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We give a simplified derivation of an exact
expression for the spin-spin correlation function
of the two-dimensional Ising model suitable for
studying large spin separation for T<Tc'

I. INTRODUCTION

Some time ago, Montroll, Potts and Ward [1] derived a
representation of the multi-spin correlation functions of
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the two-dimensional Ising model in terms of determinants.
These determinants are of small size when the spins can be
grouped into a set of pairs such that the members of each
pair are close together. However, if all the spins are
widely separated the size of the determinant grows with the
separation and the behavior of the correlation function is
no longer manifest.

The process of converting the determinants of MPW into
a form useful for studying widely separated spins was ini-
tiated for the 2-point function <0Jg o0M,N> (where M speci-
fies the row and N specifies the column) by Wu [2] who con-
sidered M=0 and soon continued by Cheng and Wu [3] who con-
sidered M#0. These authors derived the leading terms in
<00,OGM,N> for widely separated spins for both T<T. and T>T,.
Recently the complete expansion of the 2-point function in
the form suitable for widely separated spins has been com—
puted by Wu, McCoy, Tracy and Barouch [4,5] and for suitably
large separation was shown to be convergent. With this com-
plete expansion it was then possible to give a detailed de-
scription of the 2-point scaling functions. In particular,
the scaling functions were shown to be expressible in terms
of a Painlevé function of the third kind [5-71.

Here we give a simplified derivation of the results of
section III of reference 5 (these results are summarized by
equations (2.9) - (2.13) of reference 5). We assume that
the reader is familar with the Pfaffian approach to the two-
dimensional Ising model [8-11]. As background we refer the
reader to Kasteleyn [12] and MPW or to any one of a number
of review papers [13-16].

II. PERTURBATION EXPANSION FOR <oy oy n> FOR T<T¢
AND LARGE MZ+N2
A. Preliminary Notation

The two-dimensional Ising model on a square lattice is
specified by the interaction energy

= -E 2 0, 0. - E 2 o, 9.
1 i,k ik j,k+1 Z;jk j,k"j+1,k  (2.1)
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where the first (second) index of o k specifies the row
(column) of the lattice and o§,k=1% T. We define

z) = tanh(BEl) . z, = tanh(BEZ) (2.2)

where 8 = (kgT)~l. At T = T, we have

sinh ZBCEl sinh ZBCE2 =1 (2.3)

or, equivalently

z, +z, -1=0 (2.4)

z1c22c + 1c 2c

B. Method of MPW

In the Pfaffian approach to the calculation of corre-
lation functions for the Ising model defined by (2.1), the
problem is equivalent to the calculation of the partition
function of an Ising model defined on a "defective" square
lattice [I]. To be precise, to compute <0g ooM, N> we first
join the lattice points (0,0) and (M,N) by & line drawn on
the lattice. If the line is drawn on a horizontal (vertical)
bond, the bond strength is changed from z,(z,) to ZII (zzl).
This defines the defective lattice. The partition function
for the Ising model on this defective lattice is the Pfaffian
of some antisymmetric matrix. The correlation function he-
comes the ratio of the partition function for the defective
lattice to the partition function for the "pure" lattice.
Since the square of a Pfaffian is a determinant, <o OOM’N>2
is expressible as the ratio of two determinats, The’deter-
minant arising from the defective lattice can be written
as the product of two determinants with one determinant being
precisely the determinant appearing in the denominator.

Hence the method of MPW reduces the computation of <g 0%M, N
to the evaluation of a single determinant. The size Og’thlé
determinant is proportional to the length of the line drawn.

\

Clearly, there are many ways to draw a line on the
lattice that connects the lattice points (0,0) and (M,N),
In MPW the correlation function <g 0n. N> Was expressed as
a Toeplitz [17] determinant by connédcting the lattice points
(0,0) and (0,N) by the horizontal line passing through the
points (0,0), (0,1), ..., (O,N). By an application of
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Szegd's theorem [18,19] the square of the spontaneous magne-
tization [10,20] was computed by evaluation lim <oy o0g N°
N+o ) Iy

Wu [2] studied this Toeplitz determinant for fixed T and
large N. Though these results concern the large distance
behavior of the spin-spin correlation functionm, the drawing
of lines that contain a minimal number of bonds between

the lattice points (0,0) and (M,N) is best suited for study-
ing the short-range order of the correlation function. To
study the behavior of <00, 0M,N” for large M2 + N2 it is
better, as was first shown by Cheng and Wu [3], to work
with determinants which arise from drawing the line through
infinity. That is to say, we may connect the lattice points
(0,0) and (M,N) by a horizontal line passing through the
points (0,0), (0,-1), (0,-2), -** and the points (M,N),
(M,N+1), (M,N+2), -++. Note that the resulting determinant
is of infinite size. This method results (as was shown in
reference 5) in an exact expression for the correlation
function <OO,OUM,N> for both T<T. and T>Tc.

