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We compute exactly the transverse time-dependent spin-spin correlation functions 

(S;(O)S;l+,(t)) and (S:(O)S$+,(t)) at zero temperature for the one-dimensional XY model that is 

defined by the hamiltonian 

HN = - 2 [(I + r)S:S:+, + (1 - v)S;S:+, + hSf1. 
z-1 

We then analyze these correlation functions in two scaling limits: (a) y fixed, h + 1, R +m, t +m 
such that ((h - I)/rj[R’ - y2:*]“* is fixed, and (b) h fixed less than one, y +O+, R -30, t +m such 

that r[R2 -(I - h2)t*11’* is fixed. In these scaling regions we give both a perturbation expansion 

representation of the various scaling functions and we express these scaling functions in terms of 

a certain Painleve transcendent of the third kind. From these representations we study both the 

small and large scaling variable limits in both the space-like and time-like regions. 

1. Introduction and discussion of results 

Dynamical properties of many-particle systems are often studied in terms 

of time-dependent correlation functions (A(r,, fl)B(rZ, fd).‘) In general the 

structure of (A( r,, tl)B(rz, t2)) is complicated and depends upon the system 
under consideration. Because of this complexity many phenomenological 
approaches to time-dependent correlation functions have been given2). It is 
therefore important to be able to study these time-dependent functions in 
models that are exactly solvable. The one-dimensional spin one-half XY 
model is such a model. We refer the reader to the two excellent reviews by 
deJongh and Miedema3) and by Steiner et al.3) that discuss one-dimensional 
spin systems. Of the various one-dimensional quantum spin systems the XY 
model is no doubt the simplest model to analyze. 

The one-dimensional XY model is defined by the hamiltonian 

HN = - 2 [(l + r)Si”S;+, + (1 - y)S/Siyt, + hS,‘l, (1.1) 
i=l 
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where S,? = ;a,!, a = x, y, z, and a,! are the usual Pauli matrices, y is the 
anisotropy parameter which we take to be non-negative, and h is the applied 
magnetic field in the z direction. We impose cyclic boundary conditions, i.e. 
SN+’ = S’ in eq. (1.1). 

The antiferromagnetic ground state of (1.1) was computed exactly by Lieb 

et al.4) and by Katsura’). Since (1.1) is a quantum mechanical system, the 
ground state is nontrivial (it is BCS-like) and hence the behavior of both the 

static and time-dependent correlation functions at zero temperature can be 
expected to be nontrivial. In particular, McCoyh) and later Barouch and 
McCoy’) showed that for y > 0 and h -c 1 there exists spontaneous mag- 
netization in the x-direction which goes continuously to zero as h + I (with a 
p = i) for fixed y > 0 and goes continuously to zero as y -+O’ (with a p = f) for 
fixed hcl. 

A study of the correlation functions 

P*,(K, r) = (s;(O)s;+‘(t)). (1.2) 

and 

Pr,,(K, r) = (s:(o)sR+‘(t)) (1.3) 

(here the brackets denote the ground state average) was begun (for t = 0 and 
h = 0) by McCoyh) and later extended to h f 0 by Barouch and McCoy’). The 

extension to the t # 0 case was begun by McCoy et al.‘). All of these authors 
study the correlation functions for large R and t and compute the leading 
term in the asymptotic expansion of these correlation functions. At infinite 
temperature some interesting results for p,,(R, t) have been given by Sur et 
a1.9) by Brandt and Jacobi’“), and by Cape1 and Perk”). 

The techniques used in refs. 6-8 are techniques first used in studying the 
asymptotic behavior of the spin-spin correlation function of the two-dimen- 
sional Ising model ‘2,‘3). This similarity of the two models was made precise by 
Suzuki14) who proved the sum rule 

( a,,,u,,,,)‘s = cash’ K~*(v~(O)U~,(O))~~ ~ sinh’ K?(u~(0)a~,(O))xy ( 1.4) 

relating Ising model correlation functions [the LHS of (1.4)1 to XY model 
correlation functions [the RHS of (1.4)1 where we identify 

tanh 2K, = (1 - $)‘/*h -I, cosh2K$ = y ‘, 

with tanh K,* = exp(-2K,), K, = Ej/kBT, and Ej are the usual Ising model 
interaction energy constants. The relation (1.4) is valid only for 

h*+ y2a 1 

(see fig. 1). 

(1.5) 

Krinsky’“) has studied the generalization of (1.4) to the triangular Ising 
lattice. Given the two-point scaling functions of the two-dimensional Ising 
model I&*“), it follows from (1.4) and the fact (~L(O)VA,(O))~~ = O([m - m’(-9’4)at 
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Fig. I. Schematic representation of the model in (y. h) space. Labels refer to the appropriate 

section numbers of the paper. The spontaneous magnetization in the x direction m, + o as h + I- 

and m, = 0 for y = 0. This shaded parts represent the two scaling regions A and B. 

h = 1 that the static scaling functions for (~~(O)U~,(O))~~ in region A (see fig. 

1) are essentially the Ising model scaling functions. 
In this paper we extend the work of MBA and compute the zero tem- 

perature correlation functions (1.2) and (1.3) for all R and t. Much of this 
work derives heavily from the perturbation expansion developed by Cheng 
and Wu13) and further generalized in the work of Wu et al.“) [see also McCoy 
et a1.18)]. Furthermore, using the Painleve function results of McCoy et aLt9) 
(which is equivalent to a certain solution to the hyperbolic sine-Gordon 
equation) we express the various scaling functions in terms of these new 

transcendental functions (this makes a study of the short distance behavior 
straightforward). Fig. 1 shows schematically the regions in (y, h) space 
studied with the labels referring to the appropriate sections in the paper. 

Of particular interest are the scaling regions A and B. The scaling region A 
is defined for fixed y > 0 by 

h + 1’; R-+m; t+w, (1.6a) 

such that the scaling variable, 

S = !!$ (R2_ $r2)‘/*, 
I I 

(1.6b) 

is fixed. We note that s can be either real (R > yt, space-like region) or purely 
imaginary (R < yt, time-like region). In this scaling limit the correlation 
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functions pAI?, t) and pyr(R, t) can be written in the scaling form 

&x(R t) = p&)~:(s) + o([r2(1 - h2(l”4) 

and 

Nhere 

&(=J) = [2(1 + #[$[l - /zzjy4 

and 

pyy(x) = (1 + y)2-l~‘4y-5’4 LI$ 

[I II 

9/4 

, 

(1.7) 

(1.8) 

( 1.9a) 

(1.9b) 

and the + (-) sign in (1.7) and (1.8) refers to h -+ I ‘(h + IF). 
Figs. 2 and 3 show the dependence of the scaling functions g_“(s) and p:(s) 

I I 
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Fig. 2. Scaling functions i‘Z(.s) as functions of the scaling variable ,s (space-like region). 



