(x) = k! xn/Z e—x/Z L(n)(x)

PLE) =\ F o kL

Moreover
t /
det (I — K1) = exp <_ / # dt/) . (4.15)
0

(See[37], Section VB.) It follows from this and (4.12) that
e M Dy(1) = det (1 - K1),

which, with Theorem 1, is the assertion of Theorem 3.
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4.3. Limiting distributionas N — oo

The foregoing can be restated in more concrete terms as

> Fi(n; k, N) (kt) M i /OO”‘/OOHJC}' e LY
t t

N>0

A(x)%dxy---dx, (4.16)

where A(x) = ]_[,-<j(x,~ — x;) and ¢, , isthe normalization constant defined by

o o]
()t = / / ij e 2% A(x)2dxy---dxg
0 0

Infact ([27], formula (17.6.5))

k=1

(ce) t=1120 ok [+ ) (4.17)
j=0

If we make the variable changes x; — x; 4 ¢ intheintegral, the right side of
(4.16) becomes

(0.¢] o0
Ci,n / / l_[()Cj +0)" e X% A(x)2dxy - - dx
0 0

Therefore

Fi(n; k, N) = / f “XN A(x)?dx f./t’N’ll_[(x/ +1)" dt,

wheretheinner integral istaken over acontour surrounding : = 0 and wewritedx
fordxq---dxy.
Set
N=kn—r, r=/[skv/2n]. (4.18)

Then
—l -N-1 . n _ 1 r -1 dt
27'ri/t | |(x,+t) dl__eri_/t exp{n § log(1+1 xj)} "
_1 -1 1 -2 2 dt
= ifexp{rlOgt+n<t E )Cj—él E xj+...>}_

aslong asthe integration is over a contour where [¢| > > x;. In fact we integrate
over the circle 1| = n Y x;/r. The function rlogs + nt~1 Y x; has acritical
pointatr = n ) x;/r and its real part restricted to the circle has an absolute

maximum there. The rest of the exponent, n (—%t‘z PBELE R ) is uniformly
bounded on the circle and equals

r2 ijz

_Z—(Z .Xj)z +0(1)
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at the critical point. It follows that asn — oo we have, uniformly for all x;,

N 2 Yxr ] 1
%/t [ [ +0mar eXp{_Z(ij)z

x/exp{rlogt—i—n (%)} %

2mi

= exp _ﬁ lez'z (n ij)r'
2n x| ror+1
Thus
N! n" P2 Y x?
Fr(n; k, N) ~ k_NCk’" m //ex'o{_Z (ijj)z}
X (ij)r e %) A(X)zdx. (4.19)
Define

7 = {(x;) eRr: ij =0}
and for general (x;) € R* write
y=2 %) xj=—xj+y/k,

so that (x;) € Z. We integrate over 2 with Lebesgue measure and over y € R.
Since eacf’1 xj > Othey integration is restricted to

y>k maXx;-.

We find that the double integral in (4.19) equals (after changing back from x’ to x)

1 > 2 3 x2 42k ,
_/ A(x)zdx/ exp _r_Zl—Z Y eV dy
vk Jo k max x; 2n y
2 2
e /2%kn 5 ) 72 3«
= A d ex _ J "oV d
NG /J (x) x/kmaxxj P1732, )2 yeVdy
_r2/2kn 00 2 x2.
_e (Zn)(k2+r)/2/ A(x)zdx/ opl - ZZJ eV gy,
vk z k maxx; 2y

where to obtain the last we made the substitutions x; — +/2nx;, y — +/2n y.

Thefactor y" e Y2 i the inner integral achieves its maximum on R* when
y = r/+/2n = sk + o(1), a which point the other factor in the integral equals

e‘z"fz'. Hence if maxx; < s (sothat sk isinterior to the range of the y integra-
tion) the inner intregral is asymptotically equal to

00
e—ZxJZ. / yr e_3"/zdy — e—zsz- (Zn)—(r+l)/2 ' +1),
0



Longest monotone subsequences in random words 377

whileif max x; > s theinner integral iso of this. Moreover theinner integral is at
most

oo
/ yr efy\/zdy S e*k maXXj
k max x

)
% / yr oY (v/2n-1) dy < Ce_k max x ; (Zn)—(H-l)/Z rr+1)
0

for aconstant C independent of the x; and ». Hence application of the dominated
convergence theorem shows that if we define

Zy={xeZ maxx; <s}
then the double integral in (4.19) is asymptotically

2

e’ /2kn 2 2

R, I Gt SVE TR / e 2% A(x)2dx.
\/E Y

(Here dx denotes L ebesgue measure on Z.) If we recall the definition (4.18) of r
and the value of ¢, given by (4.17) and apply Stirling’s theorem we obtain

Fi(n;k, N) ~yk/ e X% Ax)2dx,

where
yl=1120 k) kD2 - k-D/2, (4.20)

Equivalently,
L (w) — N/k
lim Proby [ Y
N—o00 k ( A/ 2N/k
Theright side isthe conditional probability that the largest eigenvalue of a matrix

from GUE is at most s, given that the matrix has trace zero, and so Theorem 4
is established.