We now describe our simplification of the analysis
of reference 5 for the case T<T.. We again connect the
lattice points (0,0) and (M,N) by horizontal lines extend-
ing to infinity. Thus we have in the notation of reference
5 (M and N are hereafter assumed positive).

2 2.5
<00,0°M,N> det (C) ( )

o -s T U

el S8 0 UV
-T U o0 S (2.6)

-y v =-st o

S TU>and V are infinite matrices defined for m,n = 0,1,2...
by

m

Sun = ent J dp 1O g 1 (2.7

-7
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i3

T, = @n7 j dp 1MIMG 5 10y (2.8)
-
kil
Upy = 2m 7 J ap SHFD yldy (2.9)
-
and
w
V= @nt j g e71m¥n) g 10y (2.10)
mn
-7
where
1
2
16 (l—alei¢)(l—a2e_i¢)
S(e™") = =15 1 (2.11)
(l—ale )(l-aze ¢)
ree 2 1 g MeriNe
(e 4 = -(1-21) 2m) qu’l W >\(¢1,¢2)
-7
(2.12)
16 " Mg —iN¢ 7
2, _ -1 e T2 2, -i¢
U(e ) = (2m) [dcbl A(¢1,¢2) [—21zz(l—zl)e Zsimbl
- _
(2.13)
o T -iM¢ ,-iN¢
teay _ -1 e P2 244, 2
V(e <) (27) Id¢1 _.-———_—_—A(¢1’¢2) e (1—zl)>\(¢1,-¢2)

-

(2.14)
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and with z; and z, given by (2.2),

A(¢l,¢2) = (l+zi)(1+z§) - 222(1—zi)cos¢1 - Zzl(l—zz)cos¢2

(2.15)
_ 2 2 -i4,
A(¢1,¢2) =1 - z, = zl(l+zz+222cos¢l)e (2.16)
and
W = 1—22
1 1 1+z2
(2.17)
) z_l l—z2
%" % 1z,

The square root in (2.11) is defined so that S(ei")>0.
Following MPW it is convenient to define

(1+zi) (1+z§)

()
[}

2
Y1 222(1—21) (2.18)

2
Yy = 221(1-22)

We also note that for T<T. (0<aj<o,<l) the index [21] of the
generating function (2.11) is zero.

We define

0 S A 0
-sT 0 0 A_

and
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T U 0 B
B = s B = (2.20)
-y v 8T o

so that C becomes
[?A B.]

C = -
B A

Now from (2.15) and (2.21) we obtain [22]

A+B (2.21)

C. Evaluating det(c¢)

2
“°0,0%M, N

det(C)

det(A) det(l + A™1p

M4exp[Tr log(l + A_lB)]

® kel
Maexp[z (—Tl)— Tr[(A_lB)k]] (2.22)
k=1

In (2.22) we used

det(A) = y* (2.23)

where M is the spontaneous magnetization [10,20]

M= 1 - (stnh2sE, sinh2E,)~2;1/8 (2.24)

The evaluation of det(A) is discussed 1in MPW and Chapter X
of reference 11,

If we define F2 by
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2
<00,0°M,N> M exp(—Fz) (2.25)

then it follows from (2.22) that

o K
) S T (A1B5 (2.26)
k=1

From (2.19) and (2.20)

2441

Tr[(A'lB) 1]=0 , 3=0,1,2, ... (2.27)
and
-1 -1
A A B o
(A’IB)2 = (2.28)
-1.T
0 A BA B

Thus if we write Fy as

N ¢1'S)
F. = F , (2.29)
2 kzl 2

we have for k = 1, 2, 3, ¢es

P20 o Lo TBATB) - wmaEH1 230

where the factor (A'IBA'lﬁr) occurs k times in (2.30). Note
that in going from (2.26) to (2.30) we used (2.28) and the
cyclic property of the trace. We now evaluate the trace
appearing in (2.30).

We define for |£| and lgr] <1
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sl eny o Do s

m,n=0

on (2.31)

where S is the Wiener-Hopf operator [21] defined by (2.7).