SPIN CORRELATION FUNCTIONS FOR THE XY-MODEL 5 

1 I I 

p(s) 

I , 

4.0 30 2.0 1.0 

SC 

- 

4.8 

3.6 

3.2 

2.8 

2.4 

2.0 

1.6 

1.2 

0.8 

1.0 2.0 3.0 

-S 

4.0 5.0 

Fig. 3. Scaling functions P:(s) as functions of the scaling variable s (space-like region). 

on the scaling variable s in the space-like region. The scaling function p:(s) is 
essentially the two-point scaling function of the two-dimensional Ising 
model’““). For small s (s real) the behavior of p:(s) and p:(s) is 

P:(s) = c,s-“4{1 *;slR++&s2_+AS20+ 0(S4f12)} (1.10) 

and 

P:(s) = c,S-9’4{1 +~s(3R+4)-~s2T~s3(11n+4,+ 6(s4R3)}, 

respectively, and where 

R = ln(s/8) + yE, 

and 

(1.11) 

(1.12a) 

(1.12b) 

(1.12c) 
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with A = 1.282427 . . . being Glaisher’s constant”), and YE = 0.577 . . . being 

Euler’s constant. 
Figs. 4and 5 show the dependence of &‘X,(-iT) and pZ(-iT) on T (s = -iT) in the 

time-like region. For small 7 (7 real) the behavior of pg(-iT) and p<(-iT) is 

@g(-i7) = C;T “4 
L . 

1 t FQ, - &T’ T & TAR, + C’(~“fli) 
I 

(1.13) 

and 

P:(-i7) = C;,T~“~ 

where 

R, = ln(T/8) + ‘,‘E ~ i7r/2, (1.15a) 

C: = e’““C,, (I.ISb) 

CL = e’““C,. (1.15c) 

I-- 
I Re F”(-ir) , 

t 
---VT------ 
Im F-C-ir) 0 

I.8 

1.6 

1.4 

.2 

1.0 

Fig. 4. scaling functions p:(s) on the imaginary axis (s = -iT) as functions of 7 (time-like region). 
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Fig. 5. Scaling functions P:(s) on the imaginary axis (s = -ir) as functions of T (time-like 

region). 

Thus, in the space-like region the scaling functions I?(S) and p:(s) are real 
and decreasing functions, whereas in the time-like region the functions are 
complex and both the real and imaginary parts show oscillatory behavior. 
This is consistent with the picture of a spin-wave traveling down the chain at 
a velocity y such that at a time t = R/y, when the spin-wave reaches the point 
R, the oscillations begin. 

The xx scaling functions can be expressed as 

P:(s) = go g2k+h) exp( - “2, f2%)) (1.16) 

and 

P?(s) = exp(- R$, f(2n)(~)), (1.17) 

where the functions g2k+l(~) and f”“‘(s) are given explicitly in (2.15) and (2.16), 
respectively. From these expressions for g2k+I(s) and fC2”‘(s) we find that F:(s) 
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has only odd-number spin-wave excitations and p?(s) has only even-number 
spin-wave excitations. For h > I the lowest lying excitation is the single 

spin-wave excitation and its contribution to p:(s) is g,(s) in (I. 16). That is to 
say, the one-spin wave approximation to flf(,s) is 

PC”(s) = g,(s), 

where 

(1.18) 

1 
g,(s) = ; K,,(s) (space-like region) (1.19a) 

and 

g,(-iT) = i H:1”(7) (time-like region) (1.19b) 

in which Ko(s) and H;‘)(T) are Bessel functions*‘). The one-spin wave approx- 
imation to P:(s) is good to 1% for all s 2 0.1 (7 2 0.1) in the space-like region 
(time-like region). The high order spin-wave excitations (3,5,7,. .) contribute 
significantly to s’:(s) only in the region s s 0.1. In particular, the location 
of the zeros of @t(-iT) (see fig. 4) are given to a good approximation by the 

one-spin wave approximation. On the other hand, the correct short-distance 
behavior of p:(s) in both the space-like and time-like regions [eqs. (1.10) and 
(1.13) above] results only when all spin-wave excitations ure kept in (1.16). 

Concerning the scaling function F:(s) in region A (see figs. 3 and 5) we 
make the following remarks: (1) 8“‘(s) approaches zero in the space-like 
(time-like) region in a monotonic (oscillatory) manner as s + ^/J (T + XC), is just 
the statement that there is no long-range order in the y-direction; (2) if the 
spins were classical, then p,!(R, t) = 0; hence the nonzero value of p,,(R, t) 
represents a quantum effect; (3) the lowest lying spin-wave excitation again 
dominates the scaling function for S(T) b 0.8 within 1% accuracy; and (4) if 
one plots the function s 9’4@l(s) for space-like s, then the maximum value of 

.s~‘~~~T(s) occurs at s = 0.452. . ., which is a 64% increase over its value at 
s = 0. 

The scaling region B is described by 

h < 1; y+o: R+ZD. 1+x 

such that 

( 1.20a) 

s, = #* _ (1 _ h*)t’)“* (1.20b) 

is fixed. In this region (see fig. 1) the correlation functions take the scaling 
form 

PX,(R t) - P&)P(.~J2 (1.21) 

and 

PYY(R, t) - p,,W~3~,)12. (1.22) 
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Figs. 6 and 7 show the dependence of these scaling functions on the scaling 
variable sl(-i7,) in the space-like (time-like) region. When sl = 0 (equivalently 
y = 0) in (1.21) and (1.22), the leading order behavior of p,,(R, t) and P,,(R, t) 
reduces to 

p,.,(R, t) = p,,,,(R, t) - a e”222’3Am6(1 - h2)“4[R2 - (1 - h2)f2]-“4, 

where A is Glaisher’s constant. 

(1.23) 

The time-dependent correlation functions p,,(R, t) and pyy(R, t) can be 
Fourier transformed in R and t, i.e. 

m 

&(k, w) = 2 eikR I dt e’“‘[pAR, t) - ~Am)l, (1.24) 
R=-CZ 

-rn 

and the resulting transformed functions can be analyzed as functions of k and 
w. In the scaling region A of fig. 1 these transformed scaling functions take 

I.8 ” 

1.6. 

1.8 - 

0.6 - 

0.0 1 - I 
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 I.6 

7 

Fig. 6. Scaling functions [Pi(s and [P:(s~)]’ as functions of S, (space-like region). 
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Fig. 7. Scaling functions [$“l(s,)]’ and [p‘:(s,)]’ on the imaginary axis (A, = -iTI) as functions of 71 

(time-like region). 

the scaling form 

bx,(k w) =&C(e), (1.25) 

where 

E = l/r ~ llm’(w’ _ y2k2)“2 ( I .26) 

and P:(E) are the spectral weight functions in the Kallen-Lehman represen- 
tation of the scaling two-point functions G?‘(p*) of the two-dimensional Ising 

model (see Appendix B). We decompose p:(e): 

x 

P:(E) = ng” P;n+l(EL (1.27) 

z 

P3E) = “T, P;n(E), ( 1.28) 

where P&+,(E) = 0 (P&(E) = 0) for E c 2n + 1 (E < 2n) and is nonzero and has 
no singularities for E > 2n + 1 (E > 2n). Representations similar to (1.27) and 
(1.28) hold for &,(k, w) and for both &(k, w) and &(k, w) in region B. 

