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We compute exactly the transverse time-dependent spin-spin correlation functions
(ST(0)Sk, (1)) and {S}(0)S}. (1)) at zero temperature for the one-dimensional XY model that is
defined by the hamiltonian

N
Hy == X [(1+¥)S8},, + (1= v)S!S7, + hS7l.
=1

We then analyze these correlation functions in two scaling limits: (a) y fixed, h > 1, R—>o0, t >
such that |(h — 1)/y|[R?* - ¥*¢*]'? is fixed, and (b) h fixed less than one, y >0, R >, t > such
that y[R?— (1 — h%¢?]' is fixed. In these scaling regions we give both a perturbation expansion
representation of the various scaling functions and we express these scaling functions in terms of
a certain Painlevé transcendent of the third kind. From these representations we study both the
small and large scaling variable limits in both the space-like and time-like regions.

1. Introduction and discussion of results

Dynamical properties of many-particle systems are often studied in terms
of time-dependent correlation functions (A(ry, t;)B(r, t2)).") In general the
structure of {A(ry, t1)B(r, t2)) is complicated and depends upon the system
under consideration. Because of this complexity many phenomenological
approaches to time-dependent correlation functions have been given?®). It is
therefore important to be able to study these time-dependent functions in
models that are exactly solvable. The one-dimensional spin one-half XY
model is such a model. We refer the reader to the two excellent reviews by
deJongh and Miedema®) and by Steiner et al.’) that discuss one-dimensional
spin systems. Of the various one-dimensional quantum spin systems the XY
model is no doubt the simplest model to analyze.

The one-dimensional XY model 1s defined by the hamiltonian

N
Hy = — Y [(1+ y)SiSi + (1 — y)S!Si + hST], (1.1
i=1
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where Sf=30f, a = x, y,z, and o are the usual Pauli matrices, vy is the
anisotropy parameter which we take to be non-negative, and & is the applied
magnetic field in the z direction. We impose cyclic boundary conditions, i.e.
SN+1 = Sl in €q. (11)

The antiferromagnetic ground state of (1.1) was computed exactly by Lieb
et al.) and by Katsura®). Since (1.1) is a quantum mechanical system, the
ground state is nontrivial (it is BCS-like) and hence the behavior of both the
static and time-dependent correlation functions at zero temperature can be
expected to be nontrivial. In particular, McCoy®) and later Barouch and
McCoy’) showed that for y >0 and h <1 there exists spontaneous mag-
netization in the x-direction which goes continuously to zero as h —> 1 (with a
B = g) for fixed y > 0 and goes continuously to zero as y - 0" (with a g8 = J) for
fixed h < 1.

A study of the correlation functions

pxx(R’ t) = (ST(O)S;?H(’)) (12)
and
pye(R, 1) ={(S{(0)Sk.1(2)) (1.3)

(here the brackets denote the ground state average) was begun (for f = 0 and
h = 0) by McCoy®) and later extended to & 0 by Barouch and McCoy’). The
extension to the t# 0 case was begun by McCoy et al.®). All of these authors
study the correlation functions for large R and ¢t and compute the leading
term in the asymptotic expansion of these correlation functions. At infinite
temperature some interesting results for p, (R, t) have been given by Sur et
al.’) by Brandt and Jacobi'’), and by Capel and Perk'").

The techniques used in refs. 6-8 are techniques first used in studying the
asymptotic behavior of the spin-spin correlation function of the two-dimen-
sional Ising model'*"). This similarity of the two models was made precise by
Suzuki'¥) who proved the sum rule

{TumTnmhis = cosh” Ki{om(0)an(0))xy — sinh® K{{os(0)o(0))xy (1.4)

relating Ising model correlation functions [the LHS of (1.4)] to XY model
correlation functions [the RHS of (1.4)] where we identify

tanh 2K, = (1-y)"h™',  cosh2K# = '

with tanh K* = exp(—2K;), K; = Ej/kgT, and E; are the usual Ising model
interaction energy constants. The relation (1.4) is valid only for

hW+yi=1 (1.5)

(see fig. 1).

Krinsky'’) has studied the generalization of (1.4) to the triangular Ising
lattice. Given the two-point scaling functions of the two-dimensional Ising
model*?), it follows from (1.4) and the fact (o2(0)o(0))xy = O(lm — m'|*)at
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Fig. 1. Schematic representation of the model in (y, h) space. Labels refer to the appropriate
section numbers of the paper. The spontaneous magnetization in the x direction m, >0 as h > 1~
and m, =0 for y = 0. This shaded parts represent the two scaling regions A and B.

h =1 that the static scaling functions for (o (0)o(0))xy in region A (see fig.
1) are essentially the Ising model scaling functions.

In this paper we extend the work of MBA and compute the zero tem-
perature correlation functions (1.2) and (1.3) for all R and ¢t. Much of this
work derives heavily from the perturbation expansion developed by Cheng
and Wu") and further generalized in the work of Wu et al.”’) [see also McCoy
et al.'®)]. Furthermore, using the Painlevé function results of McCoy et al.'®)
(which is equivalent to a certain solution to the hyperbolic sine-Gordon
equation) we express the various scaling functions in terms of these new
transcendental functions (this makes a study of the short distance behavior
straightforward). Fig. 1 shows schematically the regions in (v, h) space
studied with the labels referring to the appropriate sections in the paper.

Of particular interest are the scaling regions A and B. The scaling region A
is defined for fixed y > 0 by

h—>1% R -, t—>oo, (1.6a)
such that the scaling variable,
s = ‘h—;—l|(R2— e 2 (1.6b)

is fixed. We note that s can be either real (R > vt, space-like region) or purely
imaginary (R < yt, time-like region). In this scaling limit the correlation
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functions p«(R, t) and p,,(R, t) can be written in the scaling form

Pex(R, 1) = pi () FX(s) + o ([¥*|1 — K1) (1.7)
and
N\ h _ 1 9/4
pu(R, 1) = p,, (<) EX(s) + o( ) (1.8)
where
Puc() = [2(1 + )] [yt = K™ (1.9a)
and
h—1(7"
Py () = (1 + 7)2"”“v"‘"‘[ —_— ] , (1.9b)

and the + (-) sign in (1.7) and (1.8) refers to h—» 1"(h = 1"). )
Figs. 2 and 3 show the dependence of the scaling functions FX(s) and F(s)

—— - ; T T T r
] 2.4 4
- 22 -
3 20 b
- 18 1
+ l?f (s) {16 ?f(s) b

Fig. 2. Scaling functions Fi(s) as functions of the scaling variable s (space-like region).
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Fig. 3. Scaling functions F1(s) as functions of the scaling variable s (space-like region).

on the scaling variable s in the space-like region. The scaling function F(s) is
essentially the two-point scaling function of the two- dimensional Ising
model'*"). For small s (s real) the behavior of FX(s) and Fi(s) is

FXs)= Cos ™1 £15Q + ks’ + 5520 + 0(s*0)} (1.10)
and
FX(s) = Cys 1 7153 +4) — ks> 7 55°(11Q + 4) + 0(s*Q%)}, (1.11)

respectively, and where

= In(s/8) + yg, (1.12a)

and
C, =263 (1.12b)
C, =i (1.12¢)
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with A = 1.282427 ... being Glaisher’s constant'’), and yg =0.577 ... being
Euler’s constant.