The generating function S(&), defined by (2.11), has the
factorization

517" = peeyqeely (2.32)

where P(£) and Q(&) are analytic inside the unit circle|g|=1
and are given by

1
l—aZE 2
P(g) = EF:;EE (2.33a)
and
1
l—a1£ 2
Q(g) = (2.33b)
l-a2€
We note
P(£)Q(e) = 1, (2.34)

It follows from (2.31), (2.32) and the method of Wiener-Hopf
[21] that

she,eny - QEP(E") (1-ge7)"L (2.35)
We define
0 ~s7Leer gy
A'l(s,g') = (2.36)
s7Lee,eny 0

S0 that A_I(E,E') is the matrix generating function of the
function of the inverse matrix elementg of A [defined by
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(2.191.

Similarly we define

(&) u(&)
(2.37)

B(g) =
~U (&) v(E)

where the functions T(E), U(E) and V() are given by (2.12)-
(2.14), respectively.T:Note that the matrix generating func—
tion of the matrix B

T(£) ~U (&)
(2.38)

pNE) =
sy Ve

With the above definitions we see that (2.30) is

i
F§2k) =-%E(Zn)'Zk']d¢2d¢4...d¢4k:r{ATl(ZE,§)B(2)
-T
L@, HE WA GBBO). - ALz, TR ()
(2.39)

= = 1, -i
<‘)2) and A 1(2,4) means Kl(e id)z,e cM),
variables satisfy the restriction

k.

where B(2) means B(ei
ete. In (2.39) the ¢2%

Im¢2j <0, 3= 1,2,..

Using (2.32) in (2.36) we can factorize Kl,e"):

0 —pe)|lo -1 0 Q(e")

plee,en = (1—£a')'1
Q&) 0 1 ol t-P(E") 0

(2.40)
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T

_1 -2k
2 =3 (2m) f d¢2d¢4...d¢4k o

2k ~i¢os-ig,rsy -1
p(2k) _ 1 (l—e 2j 2J+2] y
j=1

it

POV ue) 1R -1
X Tr 2 -
-U(2) p (2)T(2)!]1 0
0 -1][R%@®)VeE)  ue) 0 -1
X see X
1 o[ -ue P @r1e)||1 o
Q% (@) V (4k) ~U4k) o -1
X 9 (2.41)
U (4k) PTGIOTGR) | |1 o

In reference 5 the following two identities were proved:

CROVOEE I
X
ORI LA IO

[P(2)1%1(2) =

" ~iM$;-iNg,
(ZTT)-l f d¢1 W [—z;lyle-l(tz(l—coscpl):l
1°72

-T

(2.42)
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94
and
Q@ 1V @) = (2.43)
T -iM¢1~iN2
-1 e —i¢2
(2w) [ ddy — 7 ) [—z Y € (1 + cosé )]
Using these identities and the definition of U(ei¢) we have
2 =
E@v@ D T Mo
= (211)'1 . T oo y.e 192 x
—u(2) P@T(Q2) -7
-z1(1+cos¢l) -isiné,

-1
ising, = (l—cos¢1)

(2.44)

Note that the determinant of the matrix appearing on the

RHS of (2.44) 1s zeroO. We write

-zl(l+cos¢1) —isin¢l —zlcosz%¢l —i.sin%¢lcos%¢1
=2

—zll(l—cos¢1) isin%¢1cos%¢1 —lsin2%¢l

%1

isin¢1
z? cos%¢1 [}z? cos%¢1 —:i.zfi sin%¢;i
(2.45)

-3 .
-iz, 51n%¢1
With (2.45) all the matrix products in (2.41) can be written

as scalar products, i.e.

k

-
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- 1. - 2 1
[z cos2¢1 izl sinzchlj[l O]zl cos%¢3
1

3 s 1
z i 31n1¢3

[t

= -1 sin%(¢l-¢3)

(2.46)
and
-2 coské iz-% ink¢ 0 - zli cosk¢
| 7% cosEd, T P TS *%s
<L
-1 sin%¢5 z12
=+ sin%(¢3—¢5) (2.47)
Thus
k 4 2k
(2x) _ D" k -4k
B = S5 Y7 (2m) fd¢l...d¢4k I
j=1
-7
exp(—ng’)zj_l —1N¢2j) Sin1/2(¢2j-1‘¢2j+1)
(2.48)
This in con

Junction witp (2.29),

the desired result,

(2.25) ang (2.24) gives
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