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1. INTRODUCTION

In this lecture I should like to report on the work I have
done in collaboration with Barry McCoy and Tai Tsun Wu (and on
certain aspects with Eytan Barouch) on the correlation functions of
the two-dimensional Ising model. In particular, I wish to demon-
strate how a particular solution of the two-dimensional hyperbolic
sine-Gordon equation (also known as the two-dimensional non-
linear Debye-Hiickel equation),

Ad = sinh ¢, (r>0), (1.1)

plays a fundamental role in the scaled two-point function in both
the one-phase and two-phase regions. Before I discuss these
results, I would like first to review the definition of the 2-d. Ising
modell)~4) and related quantities (Section 2); and then briefly
recall the scaling theory hypothesiss)'7) for correlation functions
(Section 3).

1 Lectures given at NATO Advanced Study Institute on Nonlinear
Equations in Physics and Mathematics, Istanbul, August 1977.
1 Supported in part by National Science Foundation Grants
Nos. PHY-76-15328 and PMR 73-07565 AQ1.
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2. TWO-DIMENSIONAL ISING MODEL

Consider a two-dimensional square lattice of At rows and
N columns and at each lattice site, which we label with the pair
of indices (i,j), we define a variable o5 that can assume the
values of +1. The two-dimensional Ising model with nearest
neighbor interactions on this square lattice is specified by the
energy of interaction

§ = -E, Z W5 ke1 " Ea Z TR (2.1)
ik ik
The partition function Z/K;TL(B) is
Zyo B = ), exp(-B§) (2.2)
Aon
o, .=t}
i,)
and is related to the free energy per lattice site by
-Bf(B) = lim o logz%n(B) (2.3)

HNo N —~co

where B=(kBT)_1, T =temperature and kg is Boltzmann's con-
stant.

This free energy, f(B), was computed exactly by Onsagerz)
who observed that there is a singularity at a temperature T
determined from the equation

sinh ZBE sinhZBE = 1. (2.4)

Strlctly speaking, to interpret this temperature T. as the critical
temperature, the spontaneous magnetization M ( ) must be ana-
lyzed. This quantity was known to Onsager, 8) but the first pub-
lished derivation of M ( } was given by Yang3) who showed

Ho(T) = [1 - (sinh2pE, sinthEZ)'Z]l/s. (2.5)

Actually, Yang considered the special case of the symmetric lat-
tice Ey =Ey =E {as we do from here on) and the general case

Eq ;£E2 was derived by Chang.9 The important point to note is
/YGS(T) goes continuously to zero as T approaches the temperature
T, determined by (2.4). This approach to zero is proportional to
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(l—T/Tc) 1/8 and the 1/8 defines one of the critical exponentss)'7)

of this model.
The correlation functions are defined as follows: Consider

n points in the lattice
N --; M_, N_, (2.6)

then the n-point function (in the thermodynamic limit) is

Y =

<“M1N1“MZNZ M N,

. -85
MNMoN, T M N ®
= lim
No— oo ze P
n/ - o0

where the sums are over all configurations, i.e., {‘Ti j=tl}.

3. SCALING LIMIT AND SCALING FUNCTIONS

The scaling 1imit5)—7) of the pair correlation function is the

limit

R~ow, £ = (T-T.), such that x=R/¢ is fixed (3.1)

1
where R is the radial distance [=(M2?+N?? for the symmetric
case E,=E, of the previous section], £ =£(T) is the correlation
length which goes to infinity as T— Tét [for the 2-d. Ising
model4) £(T) diverges as (l—T/TC)“l] and the variable x is called
a scaling variable. The scaling theory hypothesiss)_7) is the
assertion that the pair correlation function (crO 0'M N> (which
is in general a function of M, N, and T) assumes in the scaling
limit the scaling form

9a
( } o~ M Fi(x) (3.2)

%0,0°M,N

where ffo=| 1—sinh_4ZBEl 1/8 and the functions f':I: (x) are called
scaling functions. The + (-) sign denotes that T-T, from above
(below). The reader is referred to the articles by Fisher® and by
Kadanoff et al. 6) .7 for a complete discussion.

An alternative formulation of the scaling hypothesis can be
given in momentum space: Let
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x(k,T) = i’ i \:((r o )—/sz(T)]eik'R
Moo No—wl 0.0°M,N s
(3.3)

then the scaling limit is
k- 0, £ -0 suchthat p=kf is fixed

and the scaling theory hypothesis (again we restrict the statement
of_‘the hypothesis to the 2-d. Ising model) is the assumption that
x{k,T) in this limit becomes

- 7/4 2
xE1 ~ et e, o) (3.9
where ¢ is some lattice dependent constant.

The relation between Fi(x) and Gi(z) (pz) is

G+(2)(p2) = 27 S; dx x Io(xp)g‘+(x)
and (3.5)
G_(z)(pz) = 27 S dx x Io(xp)[lt“_(X) -1]
0

where Jj (x) is the zeroth order Bessel function. For a discussion
of the connection of Gi(z) (pz) to critical scattering experiments,
see Reference 10 and the references contained therein.