Figs. 4and 5 show the dependence of Fi(—ir)and F* (—1~r)on T(s = —lr)m the
time-like region. For small 7 (1 real) the behavior of Fi(—ir) and Fi(—ir)is

FX—ir) = C;T‘”“[l :gﬂl —f67° +—73Q. +O(r Q,)] (1.13)
and
Fi~ir) = C;.T""/“[l t%(?»ﬂ, +4)+ ;72%—2 1 +4)+ 0 (T“Q,)} (1.14)
where
QO =In(7/8) + yg — i7/2, (1.15a)
C;: ei‘n/8Cx’ (IISb)
C;:ei"/SC_v. (1.15¢)
T T T T T T T T
L 18 T
- 416 b
- 1.4 .
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T— —e T

Fig. 4. scaling functions Fi(s) on the imaginary axis (s = —it) as functions of 7 (time-like region).
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Fig. 5. Scaling functions Fi(s) on the imaginary axis (s = —ir) as functions of 7 (time-like
region).

Thus, in the space-like region the scaling functions EX(s) and F(s) are real
and decreasing functions, whereas in the time-like region the functions are
complex and both the real and imaginary parts show oscillatory behavior.
This is consistent with the picture of a spin-wave traveling down the chain at
a velocity y such that at a time ¢ = R/y, when the spin-wave reaches the point
R, the oscillations begin.

The xx scaling functions can be expressed as

Fi(s) = 3 gua(s) exp(= 3 f%()) (1.16)
and
FX(s) = exp(— i‘, f<2'”(s)>, 1.17)

where the functions ga.(s) and f®(s) are given explicitly in (2.15) and (2.16),
respectively. From these expressions for g,..(s) and f®(s) we find that FX(s)
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has only odd-number spin-wave excitations and F*(s) has only even-number
spin-wave excitations. For /> 1 the lowest lying excitation is the single
spin-wave excitation and its contribution to FX(s) is g.(s) in (1.16). That is to
say, the one-spin wave approximation to Fi(s) is

Fi(s)= gi(s), (1.18)
where
gi(s) =— Ky(s) (space-like region) (1.19a)
717 Ko(s) like regi 1.19
and
gi(—ir) = % H{"(r) (time-like region) (1.19b)

in which K(s) and H{"(r) are Bessel functions®'). The one-spin wave approx-
imation to FX(s) is good to 1% for all s = 0.1 (7 =0.1) in the space-like region
(time-like region). The high order spin-wave excitations (3, 5,7, .. .) contribute
significantly to FX(s) only in the region s <0.1. In particular, the location
of the zeros of FX(—ir) (see fig. 4) are given to a good approximation by the
one-spin wave approximation. On the other hand, the correct short-distance
behavior of F(s) in both the space-like and time-like regions [eqs. (1.10) and
(1.13) above] results only when all spin-wave excitations are kept in (1.16).

Concerning the scaling function F(s) in region A (see figs. 3 and 5) we
make the following remarks: (1) F*(s) approaches zero in the space-like
(time-like) region in a monotonic (oscillatory) manner as s — % (7 —>x), is just
the statement that there is no long-range order in the y-direction; (2) if the
spins were classical, then p, (R, t)=0:; hence the nonzero value of p, (R, )
represents a quantum effect; (3) the lowest lying spin-wave excitation again
dominates the scaling function for s(7)= 0.8 within 1% accuracy: and (4) if
one plots the function s”*F(s) for space-like s, then the maximum value of
s”*F3(s) occurs at s =0.452 ..., which is a 64% increase over its value at
s =0.

The scaling region B is described by

h < l; —y_>(): R—)y;; { > x (1.203)
such that
S|:’Y(R2”(1—h2)12)”2 (lzob)

is fixed. In this region (see fig. 1) the correlation functions take the scaling
form

Pc(R. 1) ~ pe(2)[FX(s))T (1.21)
and

PR, 1)~ py (N EFXs )T (1.22)
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Figs. 6 and 7 show the dependence of these scaling functions on the scaling
variable s,(—ir;) in the space-like (time-like) region. When s, = 0 (equivalently
v =0) in (1.21) and (1.22), the leading order behavior of p..(R, ) and p,,(R, t)
reduces to

pxx(Rs t) — pyy(R, t) wiel/222/3A76(1 _ h2)1/4[R2 _ (1 _ h2)t2]—1/4’ (123)

where A is Glaisher’s constant.
The time-dependent correlation functions p.(R,t) and p,,(R,t) can be
Fourier transformed in R and ¢, i.e.

bulk, )= S ek f dt € [pu(R, 1) — pec()], (1.24)

R=—

and the resulting transformed functions can be analyzed as functions of k and
w. In the scaling region A of fig. 1 these transformed scaling functions take

24 1

Fig. 6. Scaling functions [E*(s)F and [I:“i(s.)]2 as functions of s, (space-like region).
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Fig. 7. Scaling functions [F*(s,)]> and [F(s)))? on the imaginary axis (s, = —i7,} as functions of 7,
(time-like region).

the scaling form

Pk, ©) = pi(e€), (1.25)
where

€=|h— 1] (o - ykH)" (1.26)
and pi(e) are the spectral weight functions in the Kéllen-Lehman represen-

tation of the scaling two-point functions G'¥(p?) of the two-dimensional Ising
model (see Appendix B). We decompose pi(e):

pi(€) = 2, prnnile), (1.27)
n=0
pi(e) = Z} pinl€), (1.28)

where pz,..(e)=0 (p3.{e)=0) for e <2n +1 (e <2n) and is nonzero and has
no singularities for € >2n + 1 (e > 2n). Representations similar to (1.27) and
(1.28) hold for g,,(k, ) and for both g, (k, w) and p,,(k, @) in region B.

In particular, we find

2
pi(e) = — Y ble= 1) (1.29)

(1+y)h -
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and

pi(e) =0, fore<?2

_ 72 (62 _ 4)1/2
+y)h—-1)272 €

for € > 2. (1.30)

The é-function behavior of pi(e) is simply the one-spin wave behavior in
region A in FX(s) and pz(e) shows the fact that the lowest lying excitation in
region A in FX(s) is the two-spin wave. Integral representations for higher
px(€) can be derived.

