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We construct the one-parameter family of solutions to d2w/dz2 = zw + 2w> that tend to zero for z — +o by
specializing an equation previously solved in connection with the two-dimensional Ising model. These solutions are

intimately related to the KdV equation.

Among the various profound but solvable models .
of physics, two of the most studied are the Korteweg—
de Vries (KdV) equation for nonlinear wave phenom-
enon [1] and the two-dimensional Ising modet {2] for
statistical mechanics. It has been known [3] for sever-
al years that a Painlevé transcendent [4] of the third
kind plays an important role in the two-dimensional
Ising model. Recently Ablowitz and Segur [S] have
shown there exists an important relation between the
long time asymptotic solution of the modified KdV
equation (and hence indirectly the KdV equation) and
a certain Painlevé transcendent of the second kind. It
is the purpose to show here that this transcendent of
the second kind may be derived from the previously
studied transcendent of the third kind. Thus there is
an unexpected connection between these two models.

The most general Painlevé equation of the second
kind is [4] '

d’w/dz? =zw +2w3 + o/ )]

where &' is a constant (in ref. [5] &' = 0 is the relevant
case). As was shown by Painlevé and is discussed in
the book by Ince, the second Painlevé equation can be
obtained as a limiting case of the third Painlevé equa-
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tion [4]
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where y is the independent variable and a, 8, v, and &
are constants. In fact, if one sets
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in (2), then (1) is obtained in the limit ¢ - 0.

The third Painlevé equation was first introduced
into the physics literature by Myers [6], where a par-
ticular case of (2) arose in the investigation of scatter-
ing from a finite strip. Recently the present authors
[7] explicitly constructed and analyzed the one-param-
eter family of Painlevé transcendents of the third kind
that remain bounded as y - +°0 when the constants
@, B, 7, and 8 in (2) satisfy the restriction

avV=8 +B\/y=0. 4)

This restriction is satisfied by the choice of @, 8, v,

and § in (3) if we set &’ = 0, i.e. the &' = 0 case of (1).
Hence it follows that the one-parameter family of
Painlevé transcendents of the second kind satisfying
(1) with &' = 0 and tending to zero as z - +° can be
obtained as a special case of the Painlevé transcendents
of ref. [7]. It is precisely this one-parameter family,
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which we denote by w(z; r), that is needed in the
work of Ablowitz and Segur [5].

The results of performing the limit (3) on the solu-
tions of ref. [7] is that w(z; r) is given by

w(z;P) = Z% r2* 1w 041(2) (5)
n=
where

@) =5 Jareotisl -l =A@ 6

and forn =1

¥y dfan41
worni@= [ 3 g
£

2n+1 2n
x I eptds? 260 T 645007 (o0

where £ is any contour in the right half-plane that be-
gins at a point at infinity in the sector — %n <arg¢{<
— %17 and ends at infinity in the conjugate sector.
From the work of Painlevé [4] we know w(z;r) is a
meromorphic function of z.

Ablowitz and Segur [8] by use of inverse scattering
methods have also constructed the solution we denote
here by w(z; r). However, our representation is simpler
because it involves integrals over elementary functions
whereas the representation of Ablowitz and Segur in-
volves integrals over Airy functions.

The authors wish to thank Professor M. Ablowitz

for communicating the results of refs. (5] and [8]
prior to publication.
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