In particular, we find 

4?ry2 
P;(E) = (1-t r)(h _ 1)2 S(E - 1) ( 1.29) 
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and 

P;(E) = 0, for E < 2 
2 

= (l+ & l)r2n2 
(E2 - 4)“2 

E3 ’ for E >2. (1.30) 

The &function behavior of P;(E) is simply the one-spin wave behavior in 

region A in p:(s) and P;(E) shows the fact that the lowest lying excitation in 
region A in P?(s) is the two-spin wave. Integral representations for higher 
P:(E) can be derived. 

In particular we can express p;(r) as a single integral as follows: 

where 
(1.31) 

x1 = 
3 + E2 -c [(e2 - 9)(& ,)I”2 

2E2 
(1.32) 

and 

a = (e2- l)/e2. (1.33) 

The integral (1.31) can be expressed in terms of complete elliptic integrals but 
we find (1.31) just as convenient. In fig. 8 we plot P:(E) and in fig. 9 we plot 

6.4xlb3- 

5.6XiO-3 - 

4.tlXlb3 - 

4.OXlci3 - 

p 

3.2x10-3- 

1.6~16~ - 

1 

I I 1 I I I 1 I I 1 
3.0 4.0 5.0 6.0 7.0 6.0 9.0 IO.0 IID 121) 

E 

Fig. 8. Spectral function &E) as a function of E. 
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Fig. 9. Spectral function P?(E) as a function of E 

P;(E). The slope of P;(E) at E = 2 is infinite whereas the slope of P;(E) at E = 3 
is zero. It can be shown that for all P;(E), k 2 3 that the slope at E = k is zero. 

In section 2 we collect together our principal results so that they are 
accessible for easy reference. In sections II to VII we elaborate in some detail 
on the method of computation. In particular we follow the method of Cheng 
and WU’~) as recently simplified by McCoy et al.lx). 

2. Summary of results 

2.1. Exuct results for h c 1 und ~11 R and t 

When h c 1, one has 

(2.1) 

where pXX(m) is given by (1.9a) and for n = 1,2, . 
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with &+, = 41; Im +j < 0, j = 1,2,. . . ,2n, 

Aj = A(+j) = [(COS +j - h)2 + y* sin* dill’2 

13 

= 

( > 

!$?I [(I _ A;’ ei+j)(l _ A;’ &)(l _ A;’ &)(l -A;’ e-i%)]1’2, 
(2.3) 

*,=h+[hZ-(l-y2)]“2 

1-y 
and h2 = h - [h2-(l - Y2V2 

l-y . (2.4) 

Also, when h < 1 one has for pYV(R, t) the exact expression 

&(R, t) = -pZ(R -2, ‘)(F)2detIz+X211 s:-““‘I, (2.5) 

where 

T 

Xl.0 = n$O 2~2”(27r-2n~1 
i I 

d4, . . . d&,,+, 
-iCR-I)+lfA, 

E[’ A. I ] -57 --li x fi (Aj - Ai+,) e(ij2)(+,++,+t) I j=l [ sin I(4j + 4j+I) I ’ (2.6a) 

xi., = go 2-2”(27r-2”-’ 
i d4,. . . f d42n+, H’ [e-i(R-‘)+J-i%] 

4 J 
-7r -r 

(Aj - Ai+,) e(i’2x’~i+‘~+1) e ~I,+,+~z,,+,, 1 sin d+j + 4j+l) I 

2n 
XrI 

(Aj - Ai+,) e(i’2)(@‘~‘mJ+l) (e_i+, + e_i+2n+,) 1 sin T!(dj + 4j+I) 1 2 j=l 

e -i(R-l)b,-itA, 

Ai 1 

(2.6b) 

(2.6~) 

where for II = 0 the second product symbol in the above formulae is to be 
interpreted as equal to one; and finally we have 

x ‘fi’ (Aj _ hi+,) e(i/2)(b,+4,+l) 

C 1 1 f(i’2)(+l++2n) sin i(+2n - 4,). j=l sin Z(4j + 4j+l) 
2.2. Exact results for h > 1 and all R and t 

When h > 1 we have 

(2.6d) 

(2.7) 
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(2.X) 

where 

and 

with 

(1 - A2 e I’))( I ~ A2 e’“!) 
A; = A(4j) = [(I _ Al~ e 

I” 

I “~)(1 - A,-’ e’4;) ’ 

(2.12) 

(2.13) 

where for k = 1 the second product symbol in the above formulae is to be 
interpreted as equal to one. 

We emphasize that the above formulae for p,,(R, t) and py,.(R, t) for both 
h < 1 and h > 1 are exact with no approximations having been made. We now 
present our results when we specialize the above expressions to the scaling 
regions A and B. Since the scaling functions in region B can be expressed in 
terms of region A scaling functions [see eqs. (1.21) and (1.22)], we give only 
the scaling functions in region A. 

2.3. Correlation functions in scaling region A 

The scaling region A as defined earlier [see (1.6) and fig. l] leads to the 
scaling functions fi:(s) and p:(s). Here we give explicit formulae for these 
scaling functions. We denote the scaling limit in region A by limA. 
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2.3.1. Perturbation expansion representation of p=(R, t) in scaling region A 

lim p&‘(=~)p,(R, t) = p’,“(s) 
A 

I 

exp[- n$, f(‘%)] (h += lm), 

= 

G(s) exp[ - $, fC2%)] (h + 1% 

with 
Cc 

G(s) = 
F 

g2k+l(S)r 
=o 

(2.14a) 

(2.14b) 

(2.14c) 

(2.14d) 

and where pxx(m) is given by (1.9a) and the functions f2,,(s) and g2k+l(s) have 
the following representations: 

f(2lys)= (-l)y'y2" jdYl...~dY2.~[(y:_l~/T;:i+Yj+l~ 
I 1 

Xfi(yij-l), for n=1,2 ,..., 
j=l 

and 

cc 

m+,(s) = (-l)krr-21-’ 
i I 

dy, . . . dy2k+, 

I I 

X fi (yj + yj+llml fi (Y:j- l)? 
j=1 J= 

fork=1,2,...,andfork=O 

m 

g,(s) = ; dy, 
I 

_SY, 
(y;_ 1)~/z = + K,(s). 

I 

(2.15) 

(2.16) 

(2.17) 

Sometimes it is useful to use the following representations for the functions 

f(2”)(s) and m+ds): 

m m 

f""'(s) = (2n)-‘(2r)-*” 1 dx, . . . j dxtn 
-m -m 

xfi j=l [ (1 +e~lq;~x,+,, [(l + x;P - (1 + x;+I)~q, (2.18) 
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for n = 1,2,. ., and 

2k 
xl--I 

(1 + x;p2 ~ (1 + x,2+,)“2 
1’1 [ Xj + Xj + 1 1, (2.19) 

for k = 1,2, . . . . In the above 

R = y ‘(h ~ l/R, 

t = pi - 1/t, 

so that 

,y z (p - [?)I’?. 