In particular we can express pi(€) as a single integral as follows:

Xy

() o (a-nt [ AX[Ge 0 =x)) Tt ax
pi(e) = (4m) f X [ x(a —x) ] [ez(a—x) (62— 1)(1—X)]’
’ (1.31)
where
JE. e+ (e —29)(e2— ny"” (1.32)
2e
and
a:(el_l)/GZ. (133)

The integral (1.31) can be expressed in terms of complete elliptic integrals but
we find (1.31) just as convenient. In fig. 8 we plot p3(e) and in fig. 9 we plot

64xI0° B
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ple
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2ax03

Lexto 3|

08xI0
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1 | i
00 1.0 20 30 40 50 60 70 80 80 100 10 120

Fig. 8. Spectral function p(€) as a function of e.
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Fig. 9. Spectral function ps(€) as a function of e.
pi(e). The slope of p3(€) at € =2 is infinite whereas the slope of pi(e)ate =3
is zero. It can be shown that for all pj;(€), k = 3 that the slope at € = k is zero.
In section 2 we collect together our principal results so that they are
accessible for easy reference. In sections II to VII we elaborate in some detail

on the method of computation. In particular we follow the method of Cheng
and Wu") as recently simplified by McCoy et al.'®).

2. Summary of results

2.1. Exact results for h <1 and all R and t

When h < 1, one has

PR, )= pxx(OO)exp[— > F2'(R, t)], (2.1)

where p. () is given by (1.9a) and for n = 1,2, ...

i i 2n -iRP; -1t A,
(2n) _ —1~=2n -2n € ! f(Aj—AjH):I
FO(R, 1) = 2n)"'2 7 (2m) [dm..fd¢2"ﬂ[A]_Sm,§(¢)_+¢j‘]) ,

(2.2)



SPIN CORRELATION FUNCTIONS FOR THE XY-MODEL 13

WIth ¢2n+l 4)1’ Im ¢]<0 .’ - 1 2 2 n,
A; = A(¢)) = [(cos ¢; — )’ + ¥’ sin ¢,~1”2

|+ e e
( ")[(1 —AT e (1-A7 e —AT e (1 — a7 e ], (23
2 (1 22 117
A= htlh 1 _(ly ¥l and A= i L 1 _(1 )l (2.4)
Also, when h < 1 one has for p,,(R, t) the exact expression
< l+y X X — X3,
PR, 1) = —p(R -2, t)( ) det|3 ¥y xi , 2.5)
where
© : i 2n+1 —HR-1ig;—itA;
=3 2mem ™ [ do.. [ dou. 1[5
n=0 - - j=1 Ai
2n 1208+ 0,, )
(Aj—Aj)e A ]
X -
i=1 [ sSin %((15; + ¢j+1) ’ (2.6a)
XA B i 2_2"(2 onet ° d ? d 2n+1 e—i(R—l)d:ritAj
1= ) é1... Py n A
n=0 - - i=1 A,
= (A —Aj) e(i/2)(¢,-+¢,-+|)] —iP + ays )
* j=1 [ sin 3(¢; + ¢j+1) ¢ ) (2.6b)
X3 L Eoo: (2 ont d 2n+1 e*i(R*l)d)jvilAj
41 =2 ) d’l dd’2n+1 l_[] ———A-
n=0 = j
2n A — A (I/Z)(d’,-’rd?jﬂ) » »
* ,[( Sin %](1;5).1«;5. ) ](e Pt e, (2.6¢)
] ] i+

where for n =0 the second product symbol in the above formulae is to be
interpreted as equal to one; and finally we have

7i(R71)d>j7irAl]

. T 2n
_ z 2—2n+1(2ﬂ.)‘2" f do, ... f déan ]._I [e—_j\——
n=1 o -7 ! ]

2n-1 [(A, _ Aj+l) e(i/Z)(d’,-*‘f’ju)
x 11

sin 1(c + Bron) ] e P00 sin 3(han — b1). (2.6d)
! (Rd

j=1

2.2. Exact results for h > 1 and all R and t

When h > 1 we have

%0

PR, 1) = pu@)| 3 xus(R 1) |[exp(= T FER. ) @7
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and
iR 1) = ﬁxmc)[Z va o(R. r)][exp(f S FeW(R, r))}, 2.8)
k-1 . n o1
where
Pec(20) = 3[(1 = AD(T = A7 — A, 'Aa) 24 (2.9)
. "l\ i e*iRd)' 'i[.’\l
xz,\lil(R‘t)zz—Z(A—l)(zﬂ_) kD f dd)l f d¢’k ) [T]
Aj
2k -1)
A= A :' 1
. Y 1— b0, 2.10
1 I:_—T—ﬂsmi(d?j*d)j»l) cos 3 (. 1 — 1) ( )
z 2n 1R¢~itA
@n) _ 1y 2n 2n ’(A Aj. 1)]
FO"(R, 1) = (2n) 2 *"(2m) qus... fddm [A S e
(2.11
and
7 21\ 1 7|R¢lfilAl
Voo (R, 1) =272 D2y D f de, ... jdd’u 1 [ A ]
i= j
k-1
A~ Ajn ] 1 B
11 [m A Ay 1 cos3(ba 1 — ), (2.12)
with

(1— e id;’)(l -~ )\zei"’i) ]1/2

Af:A((bi):[(]—)\fle"d’!)(l—)\fle'd’f) (2.13)

where for k =1 the second product symbol in the above formulae is to be
interpreted as equal to one.

We emphasize that the above formulae for p..(R, t) and p,, (R, t) for both
h <1 and h > 1 are exact with no approximations having been made. We now
present our results when we specialize the above expressions to the scaling
regions A and B. Since the scaling functions in region B can be expressed in

terms of region A scaling functions [see eqs. (1.21) and (1.22)], we give only
the scaling functions in region A.

2.3. Correlation functions in scaling region A

The scaling region A as defined earlier [see (1.6) and fig. 1] leads to the
scaling functions F*(s) and F(s). Here we give explicit formulae for these
scaling functions. We denote the scaling limit in region A by limg.
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2.3.1. Perturbation expansion representation of p(R, t) in scaling region A

lim P (®)pu(R, t) = FXs) (2.14a)
exp[— 5‘, f”"’(s)] (h>1), (2.14b)
G(s)exp[— i f‘“’(s)] (h—>1%, (2.14¢)

with
G(s)= 20 gon(s), (2.14d)

and where p. () is given by (1.9a) and the functions f,(s) and gz.1(s) have
the following representations:

2 2 2n —sy;
@Yy = (— 1\~ 2P € ]
o= [ane o [ G
1 1

x[T3-1), forn=12,..., (2.15)
j=1
and
K —2k—1 Zk“ e
a(s) = (=™ f fd X [ ]
gu+1(s)=(=1)'m Yausl oI=T™
2k k
x [TGi+yis)! H(y%,-— 1), (2.16)
j=1 1=

fork=1,2,...,and for k=0

o0

1 -y 1
8i5) =7 [ iy = = Kols) @17)
1

Sometimes it is useful to use the following representations for the functions
£%(s) and gui(s):

£oM(s) = 2n) '@y f dx,.. . j dxy

—iRx.—iff 2312
2n [ e iRx; 1t(l+xi)/

a3 + %20 [(1+x)" -+ x,-2+1)”2]], (2.18)
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forn=1,2,..., and

2A 1 iRx fif(1+r3}l/3
2un(s) = Q2m) 2k f dx, .. J' dx7k+1 [W]