§s> - yk/ T A)2dx.  (421)
Zy

4.4. Large k asymptotics

Inthissection wedenoteby F (s, k) the probability ink x k GUE that Ay < s and
by FO(s, k) the same probability in k x k traceless GUE. Thus FO(s, k) is given
by the right side of (4.21) while

N S 2
F(s, k) =ci / / e LN A(x)zdxl---dxk,
—0oQ —0oQ

where (see (4.20) and formula (17.6.7) of [27]) cx = yi/+/7. Using now the vari-
able change

y:ij, xj=x;+y/k
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and then changing x’ back to x as before we find that

v [ (T2t 2
F(s,k):—/ d / e ITECA(X) dx
vk J-o Y Zs—y/k
[k [ ! 3,2
= —/ e_kyzdy/ e XN A(x)%dx
T J—c0 Py
k [>*_,.
- /_/e—’”2 FO(s — v, k) dy.
T J-

Replacing s by ~/2k + s/~/2k/6 and making the variable change y — y/+/2k/8
we obtain

1/3 00
F(N2k+s/v2kY8, k)= % / ek O 2k 4 (s—y) /v 2KY8, k) dy.

T J—o0

The factor FO(v/2k + (s — y)/~/2kY®, k) in theintegrand is a bounded and non-
increasing function of y whereasthe integral over |y| > § iso(1) for any § and the
right side without this factor equals one. Hence for any § > 0

FOV2k + (s — 8)/v2kY®, k) + 0(1) < F(V2k + s/v/2k*8, k)

< FO(V2k + (s + 8)/v2kY®, k) + 0(D).
It follows from this, (1.3) and the fact that F2(s) is continuous that

Jim FO(V2k + s/v2kY®, k) = Fa(s). (4.22)

(A result which includes this, where N — oo and k — oo with N >> k, can be
found in [24].)

Another way of expressing (4.22) isasfollows. Let £, equal the weak limit of
(¢l — N/k)/~/N as N — oo. Thedistribution function of ¢ is

_ 2 —N/k
Nll—>moo Proby (% < s) = FO(s\/k/2, k).

Then (4.22) is equivalent to the statement

lim Prob ((ek — k23 < s) — Fa(s).
k—o00

Acknowledgements. The authors have benefited from conversations and correspondence
with D. Aldous, Y. Chen, P. Clarkson, C. Cosgrove, P. Diaconis, |. Gessel, C. Grinstead,
A. Its, K. Johansson, J. L. Snell and R. Stanley. It is a pleasure to acknowledge this and, as
well, thesupport provided by theNational Science Foundationthrough grantsDM S-9802122
and DM S-9732687 and the EPSRC for the award of a Visiting Fellowship, GR/M16580.
Finally, we wish to thank D. Eisenbud and H. Ross for their support during the MSRI
semester Random Matrix Models and Their Applications.



Longest monotone subsequences in random words 379

References

1.

2.

10.

11
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

Aldous, D., Diaconis, P.: Longest increasing subsequences. From patience sorting to
the Baik-Deift-Johansson theorem, Bull. Amer. Math. Soc., 36, 413-432 (1999)

Bak, J., Deift, P, Johansson, K.: On the distribution of the length of the longest
increasing subsequence of random permutations, J. Amer. Math. Soc., 12, 1119-1178
(1999)

Bak, J., Deift, P, Johansson, K.: On the distribution of the length of the second row of
a Young diagram under Plancherel measure, preprint (arXiv:math.C0/9901118)

Baik, J.,, Rains, E.M.: The asymptotics of monotone subsequences of involutions,
preprint (arXiv:math.CO/9905084)

Bak, J, Rains, EM.: Algebraic aspects of increasing subsequences, preprint
(arXiv:math.CO/9905083)

Borodin, A.: Longest increasing subsequences of random colored permutations, Elect.
J. of Combinatorics, 6(1), # R12 (1999)

Borodin, A., Okounkov, A., Olshanski, G.: Asymptotics of Plancherel measures for
symmetric groups, J. Amer. Math. Soc., 13, 481-515 (2000)