(2.20a) 

(2.20b) 

(2.21) 

2.3.2. Perturbation expansion representation of p,,,(R, t) in scaling region A 

lim p,,f(=)p,,(R, t) 
A 

= 1 
l?(s) = [G(s)B(s) - E2(s)]l?(s) (h + I~), (2.22a) 

P!(S) = H(s)F”(s) (h + I’), (2.22b) 

where pyy(m), @T(s) and G(s) are given by (1.9b), (2.14b), and (2.14d) and the 
functions E(sJ, B(S), and H(s) are given by 

z 

E(s) = 2 e2k+ds), 
k-0 

(2.23) 

(2.24) 

and 

H(s) = kg0 hzk+dS)r (2.25) 

where 

g2k+,(S) = (-l)kr-2k-’ 
i ( dy, . . . dYn+,Y,Yx+, n 
I 

X ’ (Y&l), fork= 1.2 ,.... 
rT ,= 

(2.26a) 
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and 

m 

I 

2 -sy 

e’,(s) = n-’ dy 
(y{ A),“, 

I 

(2.26b) 

m 

Q+,(S) = (-l)%?-’ 
i I 

dy, . . . dYw+,Y, 

I I 
2k+l 

x ,q ,,~~:,“2 ,fj(, + Yj+l)-, ,fi(Yjj- 11, for k = 1,2, . . ., 

(2.27a) 

and 

P 

I 
-sY 

e,(s) = 6’ dy 
( yz: l),D’ 

I 

(2.27b) 

and 

cc 

hZk+l(S) = (-1)kT-2k-’ 
i I 

dy, . . . dyZk+, 

“il’[r,:e_‘;,la]~~Yj+Yj+l)‘~(r:l~*-1), fork=1,2,..., 

(2.28a) 

and 

m 

h,(s) = r-’ I dy(y2 - 1)“’ e-‘Y. 

I 

(2.28b) 

The above functions can alternatively be written in the form 

m 

z2k+,(S) = -(27r-2k-’ 
i I 

-ii&-il(l+xz)‘I2 

dx, . . . dXzk+, 
(1 + xi,,; 

-m -m 

2k 4-I (1 + xJY2 - (1 + xi:l)“2 X,X2k+,, for k = 1 

j=l (Xj + Xj+l) 1 9 2 ,.a., (2.29) 

m 

e2k+,(S) = +(2~)-~~-’ 
i I dx, . . . dX2k+l 

-m -m 

2k Xl-I (l + Xf)“2- (l + xi:‘)“2 i(x, + xZk+,), 

j=l (Xj + Xj+l) I 

for k = 1 

9 
2 

, * 1.9 

(2.30) 
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and 

hZ/(+,(S) = (2?r-2k-’ 
i I 

dx, . . . dxzk+, 

-LX .~uY 

2h 
xl-I 

(1 + .JY* - (1 + x:+1)“2 (1 + x:)l’:(l + x;L+,)l’2 
j=l (Xi + x,+1) I 

for k = 1,2,. . . . (2.31) 

where R and t are given above. 

2.3.3. Painlevt function representation of p:(s) and p:(s) 
Following refs. 17 and 19 we denote by n(O) the Painleve transcendent of 

the third kind22*23) that satisfies the differential equation 

with the boundary conditions 

n(O) = - O[ln(O/4) + -yE] + O(O’ In3 0) (O-0) 

and 

n(O) = 1 -2Kl&(20) + 0’(em48) (0 + 30). 

These boundary conditions are equivalently given by 

n(-i7) = i7 
L 
ln(7/4) + yE - i G 

I 
+ 6($ Ini 7) (7’0) 

and 

n(--iT) = 1 - iH”’ 0 (2~) + 0(emd4’3 (7+x) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

along the imaginary s(= -iT) axis. We refer the reader to ref. 19 for a more 
detailed discussion of these boundary conditions. 

Also following ref. 19 we introduce the function CL(s) which is defined byz4) 

q( 0) = @” s = 20. (2.37) 

We note that $(s) satisfies the hyperbolic sine-Gordon equation 

d2$ 1 d* . 
ds2 + ; z = i smh(2@(s)). (2.38) 

The behavior of n(O) and +(.s) for both real and imaginary arguments is given 
in figs. 10-13. 
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0.0 I 1 I I I I I 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

8 

Fig. 10. Painlevt function of the third kind ~(0) as a function of 0. 
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A 
6.0 8.0 IO.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 

T 

Fig. 11. Painleve function T(@) on the imaginary axis 8 = -ir as a function of 7. 

In terms of ~(0) and t,h(s) we have 

m 

F;(S) = f(l * q(e))f”*(8) exp dx$xy*(x) (1 - $(x))* - 2 
2 

8 
( HI 

(2.39a) 

(2.39b) 
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S 

Fig. 12. Function ti(s) as a function of .s. 

1.6 

1.2 
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0.8 - \ImY 
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-1.2 I 1 I I I 1 I I I I I 
0.0 4.0 6.0 12.0 16.0 20.0 24.0 

T 

Fig. 13. Function $(s) on the imaginary axis s = -ir as a function of 7. 
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If we write the scaling functions P:(S) as 

R:(s) = Y,(S)&(S), 

where from (2.22) we have 

Y+(S) = H(s)/G(s), 

Y-(S) = G(s),%) - E*(s), 

then we have the representations 

(2.40) 

(2.41) 

(2.42) 

Y?(S) = 16r) (e) “: [u - 772(e))2 - ($)*I + & ($)[+++g-J (2.43a) 

(2.43b) 

In ref. 19 explicit formulae are given for q(13) and I/J(S). 

2.3.4. Large s behavior of p:(s) and p:(s) 
For s -+c=z the leading behavior of p:(s) and p:(s) is given by the first term 

in the perturbation expansion results given above. More explicitly we have 

T;;“(S) = 5C’&(s) + 6(ee3”) (s + m), (2.44) 

Z?(S) = 1 + ~*]s’[K:(s) - K;(s)] - sK,(s)K,(s) + t&(s)] + 0(e-4”), (2.45) 

i;?(s) = 7i-‘s-‘K,(~) + 0(ee3”) (s +m), (2.46) 

R?(s) = K*[Ki(s) - K:(s) + s-‘K,(s)K,(s)] + 0(em4”) (S + 30). (2.47) 

These formulae can be analytically continued into the time-like region (S 
imaginary) where for instance K,(s) becomes (irr/2)#‘(7). The short distance 
behavior of the scaling functions is best derived from the Painlevt function 

representations given above. These small s expansions were given in section 1. 

3. Formulation 

Following MBA the two-spin correlation function is obtained by consider- 

ing the four-spin correlation function 

C”“(R, r, N) = (s~~o~s,u,2,-~+,~o~s;)N/Z)+l(f~~~-R+l~f~~ (v = x or y), (3.1) 

where N is the number of spins in the chain and using the clustering property 

lim C,,(R t, N) = pL(R t), 
N+= 

where 

(3.2) 

P”“(R t) = (s:(t)s:+,(O)) (3.3) 



22 H.G. VAIDYA AND C.A. TRACY 

By the methods of MBA we find that 

(3.4) 

where each of the submatrices is of dimension ;N - R with 0 G m G 
;N-R-l,Osn<:N-R-l. 