2k 2302 2 412
Xl-[[(1+x,-) (1+ Xji1) ] (2.19)

i< X+ X

for k=1,2,...,In the above

R =+v'h—1|R, (2.20a)
t=|h—1t. (2.20b)

so that
=(R*-tH'" (2.21)

2.3.2. Perturbation expansion representation of p,,(R, t) in scaling region A
lim P.\')’l(w)py,v(R’ {)
A
FY(s)=[G(s)E(s)~ EXs)]FXs)  (h—1), (2.22a)

Eis)=H(s)FXs) (h—>1"), (2.22b)

where p,, (), 155(~s) and G(s) are given by (1.9b), (2.14b), and (2.14d) and the
functions E(sy, E(s), and H(s) are given by

E(s) = 2 ex1(5), (2.23)
k-0
E(s)= ;\Z:O éuni(s), (2.24)
and
H(s)= kZ haa(s), (2.25)
=0
where

2%+1 ~sy,

Eani(s) = (=D 2 lfd)’l de2k+1Y1Y2k+1 H ‘2—‘—1‘)—17'1—[()’;4‘)%1)
1

k
X l—l(y%j— D, fork=1.2 ..., (2.26a)
L
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and
- y2e—sy
éfs)=m" f dy —=—m, (2.26b)
: (y—1
exri(s) = (= 1)fq 21 f dy; ... f dysey,
2k+1 -sy~
II (—z—l)lrl'[(y,+y,+l) H(yz, 1), fork=12,...
(2.27a)
and
-1 . ye™
es)=m fdyw, (2.27b)
1
and

h2k+l(s) “( l)k 2= lfdyl .. .J'd)/'y(ﬂ

2k+1 eA . k+1
X I-[l [( 1)1 ]H(YJ+y]+l) H(}’m 1 ’ fork:lazy-'-s
j=
(2.28a)

and
hi(s) = w”fdy(yz— D' es, (2.28b)

The above functions can alternatively be written in the form

— ~2k-1 2k+1 e—in~i[(1+x2)1/2
En(s) = =@m) 7 | i dx2k+,H N
i=

2% N2 _ 2 12
x [(1 + ijx — il +)x,+1) ]x1x2k+1, fork=1,2,..., (2.29)
i=1 it Xja

. 2k+1 —|§x—iz‘(1+x2)l/2
6’2:<+1(S)25(2’”)_2‘(_l f dx; . fdx2k+1. [ (1+x7) 172 ]

” 2k Ii(l+x!_2)l/2_(l +xi2+l)1/2
i=1

T x5 ]1(x, + Xus1), fork=1,2,...,

(2.30)
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and

h ( —2k~-1 2‘*“ *lﬁxvvif(l+x2)l/2
wls) = (2m) dxio | dxaa [T | S
]

y 12-‘[ [(1 + x,?)”2 —(1+ x,-i])”2

TR ](1 +xD(1 + x50,
i) 1+

fork=1,2,.... (2.3

j=1
where R and ¢ are given above.

2.3.3. Painlevé function representation of FX(s) and FX(s)
Following refs. 17 and 19 we denote by n(8) the Painlevé transcendent of
the third kind**®) that satisfies the differential equation

d’n 1 dn\" ad
@y a) e (232

with the boundary conditions

n(8) = —6[In(6/4) + ye] + 0(8°In* 6) (60 (2.33)
and

n(6) =1-27"'Ko(26)+ 0(e™)  (6—>). (2.34)

These boundary conditions are equivalently given by
n(—i‘r):iT[]n(T/4)+'yEAi7§T]+ O(7° In* 1) (1—0) (2.35)

and
n(—ir) =1 —iH"Q27r)+ O™  (r—x) (2.36)

along the imaginary s(= —i7) axis. We refer the reader to ref. 19 for a more
detailed discussion of these boundary conditions.
Also following ref. 19 we introduce the function (s) which is defined by>*)

7n(6) =e ¥, s =260. (2.37)
We note that (s) satisfies the hyperbolic sine-Gordon equation
dzw

d—"’ =3 sinh(2¢(s)). (2.38)

“
n|.—.

The behavior of 7(8) and (s) for both real and imaginary arguments is given
in figs. 10-13.
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Fig.11. Painlevé function %(@) on the imaginary axis 8 = —ir as a function of r.

In terms of %(8) and (s) we have

Fi(s) = 41 £ n(0)n "(6) exp U axban 1 - e (G ]|
o

(2.39a)

= {Zi::i,%ﬂ(ss))} ‘”‘p[‘i f dxx[G—f)Z‘ sinh’ ‘/’(")” (2.39b)
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If we write the scaling functions Fi(s) as

Fi(s) = Y(s)FXs), (2.40)
where from (2.22) we have

Y.(s) = H(s)/G(s), (2.41)

Y_(s) = G(s)E(s)— EXs), (2.42)

then we have the representations

0= gt -0~ ] oy (258] o

D PRI d_:/rz]_i gg){coth%(p(s)}
—4[smh Yis) (ds) 2s (ds tanh 5(y(s)) (2.43b)

In ref. 19 explicit formulae are given for n(8) and (s).

2.3.4. Large s behavior of FX(s) and Fi(s)
For s - « the leading behavior of FX(s) and Fi(s) is given by the first term
in the perturbation expansion results given above. More explicitly we have

EFXs)=7"'Ky(s)+0@E™>) (s—>), (2.44)
FX(s) =1+ 7 [s[K}(s) — K¥s)] - sKo(s)K (s) +3K¥(s)] + O(e™), (2.45)
X)) =7 's 'K (s)+ 0@F)  (s—>), (2.46)

E¥s) = 7"YK3¥s)— K¥s)+ s 'Ko(s)K(s)] + O(e ™) (s = ). (2.47)

These formulae can be analytically continued into the time-like region (s
imaginary) where for instance Ky(s) becomes (i=/2)H{"(7). The short distance
behavior of the scaling functions is best derived from the Painlevé function
representations given above. These small s expansions were given in section 1.

3. Formulation

Following MBA the two-spin correlation function is obtained by consider-
ing the four-spin correlation function
Co(R, t, N} = (S7(0)S(n2)-r+1(0)S{np 1 (8 )SK g1 (1)) (v=xory), G

where N is the number of spins in the chain and using the clustering property

lim C,,(R, 1, N) = p3.(R, 1), (3.2)

Nowx

where

puu(R, t)= (S?(t)Sl%H(O)) (3.3)
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By the methods of MBA we find that

0 s T U
S Y A

2 _ 44 : V
CL:U(R. t, N) =4 "det _7':,1. O 0 _gr

~0 v ST o

(3.4)

where each of the submatrices is of dimension sN — R with 0=sm <

IN-R-1,0sn=<3N-R~-1.
At zero temperature the matrix elements are given by

S L —iln-m)p
Sm.n - N ; € Sb(¢)

v 1 —in+m
Tha=§ 2e " "*T.(4).