Clarkson, PA., McLeod, J.B.: A connection formulafor the second Painleve transcen-
dent, Arch. Rat. Mech. Anal., 103, 97-138 (1988)

Cosgrove, C.M., Scoufis, G.: Painlevé classification of a class of differential equations
of the second order and second degree, Stud. Appl. Math., 88, 25-87 (1993)
Cosgrove, C.M.: Chazy classes | X—XI of third-order differential equations, Stud. Appl.
Math., to appear

Cosgrove, C.M.: letter to authors, March 19, 1999

Deift, PA., Zhou, X.: A steepest descent method for oscillatory Riemann-Hilbert prob-
lems: Asymptotics for the MKdV equation, Ann. Math., 137, 295-368 (1993)

Deift, PA., Zhou, X.: Asymptotics for the Painlevé Il equation, Commun. Pure Appl.
Math., 48, 277-337 (1995)

Forrester, PJ.: Exact results and universal asymptotics in the Laguerre random matrix
ensemble, J. Math. Phys., 35, 2539-2551 (1994)

Fulton, W.: Young Tableaux: With Applications to Representation Theory and Geo-
metry, Cambridge University Press (1997)

Gessel, 1.M.: Symmetric functions and P-recursiveness, J. Comb. Theory, Ser. A, 53,
257-285 (1990)

Hastings, S.P,, McLeod, J.B.: A boundary value problem associated with the second
Painlevé transcendent and the Korteweg de Vries equation, Arch. Rat. Mech. Anal., 73,
31-51 (1980)

Hisakado, M.: Unitary matrix models and Painlevé 111, Mod. Phys. Letts., A11, 3001—
3010 (1996)

Its, A., Tracy, C.A., Widom, H.: Random words, Toeplitz determinants and integrable
systems. |, preprint (arXiv:math.CO/9909169)

Its, A., Tracy, C.A., Widom, H.: Random words, Toeplitz determinants and integrable
systems. |1, preprint (arXiv:nlin.SI/9909169)

Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordinary differential
equations with rational coefficients. |1, Physica, 2D, 407-448 (1981)

Johansson, K.: The longest increasing subsequence in a random permutation and a
unitary random matrix model, Math. Research Lett., 5, 63-82 (1998)

Johansson, K.: Shape fluctuations and random matrices, Commun. Math. Phys., 209,
437-476 (2000)

Johansson, K.: Discrete orthogonal polynomial ensembles and the Plancherel measure,
preprint (arXiv:math.CO/9906120)



380 C.A. Tracy, H. Widom

25. Knuth, D.E.: Permutations, matrices and generalized Young tableaux, Pacific J. Math.,
34, 709-727 (1970)

26. Knuth, D.E.: The Art of Computer Programming, Vol. 3, Sorting and Searching, 2nd
ed., Addison-Wesley, Reading (1998)

27. Mehta, M.L.: Random Matrices, 2nd ed., Academic Press, San Diego (1991)

28. Odlyzko, A.M., Poonen, B., Widom, H., Wilf, H.S.: On the distribution of longest
increasing subsequences in random permutations, unpublished notes

29. Okamoto, K.: Studies on the Painlevé equations I1. Fifth Painlevé equation Py, Japan.
J. Math., 13, 4776 (1987)

30. Okounkov, A.: Random matrices and random permutations, preprint (arXiv:math.-
C0/9903176)

31. Rains, E.M.: Increasing subsequences and the classical groups, Elect. J. of Combinat-
orics, 5, #R12 (1998)

32. Regev, A.: Asymptotic values for degrees associated with strips of Young diagrams,
Adv. in Math., 41, 115-136 (1981)

33. de, G., Robinson, B.: On the representations of S,,, Amer. J. Math., 60, 745-760 (1938)

34. Schensted, C.E.: Longest increasing and decreasing subsequences, Canad. J. Math., 13,
179-191 (1961)

35. Stanley, R.P.: Enumerative Combinatorics, Vol. 2, Cambridge University Press, Cam-
bridge (1999)

36. Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel, Commun.
Math. Phys., 159, 151-174 (1994)

37. Tracy, C.A., Widom, H.: Fredholm determinants, differential equationsand matrix mod-
els, Commun. Math. Phys., 163, 3372 (1994)

38. Tracy, C.A., Widom, H.: On orthogonal and symplectic ensembles, Commun. Math.
Phys., 177, 727-754 (1996)

39. Tracy, C.A., Widom, H.: Random unitary matrices, permutations and Painlevé, Com-
mun. Math. Phys., 207, 665-685 (1999)

40. Tracy, C.A., Widom, H.: Correlation functions, cluster functions and spacing distribu-
tions for random matrices, J. Stat. Phys., 92, 809-835 (1998)