At zero temperature the matrix elements are given by 

(3.5a) 

(3Sb) 

(3.k) 

(3Sd) 

(3.6a) 

(3.6b) 

(3.6~) 

(3.6d) 

@(c$) = emi 
[ 

(1 - A, ’ e’+)( 1 - A2 ’ e’+) .I “’ 

(11A,‘em’4)(l-A;‘e ‘+) . (3.7) 

It should be noted that with the definition 

Ind S(4) = & [In S(27r) - In S(O)] 

we have for h < 1 

(3.8) 

Ind S, = 0 and Ind S, = -2, 

and for h > 1 

IndS,=IndS,=-1. 

In the thermodynamic limit N + =, 

(3.9) 

(3.10) 
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and we replace SX,, etc. by S”, etc. to obtain 

0 S” T” U” 

Cz, = 4m4det I”,“: OUU -ou” _i”” . 

-u” -vu s”T 0 

(3.11) 

Here, as in (3.4), the superscript T denotes the transpose operation. 

4. Evaluation of p,,(R, t) for h < 1 

The evaluation of the determinants in (3.11) is based on the method 

developed in ref. 18. Since these techniques are not widely known we 
reproduce below the details of the derivation. 

Let 

CjX = 4-4 det Y?. (4.1) 

In what follows we will drop the superscripts on S, T, etc. for simplicity. We 

write % as 

%=d+B 

where 

and 

(4.2a) 

(4.2b) 

Then using an elementary formula of matrix theory we have 

Cg = 4-4 det d det( 1 + a-‘%) (4.3) 

Tr(K’8)’ , I (4.4) 

where we have used the fact that’**) det d = 44p2X(a) with p,(m) given by 
(1.9a). 

Define F,(R, t) by 

PAR 0 = ~~~(00) exp]-F<(R, t)l. 

We have 

Tr[(d-‘B)2i”] = 0, for j = 0, 1,2,. . ., 

and 

(4.5) 

(4.6) 

(&ye)* = A-'BAm'BT 0 
0 I A-'BTA-IB * (4.7) 



24 H.G. VAIDYA AND C.A. TRACY 

Hence, if we write Fe as 

F, = 2 F.!2k'. 
hi I 

(4.8) 

then 

FJ2kl = $ Tr[(A mlBAml BTjA]. 

We define for I[( and 15’1 c 1 

(4.9) 

(4.10) 

The generating function S,(t) has the factorization 

[SA5)1 ’ = ~x(-wx(5 ‘L (4.11) 

where P,(t) and Q(t) are analytic inside the unit circle 151 = 1 and are given 

by 

P,(5) = [(I - A;l[)(l ~ A2’[,]“Z (4.12a) 

and 

Q(5) = [(l - A;‘[)( 1 - A;‘[)]-~‘“. 

Note that 

PX(OQX(5) = 1. 

It follows from the method of Wiener-Hopf”) that 

SLY& 5’) = QX(5)PX(&‘)( 1 - ‘$5’) -‘. 

We define 

(4.12b) 

(4.13) 

(4.14) 

A-‘(& 5’) = ’ - %‘(5’> 5) 
s;‘c& 5’) 0 I (4.15) 

so that Am I(&[‘) is the matrix generating function of the inverse matrix 
elements of A. Similarly, 

B(5) = [ 

Note that 

BT(5) = 

T(5) U(5) 1 -UC‘3 V(5) . 
(4.16) 

[ 
T(5) -U(5) 
U(5) I V(43 . (4.17) 
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With these definitions we have 

n 

F’:&’ = $ (27r-*& 
i I 

d& . . . d&k 

-m -r 
-- __ - 

x Tr{A-‘(2k, l)B( l)A-I( 1, 2)BT(2) . . . A-‘(2k - 1, 2k)BT(2k)}, 
(4.18) 

where B(1) = B(e’“l) and A-‘(i, 2) = A-‘(emi41, e-‘“z), etc. In (4.18) Im 4, < 
Irn4*<. ’ ’ < h C&k. 

We can factorize A-‘(& 6’) as 

A-‘(& 5’) = (1 - M’)-‘[&, -;“‘I[; -;I[ _&,) oQ(“)]. (4.19) 

Using the cyclic property of the trace we group together matrices that depend 
on the same di variables. Performing the matrix multiplications we have 

0 -1 I[ 1 T,(2)Pi(2) 1 0 

V&k)Q&k) -Ux@k) 
X . . . 

UJ2k) 
(4.20) 

Now when used in the above integrals the following identities are valid (see 

discussion in refs. 17 and 18): 

1 + Y V,(l)Qt(i) = - Te -i+,(R+l)-iA,fA-I(l) 
9 

~,(l)p:(i) = $-; e-i+dR+I)-i*lrA(l). 

Hence, 

W)Qf(i) u,(l) 1 
e-id,(R+I)-iA,r 

-U,(l) T,(i)p:(i) = A, 

1 + y -- ( 1 I’* 

2 I I 2 

(--> 

l/2 

1+y *I 

(g--)“*A’], 

(4.21) 

(4.22) 

(4.23) 
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and 

[ 
K(2Km) - 
U,(2) 

U,(2) 
T,(2)P3Z) = I 

1 + y -__ ( > “2 
2 L I 2 -___ 

( > 

I/? 

I+Y 
122 

x [ (!$q - ($J2A2]. (4.24) 

Using these all the matrix products can be written as scalar products, i.e. 

[(yy2 (&)"*A,][; -J 
1+-y Ii2 -- 

i 1 2 

: : 

2 -- 

( > 

II2 

I+Y 
A2 

II A2-A’ (4.25) 

and -__ 
[(!$I)“* _(&)“2A2][y -;I ~‘~‘Y* I- 1 I+y 3 

=Az-A3. (4.26) 

This gives the result (2.2). 

4.1. Scaling limit h + I- 

Now we consider the scaling limit in region A as defined above in (1.6). For 
h = k, A(&) = 0 at C#J = 0. Thus, the leading contribution to the integral for 
h + l- comes from the behavior of the integrand around C#J~ = 0, j = 

1,2,. . . ,2n. Expanding A(di) around C#J~ = 0 

A(+,)- ($qI -A?)(l-A?)[1 +(li;‘;l)2”i+(, h;‘;‘)C?;]“? (4.27) 

II -A;‘)(1 -A;‘)[1 +x:1, (4.28) 

where 

xi = A:“*( I 

Let 

R4i = A;“( 

where 

_ A;‘)-‘+_ 
I’ 

(4.29) 

- AI’)RXj = RX], (4.30) 

I? = A;“(1 - A;‘)R. 