1

~ v _ itn Hn)d)l]U )
Um,n N ge (¢)
and
v _l_ —itn+m)d
Vi =N ; e V().
Here
Si(d)=e P D(—¢); Si(¢p) = —e P D(),

Tx(¢) — efi(ﬁRfi/\t(-D(d));

Ux((ﬁ):Ae id’(RflP'i'\l: Uv(d)):e iB(R+1)-iAt

V@) = —e HEPND(—p);  Vi(p)=e WTTINP(g),
with

(1-A'e)1-A'e?) }”2

— a P
q)(‘b)—e [(l 7)\|7| e—ut)(l _Azfle'ub)

It should be noted that with the definition

Ind S(¢) = ﬁ fin S27) —In S(0)]
we have for h < 1

Ind S, =0 and IndS, = -2,
and for h > 1

IndS,=1Ind S, = - 1.

In the thermodynamic limit N — «,

s ome [
N; (27) fddh

T.(¢p) = —e "k Md(—g),

(3.5a)

(3.5b)

(3.5¢)

(3.5d)

(3.6a)
(3.6b)
(3.6¢)
(3.6d)

(3.7)

(3.8)

(3.9)

(3.10)
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and we replace S,, etc. by S” etc. to obtain
0 S* T* U’
_SUT 0 -y’ \"4d
-T* U 0 -S* |
-Uur -V sTo0

C% =4"det (3.11)

Here, as in (3.4), the superscript T denotes the transpose operation.

4. Evaluation of p,, (R, ¢t) for h <1

The evaluation of the determinants in (3.11) is based on the method
developed in ref. 18. Since these techniques are not widely known we
reproduce below the details of the derivation.

Let

Ci=4"det 6. 4.1

In what follows we will drop the superscripts on S, T, etc. for simplicity. We
write € as

C=A+RB
where
A 0 _ 0 B
a-[4 ) a-[ 27 @20
and
_ 0 S [ T U
A= [—ST 0], B= [_U v]' (4.2b)
Then using an elementary formula of matrix theory we have
ChL=4"*det o det(1+ o 'B) 4.3)
_ 4 - (—l)k+l -1 k
= pu(®) exp| > 1 —Tr(st"'B)" |, 4.4

where we have used the fact that’®) det of = 4%pi () with p.() given by
(1.9a).
Define F(R, t) by

Pux(R, 1) = pu(®) exp[—F(R, t)]. 4.5
We have
Tri(f'B)**" =0, forj=0,1,2,..., (4.6)
and
_ AT'BAT'BT 0
'@y = a-igTap) @4.7)
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Hence, if we write F. as
F.=Y F%, (4.8)
k=1
then

F&0 :ﬁTr[(A”BA"BT)“]. (4.9)

We define for |¢] and [¢] <1

SE € = Zoﬁmg’"(s;‘)m,n. (4.10)

mn=

The generating function S.(£) has the factorization

(ST ' = PA(HQE™), (4.11)

where P,(¢) and Q,(&) are analytic inside the unit circle |£| = 1 and are given
by

P (&) =[(1=A7"6)(1—A7'9)'" (4.12a)
and

Q&) =11 = A 'H0 - A 'O (4.12b)
Note that

P(H)Qu(£) = 1. (4.13)

It follows from the method of Wiener-Hopf®) that

S UE €)= QuUEP(£)(1 — g (4.14)
We define
Qg
ATNE &) = [ggl(& &) g* (& ‘f)] (4.15)

so that A7'(¢ &) is the matrix generating function of the inverse matrix
elements of A. Similarly,

[T U®
B(‘E)’[—U(g) V(g)} (4.16)
Note that
e [T -UE@
B“"[U(&) wa]‘ (4.17)
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With these definitions we have

F(<2k)=%(277)_2k j de, ... f déx

xTr{A~'(2k, DB(1)A™'(1,2)B"(2) ... A™'(2k — 1, 2k)BT(2k)},
(4.18)

where B(1)= B(e*) and A7'(1, 2)=A"'(e™, e7*), etc. In (4.18) Im ¢, <
Imd¢,<---<Im ¢y
We can factorize A7'(£, £) as

aen=a-2or 0l Tl be o0} @

Using the cyclic property of the trace we group together matrices that depend
on the same ¢; variables. Performing the matrix multiplications we have

Fe=gram™ [agi... [ agaf]a-e

Sl I

[vx(z)oié) ~U.(2) ][0 —1]

U.Q2) T.PX2)il1 o
V.2k)Q¥2k) —U.(2k) 0 -1

S . 4.2
[Ux(Zk) T,(zk)Pi(zk)][l o]} (4.20)

Now when used in the above integrals the following identities are valid (see
discusston in refs. 17 and 18):

V()QUD) = - L5 Y emienkrrminep-iqyy, @421
— 2 . .
TU(DPID) = i e ® A, “2)
Hence,

1/2
[v,(noid) Ua(1) _]=e“‘°’"’“”‘_““ _(1+27)”2
~U.(1) T.()PX1) A (%) A,

x [(1—’;—1)1/2 (%)NZA,], (4.23)
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and
1+’)’ 12
[VX(Z)Q,%(E) -U.2) ]:e~i¢2(R+l)—iA2: _( 2 >
U.(2) T.(2)P%(2) 2 2\
_<1+7) A
2

x [(52—1>”2 - <m>ll2A2J. (4.24)

Using these all the matrix products can be written as scalar products, i.e.

1/2

1+ 12 7\ 0 -1 _(UZ_Z)
[( 2 ) (1+‘y> A‘][] 0] 2 >1/2A =A— A (4.25)
- 2

and

=A— Al (4.26)

1”2 12 _
(51 -G5) 0
2 1+ 10
This gives the result (2.2).

4.1. Scaling limit h—> 1"

Now we consider the scaling limit in region A as defined above in (1.6). For
h=1, A(¢)=0 at ¢ =0. Thus, the leading contribution to the integral for
h—1" comes from the behavior of the integrand around ¢;=0, j=
1,2,...,2n. Expanding A(¢;) around ¢; =0

1+y O o Ay 2 As' 21"
A~ ()1 = A0 = a3 )[1+(1_A],,)z¢f+(1_A2—,)z¢j] 4.27)
~ (‘—“;l)(l —ATH =AY +x7), (4.28)

where

X = A1 = A5 g, (4.29)
Let

Re; = AY%(1 - 17" )Rx; = Rx; (4.30)
where

R =2{*(1-A7"HR. (4.31)
Similarly,

tA; = ([1+ X}, (4.32)
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where

F= (”T")u AT = A3 (4.33)
Similarly,

sin 3(e; + ) ~ 242°(1 = A2")(x; + X;20) (4.34)
and

deby(A; = Ap)  2dx[(1+xD™ ~ (1 +x}0)")
A,- sin %((ﬁ, + ¢j+l) (1 + xlz')llz(xi + xiH)

(4.35)

Applying the above scaling limits to the integral F%'(R,t) [see (2.2)] we
obtain the value in the scaling limit which we denote by f®"(s) given by
(2.18). Note that as h—> 1~

5 1—h

R_)T and 1-(1—h)t. (4.36)
To show that f®”(s) depends only upon s, we proceed as follows. Define @ by
R=(R*— )" cosh9;  yt=(R>— ¥*t* sinh 9, (4.37)
and let
x; = sinh(y; — 9), (4.38)
then
Rx;j+ t(1+x})'"? = (R*~ 4’1"y (4.39)
with
u; = sinh ;. (4.40)