Similarly, 

tAj = t[ 1 + Xf]“*, 

(4.31) 

(4.32) 
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where 

Similarly, 

(1 - A;‘)(1 - #A;$. (4.33) 

sin i(4j + &j+l) - !A:‘*(1 - A$‘)(xj + xj+l) (4.34) 

and 

d+j(Aj - Aj+t) 
Aj sin t(&j + 4j+l) 

_ 2 dx,[( 1 + x;)“* - (1 + x;+,)“*] 

(1 + Xf)1’2(Xj + Xi+*) . 
(4.35) 

Applying the above scaling limits to the integral F!Z”‘(R, t) [see (2.2)] we 

obtain the value in the scaling limit which we denote by f’*“‘(s) given by 
(2.18). Note that as h + l- 

RAh -R and ;+((I-h)t. (4.36) 
Y 

To show that f’*“‘(s) depends only upon s, we proceed as follows. Define 8 by 

R = (R* - y2t2)“2 cash 8; yt = (R2 - y*t*) sinh 8, (4.37) 

and let 

xi = sinh( $j - 0), (4.38) 

then 

lrxi + tc 1 + xi2)"* = (R* - y*t*)“*~j 

with 

Uj = sinh &. 

Hence, in the new scaling variable s as defined by (1.6b) we have 

(4.39) 

(4.40) 

m m 

f’*“‘(s) = (2n)-‘(2p)-*” 1 du, . . . 1 duzn B [e-i’“‘::‘=;;)),;l;--j’: ;j~~1)“2’]. 

-m -m 
(4.41) 

Comparing with the two-dimensional Ising model correlation functions 

derived in ref. 17 [eqs. (3.141) and (2.26)] we see that 

P&R t) = p,&@:(s). (4.42) 

4.2. Scaling limit in region B 

We now consider the scaling limit in region B as defined above in (1.20). In 
this region A, and A2 are complex and A, = A?. 

Let 

A, = [A( eis and A2 = (A 1 e-“, (4.43) 
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where 

IAl = t = (z)“*defmes p 

and 

cos +!I = h(l - Y*)~“~ defines I,/I, 

then 

(4.44) 

(4.45) 

cos(4j + 4) + p*)( 1 - 2~ COS(4j - I/J) + p’)]“‘. (4.46) 

As y -+ 0, p + 1 and the leading contribution to the integrals in (2.2) comes 
from the zeroes of A(4j) at &i = -+ 9. To leading order we require contribu- 
tions such that 

4, + &,I = 0, i= 1,2 ,..., 2n, 

that is, from the regions in the neighborhood of 

(a) 4, = CCI: 42 = -*; 43 = *, . . . 1 rh = -4 (4.47a) 

and 

(b) 4, = -$; 4?= *; 43 = -*, . . . . 4zn = *. (4.47b) 

Expanding A(4) around 4 + + = 0 we have 

A(d) - iT)(l - P)(2 - 2 cos @)li2[ 1 + 6 (4 + 42. 

Similarly, the expansion of A(4) around C$ - I+!I = 0 gives 

(a) In the neighborhood of poles at 

&j+l = rl, and 42, = -G% 

define 

X2j+l = p”2(1 - p)Y’(42j+l - $) 

and 

X*j = p”2( 1 - p)-‘(+*j f 4). 

(b) In the neighborhood of poles at 

&+1 = -9 and & = G, 

define 

x2,+1 = p”?l - p)r’(dJzj+, + $, 

(4.48) 

(4.49) 

(4.50a) 

(4.50b) 

(4.5 1 a) 
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and 

X2j = p"2( 1 - fl-'(&j - 4). (4.5 lb) 

Applying these scaling limits to the integral F$“(R, t) [eq. (2.2)] we obtain 

F’:“‘(R, t ) - 2f’2”‘( s 1) (4.52) 

in the scaling limit B, where f’*“‘(sJ is given by (2.18) as a function of the 

variables R, and i, defined by 

R, = yR and i, = ~(1 - h2)“2f. (4.53) 

As in section 4.1 above we can now reduce the dependence in l?,, i, to a 
dependence on the combined scaling variable sI [see eq. (1.20b)l to get the 
result in (1.21). 

5. Evaluation of p,,(R, t) for h < 1 

Here Ind S, = -2. To work with a generating function of index zero we 
consider the shifted matrix 

Dt(R, t, N) = det C,, (5.1) 

(5.2) 

where the horizontal (vertical) bar represents addition of two rows (columns). 

Thus, the new generating functions are 

SJ+) = e”+S,(d), (5.3a) 

$) = T,(4), (5.3b) 

GY(4) = e”“U,(f$), (5.3c) 

GY<d) = e4’+Vy(4). (5.3d) 

The evaluation of 0’. is carried out in a manner analogous to section 4. It 
can be immediately seen that 

D;“(R, t) = p,x(R - 2, t). (5.4) 

Now consider the ratio 

0 S y 9 0y 

r;(R, t, N) = [D:(R, t, N)]-’ $tT “iry -f’ _;,f . (5.5) 

_fiY -PY SYT 0 
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Using Jacobi’s theorem, this ratio can be obtained from the 4 x 8 matrix of 
tN - R + 2 component vector X” b which are the solutions of the linear 
equations 

where 6’ are the eight columns of 

! 0 0 s”,sbo 0 0 0 @I 0 0 s:,o 0 s”,s:,o 0 0 0 0 p 0 0 0 0 0 s”, 0’ 0 0 1 s: 

and the :N - R + 2 component vectors S’,,, are 

(5.6) 

(5.7) 

The ratio r$ is expressible as an 8 x 8 determinant of X$. Because of the 

antisymmetry of C and the fact that a number of elements are exponentially 
small in N, we have in the thermodynamic limit 

r,(R, t) = lim r,(R, I, N) 
N+ffi 

= det x3’ 

t 

x:, 
4.0 

x:,, xi.1 x.1 0 

(5.9) 

where the Xg are infinite component vectors obtained from the N = m set of 
equations corresponding to (5.6). In this set of equations the right-hand side is 

0 0 0 0 

where 

(5.10) 

We use the methods of section 4 in the evaluation of various terms in the 



SPIN CORRELATION FUNCTIONS FOR THE XY-MODEL 31 

above determinant. One typical example is given below. We also find that 

X7 =.-X3 
4.1 2.1 and XI& = Xj,, (5.1 la,b) 

Thus, 

I x:0 x:., - x:, 
r:‘*(R, t) = -det x:;, + x;,, x:,, . (5.12) 

5.1. ~~&ation of Xi,, (note: all of S, T, etc. represent gY, fY, etc.) 