Hence, in the new scaling variable s as defined by (1.6b) we have

e—isui[(l + u?)1/2_ (1 + u%+l)l/2]:,
(U + ud) ™y + uja) ‘

2 2 2n
f¥(s)=2n)'Cm)y ™" f du,... f dus, l-[ [
- - (4.41)

j=1

Comparing with the two-dimensional Ising model correlation functions
derived in ref. 17 [eqs. (3.141) and (2.26)] we see that

Puc(R, 1) = pr() FX(s). (4.42)

4.2. Scaling limit in region B

We now consider the scaling limit in region B as defined above in (1.20). In
this region A, and A, are complex and A, = A%,
Let

Ar=Ale” and A,=|r|e™, (4.43)
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where
1 /1+4\"
A|=== (———) defines p (4.44)
p -y
and
cos ¢ = h(1 —y))"* defines ¢, (4.45)
then

Aoy = ( )[(1—2p cos(; + )+ p)(1—2p cos(¢; — ¥) + pH)]'"2. (4.46)

As y—0, p—>1 and the leading contribution to the integrals in (2.2) comes
from the zeroes of A(¢;) at ¢; = = ¢. To leading order we require contribu-
tions such that

b+ di1=0, i=1,2,....2n,

that is, from the regions in the neighborhood of

(@ ¢é1=4¢: ¢ =~ G3=.... b= (4.47a)
and
(b) (rbl:—lr[/= ¢)2_ vllv (1)‘1,:_‘1/;;;;.(!)2;] =y (4.47!))
Expanding A(¢) around ¢ + ¢y = 0 we have
1/2
Ald)~ ( s 7)(1 — p)(2—2 cos dm‘“[ T _"p)z<¢ + W] . (4.48)

Similarly, the expansion of A(¢) around ¢ — ¢y = 0 gives

M)~ (52 )1 -2 2cosw>”’[1+(—l—~—z<¢ w]/z. 4.49)

(a) In the neighborhood of poles at
b=y and ¢y = -4

define

X201 = p"H(1 = p) (o1 — ¥) (4.50a)
and

X = p"* (1= p) (&3 + ). (4.50b)

(b) In the neighborhood of poles at
¢ =—¢ and ¢y =4,
define
X1 = p (1= p) (o1 + ) (4.51a)
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and
X5 = p"(1=p) (¢ — ¥). (4.51b)
Applying these scaling limits to the integral FZ"(R, t) [eq. (2.2)] we obtain
F2(R, t) ~2f®(sy) 4.52)

in the scaling limit B, where (s, is given by (2.18) as a function of the
variables R, and ¢, defined by

Ri=yR and f,=y(1-h)"t. (4.53)

As in section 4.1 above we can now reduce the dependence in Ry, ¢, to a
dependence on the combined scaling variable s, [see eq. (1.20b)] to get the
result in (1.21).

5. Evaluation of p,, (R, t) for h <1

Here Ind S, = ~2. To work with a generating function of index zero we
consider the shifted matrix

DR, t,N)=det C,, 5.1
0 I T W

| ;v

y __Iﬂ 18 g _lg 5.2)
0 - S T

where the horizontal (vertical) bar represents addition of two rows (columns).
Thus, the new generating functions are

S,(¢) =e*S,(¢), (5.3a)
T,(¢) = T,(¢), (5.3b)
0,(6) = e¥U,(¢), (5.3¢)
Vy(d) = eV, (). (5.3d)

The evaluation of D3 is carried out in a manner analogous to section 4. It
can be immediately seen that

D*(R,t)=pi(R=2,1). (5.4)
Now consider the ratio
0o & PO
rAR,t,N)=[DXR,t, N)|"! :‘;yf %.y “éjy _;f: . (5.5)
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Using Jacobi’s theorem, this ratio can be obtained from the 4 x 8 matrix of
3N — R +2 component vector X§ which are the solutions of the linear
equations

Xf]

X5 o

C)‘ X13 —8’ (56)
5|

where &' are the eight columns of

8p 8 0 0 0 0 0O

0
0 0 &% 8, 0 0 0 O

6 0 0 o0 &y 6, 0 0 | -7
L[) 0 0 0 0 0 5% 5]U
and the 3N — R + 2 component vectors 84, are
1 0 0 0
0 1 : 0
8% =10|; sL,=]0 | 8h=10 8h | ¢ |. (5.8)
: : | 0
0 0 0 i

The ratio rf, 1s expressible as an 8 x 8 determinant of Xji. Because of the
antisymmetry of C and the fact that a number of elements are exponentially
small in N, we have in the thermodynamic limit

(R, t)= Lim r,(R,t, N)

0 —XL -Xl -Xi,
X%l 0 _Xi() _Xgl

= det ’ ; ’ (5.9
Xl Xl 0 -X1, )

X XL Xuo 0

where the Xj are infinite component vectors obtained from the N = » set of
equations corresponding to (5.6). In this set of equations the right-hand side is

0 0 0 0
8" 8" 0 0

O o0 o0 0"
0 0 & &Y

where

I 0
3“—[0 ;8= ‘W
_LO : - OJ. (5.10)

We use the methods of section 4 in the evaluation of various terms in the
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above determinant. One typical example is given below. We also find that

Xi,=—X3, and Xio=Xis (5.11a,b)
Thus,
X3 Xi-X3
12 — _ 40 41 21
ry R, t) det X3+ X3 X4, . (5.12)
5.1. Evaluation of X3, (note: all of S, T, etc. represent §y, i, etc.)
Now
= (C;l)nso (5.13)
=-3 SYTX} - UX5}ST '8, (5.14)
n=0
where X = A7'BA'B”, so that
Xi,l = _Sl_r:x] ZO {Tmlmz(X?I)mZM3 - UM]mz(X;l)mznq}Sar:l] (515)

o o m a ~
== 3 @m™" f dé, ... f dh2nss 35 576 Dl

x{T(M[A'1,2)BQ)...A™'2n,2n + )B"2n + 1),
—UM[AT1,2)BQ2)... A”'2n,2n + DB"2n + D1u}S7'(0,2n + 1).

(5.16)
We know from eq. (4.14) that
STE ) =(1-£e7) QP (D), (5.17)
where P(£€)[Q(¢)] is given by eq. (4.12a) [(4.12b)]. Hence,
S7HE Dlg-o = [e7™1+ QOIP (D). (5.18)

§

Factorizing the matrices A"‘(T, 2), etc. and carrying out the scalar products as
in section 4, we have

xu= (1Y) 3 crem ] dé, .. f d¢zn+xﬂ[—AL%§%§m]

i

2n+1 e'-l(R 1)¢, itA;
X

) —idhy
A ][e + Q'(0)]. (5.19)

i=
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A similar analysis yields
T+7v)\ < —n ( . = i i
X%,l=—(—2—y)§j](—1)"(2m : f do, ... f dé, [] (1—e ey
n= i=1

2n o ~UR= ;A '
X(Aj— Aj) H[ A ']Cﬂd’ﬂ (5.20)
j=1 J

ML o —UR-Dith;
1]

< n —2n— L" Aj— A
X40—( )2 (—D"2m) 2 ]fd¢1 f d¢7n+1 _Je—i¢ji:blj+,

and

1+ d —n- [ 2" i~ Ajs
X4 ( ‘y) Z( 1)"(277) 2n-1 J’ dd)] - f d¢2"+] [lﬁ]eq:bjiwlﬁl]

2n+1 [e—u(R 1)¢‘ |tA]

X ]‘[l ——A——][e"""+Q (0)][e 1+ Q'(0)]. (5.22)
1= i)
All terms containing Q'(0) can be removed by the following operations on
the determinant in eq. (5.12) which does not change its value:
(a) row 2— Q'(0) [row 1],
(b) col. 2—Q’(0) [col. 1].
Thus, we get the final result given in egs. (2.5) and (2.6).

5.2. Scaling limit h—> 1"

Now we consider the scaling limit in region A. We first note that X3,—0 in
the scaling limit. We rearrange the determinant by subtracting rows and
columns to take the form

X?t,O_XZ.I Xi,l

2X3, - Xio— X4, X - Xl (5.23)

and then take the scaling limit as in section 4.1. Some of the exponentials
have to be expanded to higher orders before a nonzero contribution is
obtained. On doing this we get the results quoted in section 2, eq. (2.22).

5.3. Scaling limit y—0

Here again X3;—0 in the scaling limit. on expanding the A(¢;) values
around (1) @y-1 = ¥, ¢y = —¢ and (2) @yj+1 = — ¢, 2 = ¥, as in section 4.2, we
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obtain
—iRy + iRy
Xin’v(zejgo—:'wn G(s), (5.24)

—i(R—Dy¢ (R-1)¢
; e +e
X0~ 5T eas g™ O (5.25)

and

—i(R+1)y HR—1¢
4 € +e
X4,l (2_2COS lll)l)z G(sl)' (5.26)

On solving the determinant in eq. (5.12) we obtain the result quoted in eq.
(1.22).

6. Evaluation of p,, (R, t) for h > 1

_ In thisAcase Ind S, = —1. Hence, we work with a new generating function
S:(¢) = €"*S,(¢) which has index zero. This is achieved by considering the
shifted matrix

DR, t,N)=det C, (6.1)

RO & I

C= _ij oot v (6.2)
-u 9 s ,
U1 v s Do

where a horizontal (vertical) bar indicates the addition of a row (column).
Now

S:(¢) = €S (), (6.3a)
T.(¢) = T(e), (6.3b)
Ui(¢) = e*U. (), (6.3c)
V(@) = eV, (o). (6.3d)

The evaluation of D2 can be carried out in a manner analogous to section 4,
and we obtain the expression for F.(R, t) given in eq. (2.11).
Consider the ratio

rR, t, N)=[DXR,t, NI | = - |- (6.4)
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Define the 4 X 4 matrix of 5N — R + 1 components X° by

Xy X x1 oxt &5 0 0 0
Xy X3 X3 X3l |0 & o0 o0
Clxix kx| T o 0 & 0| ()
X, X X3 Xxi 0O 0 0 &
where
0 1
) 0 i 0
dp=1|1:t1];: Sy=|: (6.6)
0
1 0

By using Jacobi’s theorem we have

X :‘N/2—R X"%.N/Z"R X%,N/Z—R X"”I‘,N/Z*R
X0 X3o X3 X3o
)_—{;,N/Z'R X:%,N/Z*R )gg,N/Z“R X:g.N/Z—R
XA‘!,O thi,() XZ() X:,()

r¥R, t, N) = det 6.7)

Since C"= —C the determinant in r2 has to be antisymmetric. Also, some of
the elements are exponentially small in N and hence vanish in the limit
N - ». Using these facts we obtain

riR, t) = Lim riR, t, N) = (Xio)" (6.8)
Hence
Pu(R, 1) = pu(®) X 30 exp[—F=(R, )]. (6.9)
Let
X%,o: kZOxzkH = (C31:8u)o. (6.10)
Now
c*‘:; ()" ' B, (6.11)
=0
so that
Cih== 2 (' B)i"'S™ (6.12)
n=0
=(A"'BNuXHST '+ (AT'B )X ST (6.13)
=§'T(X)HS"' =S UX)HS", (6.14)
where

X =A"'BA'BT. 6.15)
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Thus,
X2n41 = (87 Ton X mpduiSop = (§7' U om [ X 7p121505 - (6.16)
Now

Xomp = Q)™ f dé,. .. I d¢2ns1Amm, € MIRB(2) AL,

X e mtmIBBT(3) L ALl e TP BT(20 + 1) (6.17)

=Q2m)™ f de,. .. f ddons1Amm, €™ *B(2)A™'(2,3)B"(3)

X...A”'@n,2n+ HB"2n +1). : (6.18)

We can carry out the 2 X 2 matrix products as in section 4 to derive the final
result for x,,.1(R,t) given in eq. (2.10). Some additional manipulation is
required before the results can be put into the final form F.(R,t), x-(R, 1),
where F.(R,t) is identical to F.(R,t) except for the change from A; to A,
These are identical to the ones in ref. 17 and will not be reproduced here.

6.1. Scaling limit h > 1"

We now consider the scaling limit A. The analysis of this scaling limit is
similar to that of section 4.1 except that here we expand A(¢) [instead of
A(¢)] about ¢ = 0. Now the scaling variables are

R= (h—;—l>R; t=(th-1t and s= h—;l (R— y2tH)"2, (6.19)

On carrying out the necessary algebra we derive the results quoted in section
2. Here again the scaling function is the same as that of the Ising model and is
expressed in terms of Painlevé function of the third kind'""?).

7. Evaluation of p,,(R, t) for h > 1

Since Ind S, = —1 the case is treated in a manner similar to section 6. We
have the generating functions
S,(¢)=¢e"S,(¢), (7.1a)
T,(¢)=T,(¢), (7.1b)
U,(¢) =e*U,(¢) (7.1¢)
and

Vy() = ¥V, ($). (7.1d)
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Comparing with S,, etc. we note that §,, T,, etc. can be obtained from S,, T,
etc. by the simple transformation y<> —y, i.e. A7' e A,. Thus, the results for
pu(h > 1) can be directly transformed accordingly to obtain p,, for h > 1.
These are written out explicitly in section 2. We also verify the Suzuki sum
rule*) relating the Ising model and XY model correlation function. This is
done in Appendix B.