Now 

x: = (c,‘)4*6° 

= - so s-‘{TX;, - ux;,}ST-‘80, 

where X = A-‘BA-‘BT, so that 

(5.13) 

(5.14) 

(5.15) 

= - i. (2a)-*“-’ j- d& . . . / d&z”+, 2 S-I(& &=o 
-r -7 

x {T(l)[A_‘(i, Z)B(2). . . A-‘(%, 2n)1)BT(2n + l)],~ 

-U(l)[A-‘(1,2)B(2). . . A-‘(5, 2n)I)BT(2n + 1)]21}S-‘(0, 2n + 1). 
(5.16) 

We know from eq. (4.14) that 

S-‘(5, i) = (1 - 5 e-‘“)-‘Q(5)P(i), 

where P(S)[Q(t)] is given by eq. (4.12a) [(4.12b)l. Hence, 

(5.17) 

-$ S-'(5, i)lszo = [eeiml + Q’(O)]P(i). (5.18) 

Factorizing the matrices A-‘(i, ?), etc. and carrying out the scalar products as 
in section 4, we have 

X 

e-i(R-1)4i-it~i 

ni I 
[eei*l + Q’(O)]. (5.19) 
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A similar analysis yields 

(5.21) 

and 

e-i(R-l)+i+tAi 

Ai I 
[e-j+’ +Q’(0)][emiszn+l + Q’(O)] (5.22) 

All terms containing Q’(0) can be removed by the following operations on 
the determinant in eq. (5.12) which does not change its value: 

(a) row 2 - Q’(O) [row 11, 
(b) col. 2 - Q’(0) [col. 11. 

Thus, we get the final result given in eqs. (2.5) and (2.6). 

5.2. Scaling limit h + I- 

Now we consider the scaling limit in region A. We first note that Xi,, + 0 in 
the scaling limit. We rearrange the determinant by subtracting rows and 
columns to take the form 

I xi,: - x:,, x:,1 
4 

2X4.1 - X:.0 - x4.1 XL - x:,, ’ 
(5.23) 

and then take the scaling limit as in section 4.1. Some of the exponentials 
have to be expanded to higher orders before a nonzero contribution is 
obtained. On doing this we get the results quoted in section 2, eq. (2.22). 

5.3. Scaling limit y +O 

Here again X2.1 +O in the scaling limit. on expanding the A(+j) values 
around (1) &j+l = 4, &j = -$ and (2) 42j+I = -$, & = $,, as in section 4.2, we 
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obtain 

x:,, - e -iRS + &R$ 

(2 - 2 cos +L)“Z G(sl), 
(5.24) 

x:0 - 

e-iCR-l)$ + ei(R-l)9 

(2 - 2 cos I/#‘2 G(sl) 
(5.25) 

and 

x:,1 - e 

-i(R+l)g + ei(R-l)$ 

(2 - 2 cos lj/)“2 G(sl). 
(5.26) 

On solving the determinant in eq. (5.12) we obtain the result quoted in eq. 
(1.22). 

6. Evaluation of p&R, t) for h > 1 

In this case Ind S, = -1. Hence, we work with a new generating function 
S,.(4) = e’“&(4) which has index zero. This is achieved by considering the 
shifted matrix 

Dt(R, t, N) = det C, (6.1) 

(6.2) 

where a horizontal (vertical) bar indicates the addition of a row (column). 

Now 

S,(4) = e’%(~), (6.3a) 

FM = T,(4), (6.3b) 

UX(4) = e’“U,(+), (6.3~) 

V,(4) = e”“V,(&). (6.3d) 

The evaluation of D’, can be carried out in a manner analogous to section 4, 
and we obtain the expression for F,(R, t) given in eq. (2.11). 

Consider the ratio 
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Define the 4 X 4 matrix of $N - R + 1 components Xi by 

# ;I ii ;;]j ! !D ;I, 

where 

0 1 
0 0 

&,= i ; iI [1 &I= i . 
0 0 
1 0 

By using Jacobi’s theorem we have 

%.l,Z-R r7-: N/Z-R %N,2-R 
- 2’ 

%N,2-R 
-1 

r:(R, t, N) = det x2.0 x2,0 *‘:0 X:0 X, -2 - 3’ - 4‘ 
3,N/2-R X3.N12FR X 3,N/2-R x . 3.N12-R 

z.0 Z,O %,O %O 1 

(6.5) 

(6.6) 

(6.7) 

Since CT = -C the determinant in r: has to be antisymmetric. Also, some of 
the elements are exponentially small in N and hence vanish in the limit 
N + a. Using these facts we obtain 

r:(R, t) = tim r:(R, t, N) = (Xi,,)“. (6.8) 

Hence 

p,,(R t) = P,,(w)X& exp[-FM, t)l. (6.9) 

Let 

x:,0 = 2 X2k+l = cG.:&I,“. 
k=O 

(6.10) 

Now 

c-l = m F (-l)“($‘%I)“&‘, (6.11) 
=o 

so that 

~4; = _ 2 (a-lg~)):;+‘sT-’ (6.12) 
n=O 

= (A-‘BT)2,X;,ST-’ + (A~‘BT)22X;,ST~’ 
= S-‘T(X);,ST-’ _ S-1 fl(X);,ST-‘, 

where 

X = A-‘BA-‘BT. 

(6.13) 

(6.14) 

(6.15) 
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Thus. 

(6.16) 

Now 

x;, = (2P)-2” [ d+,... j d+ 2n+lA;!,,, e-i’m”m2’*2B(2)A,:mg 
-m -n 

x e-i(m]+md&gT(3) . . . A;’ e-i(s+p)h+lBT(2n + 1) (6.17) 
r 

= (27r-*” i d& . . . 1 d&+,Aj& e-““l”z B(2)A-‘(2, ?)B=(3) 
-zl -a 

-~ 
X . . . A-‘(2n, 2n + l)B’(2n + 1). (6.18) 

We can carry out the 2 x 2 matrix products as in section 4 to derive the final 
result for xzn+,(R, t) given in eq. (2.10). Some additional manipulation is 
required before the results can be put into the final form F,(R, t), x,(R, t), 
where F,(R, t) is identical to F,(R, t) except for the change from Ai to Ai. 
These are identical to the ones in ref. 17 and will not be reproduced here. 

6.1. Scaling limit h + 1’ 

We now consider the scaling limit A. The analysis of this scaling limit is 
similar to that of section 4.1 except that here we expand A(4) [instead of 
A(&)] about 4 = 0. Now the scaling variables are 

jj= h_lR. 
( > Y ’ 

t=(h-1)t and s= y (R2 _ $r2)‘/2. (6.19) 

On carrying out the necessary algebra we derive the results quoted in section 
2. Here again the scaling function is the same as that of the Ising model and is 
expressed in terms of Painlevt function of the third kind’7s’9). 

7. Evaluation of pyv(R, t) for h > 1 

Since Ind S, = -1 the case is treated in a manner similar to section 6. We 
have the generating functions 

S,(4) = e%,(4), (7.la) 

T,(4) = T,(4), (7.lb) 

UY(d) = e’“U,(+) (7. lc) 

and 

V,(4) = e”“VJ4). (7.ld) 
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Comparing with s,, etc. we note that s,, T,, etc. can be obtained from s,, T,, 
etc. by the simple transformation y++-y, i.e. h;‘t,A2. Thus, the results for 
p,,(h > 1) can be directly transformed accordingly to obtain pyv for h > 1. 
These are written out explicitly in section 2. We also verify the Suzuki sum 

rule41 relating the Ising model and XY model correlation function. This is 
done in Appendix B. 