7.1. Scaling limit h - 1"

The analysis in this case is similar to that of section 6.1. We note that our
function H (s) is the same as that of ref. 19 (except for a change of sign) and
consequently can be expressed in terms of Painlevé functions of the third
kind. On carrying out this scaling analysis we get the result in eq. (2.22).
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Appendix A

Suzuki sum rule

Suzuki'®) derived the following sum rule relating the Ising model correlation
function to the XY model correlation functions:

(TumGnmhs = cosh® K (o 5(0)a5(0))xy — sinh® K¥a3,(0)05:(0)) xy. (A.1)

where the Ising model hamiltonian is

%I: _El 2 Un.ma-n,mH‘EZE T .m0 pvlm (AZ)
and

tanh 2K, = (1 - yH"2p 7" cosh2K¥=+y"", (A.3)
where

K,' = E,/kBT and tanh Kz* = exp(—ZKz), = 1, 2. (A4)

Hence, the identity (A.1) translates to

(Twoor)s = 17 Kos(0)aR(ONxy — (T3(0)T R(0))xy |

+3oH0)TR(0))xy + {TH0)Tk(0)xy ], (A.5)
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where
(ToTor NS = S;[Z sz+1(R)] CXP[— 2\ F(zzn)(R)], (A.6)
k=0 n=
with
82 =[4z,2:(1 — z})(1 - z3)}"*[sinh 2BE, sinh 2BE,) 2 — 11", (A7)
z; = tanh BE;; B = 1/kT; i=1,2, (A.8)

2U+1 ~iR¢y;

2 +(R)=(_l)k 2k2 —2(2k+1) J’ d . f d + __—?_h_
2A+1 Y1 Q2m) J 4 J P a2 ,1:11 A(drj-1, 2))

2k [sin 3(dhaj 1 — G2jr1) 1 _ 1 -
X ,l:[] [ sin %(d’]zi + &2j42) ] cosbun = G 05 2(Paker= 4.

(A.9)
with
n=2z0-2): m=2z0-2); a=0+z)1+23), (A.10)
A(d2j-1, ) = a — ¥1 COS @yj-1 — ¥2COS P, i
and
F(Zzn)(R) - (_1)n7$n(2n)-1(27r)—4n f do, ... f dsn
2n [ e o sin (1 — dayr1) ]
11 A((sz—la ) sin %(¢2i + @ii2) : (A.12)

(05(0)0%(0))xy and (a4(0)or3(0))xy are given by pi(R,0) and py(R, 0) of egs.
(2.7) and (2.8), respectively. We can express F2"(R,0) in the following form:

F®(R,0)=(2n)" 27 Qm)™" f d¢, f dos. .. f ddsn

2n —iRbyi A+ A= A -
[e . Lo Az’”Az’)] (A.13)
j=1 2j SIN2(a; + B 2jv2)
where
A3 =[(1— A, €)1 — A e )], (A.14a)
Az =[(1— A7 e®i)(1— A7 e o))" (A.14b)
and

Aq = AL A7 (A.15)
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Similarly,

T

- 21 o iRy,
xR0 =274 2m @ [ g, f dés .. f dbus 1 %
2

-

lz_l [A21A21+2 A2+j+2@

NPaa— P A AL (A.16)
sin 3(¢ho; + baji2) ]COS2(¢“ 2= d) A Awn

j=1

and
\ o ’ 7 2] o iRy,
yan(R.0)= 2% 2m) @0 [ dgy [ dge. | dows I
j=1 2j

[Aszzj”‘ A2;+1Az,-J oS 3(Pars2 — P2 Az Agian. (A.17)
=1

sin %(¢2j + aj42)
To prove identity (A.5) we integrate the expression for {owoorns over the

odd-angle variable by evaluating them at the poles A(¢z;-1. ¢2) = 0. We note
that

dé,f(¢y) _ 2
- A(@, ) (1—2D)A;

f(d]a (A.18)

where A(¢,, ¢) =0 corresponds to the relations

ei”":%{a—%(eid’l+e‘“"z)i(l —z%)Az} (A.19a)
and

cos d>.=~l«(a—yzcos da), (A.19b)

sin ¢; = Q%Ell)ﬁ (A.19¢)

We can also prove the following relations under the transformations (A.3) and
the pole identities (A.19)

- .
SIn3(Paj—1 — P + A= + -
Y1 Z(I‘i’il z‘% b2i) _ % [A3jAz2— Azj2Ayl (A.20a)
and
S 1 _ 1+ e 1+ boa
cos 12(?;%“ ) %P x(w)[(—‘y—z>Az Agpsr— <—Yl>A2A4k+z]- (A.20b)

Thus, integrating over the odd-angle variable ¢,;., we have

2n
FEU(R) = (-1 () @) f ds . j dbun e
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) ([ mac— L] o [PV PR
14 LAy sin3(dy; + d2je2) 2y, j=1 yRe At
(A.21)
which, on comparing with eq. (A.15), shows that
F$(R)= FZ'(R,0). (A.22)

Similarly,

2k+1 2kt1 o ~iRdy,

Zat(R) = (=D yi*(2m) 23D f de,. .. j: d¢4k+2<—2—ﬂ'—2>

1- 22 ji=1 A2j

2 " 22)]
x —r———‘ cos [

,1_11 sin 3(¢y; + Pajs2) HPaxs2— b2)

- 4 _ 1 — 22 —n ©

x H (A} Az — ASiaAz]) (ﬂ_%g(_)

- s

1-

X [(1 : )Az Apsr — ( ” y)A;AZHZ] (A.23)

which, on comparing with eqs. (A.16) and (A.17), shows that
Szzun(R) = %ﬁx.x(“’){‘)’_l[xzml(R, 0) — y(R, 0)] + [x2%+1(R, 0) + y2+1(R, O)1}.

(A.24)
From eqs. (A.22) and (A.24) the sum rule (A.5) follows.
Appendix B
Define
pk,z)= f dedt e*RHid 5y,  s=(R*-H' (B.1)
Then,
_ 1 plk, @)
- LAU Rl 2
pk, z) 27rifdw g Imz>0. (B.2)
Now
plk,z) = f dedM e*RHME (5) (B.3)

—o

3

=i f dedM e R-ME (1), r=(R*+ MH'", (B.4)

—o0
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Hence,
Bk, iz) + plk, —iz) =i f dR f dM e R M E (). (B.5)
Setting

R =rcos ¢; M =rsin¢; k=€cosy; z = € sin i,

with € = (k2 + z%)'?,

5

plkiz)+pk —iz) =i [ drr [ dg e Fn (B.6)
0 0
=2mi [ drire)Fucr) (B.7)
0

The right-hand side is the Fourier transform of the two dimensional Ising
model two-point function as a function of the wave number e. It has the
spectral representation'®)

. .
. S(x) d

fdrrJo(re)Fx(r)=f———r";(i)€ X (B.8)

0 0

where + (=) refers to T > T, (T < T.) [in our case h > 1 (h < 1)]. Using eq.
(B.2) and after some algebraic manipulations we see that

pxy(€) = pP(e). (B.9)

Note added in proof

Lajzerowicz and Pfeuty™) have shown that

R =50 (R 1)
Py, 1) = hZWpXX ’

for the transverse Ising model {y = 1 in eq. (1.1)]. In the scaling region A, the
y = L restriction can be removed; and hence, the above formula can be used to
derive p,,(R, t) in scaling region A.
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