7.1. Scaling limit h + l+ 

The analysis in this case is similar to that of section 6.1. We note that our 
function H(s) is the same as that of ref. 19 (except for a change of sign) and 
consequently can be expressed in terms of Painlevt functions of the third 

kind. On carrying out this scaling analysis we get the result in eq. (2.22). 
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Appendix A 

Suzuki sum rule 

Suzuki’4) derived the following sum rule relating the Ising model correlation 
function to the XY model correlation functions: 

(a,,,,,o,,~)is = cash’ KT(a”,(0)a”,(O))xY - sinh’ KF(~L(O)~M(O)),V~, (A.l) 

where the Ising model hamiltonian is 

2’ = -6 c ~n.rn~n.,+~ - E2 2 u,.,u,+~.,,~ 

and 

tanh 2K, = ( 1 - y2)“2h -’ : cash 2K,* = y-‘, 

where 

K, = Ei/kBT and tanh Kf = exp(-2K2), i= 1,2. 

Hence, the identity (A.l) translates to 

(A.2) 

(A.31 

(A.41 

(A.5) 
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where 

(QP~R>I~ = Sh[ $0 ZX+,(R)] exp[ - Z, FP”‘(R)], 

with 

S,’ = [42,z2(1 - z:)( 1 - z$]“2[sinh 2PE, sinh 2pE2)F2 - 11”4, 

Zi = tanh PEi ; p = l/kT; i= 1,2, 

?r n 

64.6) 

(A.7) 

(A.@ 

zu+,(R) = (-l)ky:k(27r~2,2k+” 1 d#, . . . 1 @d/c+2 B At;;_~42iI 

-a -n 

2k 

4-I 
j=l 1 cos %$4k+, - 4,) cos &4k+2 - 4217 

(A.9) 

with 

y, = 222( 1 - z:): y2 = 2z,( 1 - 2;); a = (1 + z:)( 1 + z:,, (A.lO) 

A(+,j-,, &j) = u - 3’1 COS +2j-I - 72 COS $2jt (A.ll) 

and 

Fi2”‘(R) = (-l)“y:“(2n)-,(27r-4” 1 d+, . . . / Q4,, 

fi[ 
e-iR*2J sin ;(42j_l- 42j+l) 

1 

j=~ M&-I, 4~) sin 1(42i + h+d I ’ (A.12) 

(a~(O)a$(0)),~~ and (u{(O)C$(O))~~ are given by p&(R,O) and pc,(R,O) of eqs. 
(2.7) and (2.8), respectively. We can express Ff"'(R, 0) in the following form: 

F!-?(R, 0) = (2n)-‘2-2”(2r)-2” j d42 [ d&. . . f d44n 

--IT --P -7r 

where 

Ai, = [( 1 - A2 e’b)( 1 - A2 e-im2J)]“2, 
A$ = [(I _ A;’ ei+2i)( 1 - A 7’ e-ir21)]1’2 

(A.13) 

(A.14a) 

(A.14b) 

and 

(A.15) 
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Similarly, 
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AljAij+l- A;j+lAiij 

sin +(42, + 42;+2) I 
cos ;WL+>- +z)AiAd~+z 

and 

yZL+,(R, 0) = 2-2A(27r)-‘*k+‘1 j d4, i d44... i d9,,,,jjG 

A;jAzj+l- Aij+,Al, I 
sin 5(42j +  42,+2) 1 cos f(&k+? - 42)A;&+2. 

To prove identity (AS) we integrate the expression for (u~(T~,~),~ 
odd-angle variable by evaluating them at the poles A(&_,, 4*,) = 0. 
that 

n 

dhf(4,) = 23~ 
A(+,, &,) (1 - z:)A2 ‘f(9d’A=o’ 

where A(c$,, C#Q) = 0 corresponds to the relations 

1 

e”+’ = G i 
a - 7 (e’& + e -@q k (I - &)A2 

and 

cos 4, = :; (u - y* cos &), 

sin 4, = (’ - zi)A2 
iy, 

(A. 16) 

(A.17) 

over the 
We note 

(A. 18) 

(A.19a) 

(A.19b) 

(A.19~) 

We can also prove the following relations under the transformations (A.3) and 
the pole identities (A. 19) 

71 sin t(42j-I- 42j+d _ i 

1-z: 
- i [&jA2j+2 - Aij+2AZjl (A.20a) 

and 

s,’ cos 1(&k+, - 4,) 
1 -z: 

A;&+*- ($+;A;+,]. (A.20b) 

Thus, integrating over the odd-angle variable 42j+, we have 

F:‘“‘(R) = (-1)“y:“(2n)-‘(27r-4n j d+, . . . j d& (,(5)f;2m 
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xfj -iR’2i 
j=l AZj sin k42j + 42j+2) 

(A.21) 

which, on comparing with eq. (A.15), shows that 

Fi2”‘(R) = F!Z”‘(R, 0). 

Similarly, 

(A.22) 

Zig+, = (-l)ky:k(2,rr)-2’2k+” j d&. . . j ds,,+,(+$+‘~~ 

xfi 1 
I 

j=l sin Z(42j + 42j+2) 
cos ;(4,,+2- 42)[v]l* 

2k 

X n [A&Aij+2- AiLj+zAijl (1 - &%w 

j=l 2s’ 

1+r x- 
K ) Y 

A;&+2 - (~)il.,,] (A.23) 

which, on comparing with eqs. (A.16) and (A.17), shows that 

s,‘&+,(R) = Ip,,(~){y-‘[XZk+,(R, 0) - YUC @I + [X2k+,(Rv 0) + Y2k+dR, @I}. 

(A.24) 

From eqs. (A.22) and (A.24) the sum rule (AS) follows. 

Appendix B 

Define 

03.1) 

Then, 

I dw b(k w). 
0-z ’ 

Imz>O. 

Now 
m im 

fi(k, z) = &,,f eikR+izM~x(S) 

dM eikR--zMfiX(r), r = (I?* + M2f2, 
-03 0 

03.2) 

(B.3) 

03.4) 
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Hence, 

32 x 

b(k, iz) + fi(k, -iz) = i dMe ikbizM~rc,.J 

-m -rn 

(B.5) 

Setting 

R= rcos$; M = r sin C$ ; k=Ecos$; 2 = E sin $, 

with E = (k’+ z*)“‘, 
m Zn 

b(k, iz)+ fi(k, -iz) = i 
I I 

drr d4 eirfCOs’~x(r) (B.6) 
0 0 

r 

= 2~ i drrJO(re)fix(r). 
I 
0 

(B.7) 

The right-hand side is the Fourier transform of the two dimensional Ising 
model two-point function as a function of the wave number E. It has the 
spectral representation’6) 

Cc cc 

I drrJo(rtz)~x(r) = 
I 

p?(x) dx 
x+e* ’ 03.8) 

0 0 

where + (-) refers to T > T, (T < T,) [in our case h > I (h < l)]. Using eq. 
(B.2) and after some algebraic manipulations we see that 

&W(E) = P?(E). (B.9) 

Note added in proof 

Lajzerowicz and PfeutyZ6) have shown that 

for the transverse Ising model [y = 1 in eq. (l.l)]. In the scaling region A, the 
y = 1 restriction can be removed: and hence, the above formula can be used to 
derive py,(R, I) in scaling region A. 
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