4. EXPLICIT FORMUIAS FOR F,(x)

For the case of the two-dimensional Ising model on a
square lattice, the scaling hypothesis (3.2) has been verified and
explicit expressions have been obtained for Fi(x). 11)-1 The
generalization of Reference 12 to the triangular lattice has been
given by Vaidya. 16 We now present these results:

4.1 Result No. 1
(a) F_x) = explt,) “.1a)
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f£(x) = ), fz(zn)(x)xzn, N =t 4.1b)

with

1 j=1
——
] n
e 1 2
— (v,.-1) (4.1c)
2
vi-l YiYin jﬂl 2
where y,,11 =¥y
() F,® = GHF_( (4.2a)
o 2n+1 1
+ -
Gx) = Z 92n+l(X)>\ MoN = (4.2b)
n=0
with
o0 e_.Xy
gl(X) = 1 dy m = KO(X) (4.2c)
o0 (2]
n
Iops1 & = D) S dy, S. dY)n+1
1 1
2n+1 XY 2n
il Y [T byyggy)
j=1 j=1
29
[ &y - (4.2d)
=1 7
For large-x we have
-2nx
(Zn) e
f2 (x) <, 2n (x = ) (4. 3a)

and
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e~ (2n+1)x
92n+1(X) ~ <y x“+% (x = ) (4. 3Db)

and for small-x we have

(2n) N 2n 2n-1
f2 x) CZn(I&nx) + CZn_l(ﬂnx)
+ oo +cl(£nx)+c0+o(1) (x—~ 0) (4.4a)
and
2n+1
g2n+1(x) c2n+1(£nx) +oees +c1(2nx) +cO+o(1) {(x-0), (4.4b)

where we have used the same symbol 'cy,' to denote the various
different constants. .

The above representations for Fy {x) are most easily inter-
preted in momentum space [recall (3.5)] . If we look in the com-
plex pz—plane, then the propagator G+(2) (pz) has a single-
particle pole at p2=-—1 (in statistical mechanics this is referred
to as the Ornstein-Zernike pole) and has continuum thresholds
(which are square root type branch points) at p2 =-32, -52, -72,

On the other hand, the propagator G} 2) (p2) in the two-
phase reglon has only branch points which are located at p2 =—22
-42, -62, +++ | Thus, for example, the function [f4( )y 4 s(f (2))2]
wh%n uged in (3.5) gives the four-particle contribution to

4 (p9).

That these representanons provxde a rapidly convergent
expansion for G(z)(p for small f can best be illustrated by
comparing the exact value of G (p ) at p =0 with the contri-
blzr_son commg from the low- lymg e 201tat10ns If we denote by

+ 2n+1(p ) the contribution to G} )(p ) coming from the (2n+1)-
J)cle cut and by G (pz) the analogous contribution to
G 2 (pz) ., we have

(2), 2, _
C"'+ (p) = Z G+ 2n+1 )
and (4.5)
G_(z)(pz) - EGS.Z)Zn pZ )

Using (4.1) and (4.2) in (3.5), we can showls)
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@) gy =
G+l1(0) = 2,

G+(%)3(0) = % {% nt+2-33 Cﬂz(n/s)}, (4.6)
(2) _ 1
G",Z(O) - 67( ’
and
(2) 1 (4r® ) 7
G40 = 81r3{ 9 "6 2 “3)}
where

¢ (s) = Z n ° and C.@Z(e) = E ————szne .
n
n=1 n=1

In particular, £ (3) = 1.2020569031 --+ and C£2(1r/3)=1.0149417
.. . We now compare the LHS of (4{.5)1 at p2 =0 to the first
two terms of the RHS:

G_éz)(O) = 2.001 630 521

G (0) = 2.0

+,1
(2) (2) -
G, 2 (0) + G, (0) = 2.001 628 925 4.7)
G @) = .053 102589 -
G_(Z)Z(O) = .053 051 648 -

(2)
AL

cPo+a .053 102 545 - . (4.8)

The representations given above (Result No. 1) are not soO
useful if we wish to examine the short-distance behavior of f‘:t(x) .
That this is the case follows directly from (4.4a) and (4.4b),
where we see the short distance behavior of the functions fZZn) (%)
and gap+l (x) have ever increasing powers of logarithms. We will
see that f‘i(x) ~ Cx % as x=0 so the logarithms must sum up to
an algebraic power. This ‘summing up' feature of logarithms is
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not unusual in quantum field theory. However, we point out that
viewed in this language of summing logarithms, one must sum all
logarithms not just leading logs. .

To study the short distance behavior of F, (x), we do not
actually sum all these logarithms 'by hand.' Rather, we find that
there is an underlying nonlinear differential equation whose solu-
tion, roughly speaking, sums the series representations (4.1) and
(4.2). We now discuss this nonlinear differential equation.
Since this workshop is on nonlinear differential equations, we
present our results in their most general form and then specialize
them in Section 6, when we apply these solutions to the Ising
model.

S. PAINLEVE TRANSCENDENTS

The Painlevé equation of the third kind is

d’w _ 1 /dw\2 _ 1ldw 1 . 9 3.8
o= (de) "G ey s ewem el (5.1)

where o, B, v, and 6 are constants. The importance of (5.1) in
in the theory of nonlinear equations is discussed in the papers by
Painlevé20) and Gambier?!) and in the book by Ince.%2) If we
make the restriction

AN=-5 + By =0 (5.2)

on the constants appearing in (5.1), then (5.1) is easily reducible
to

d’w _ 1/dw\2_1 dw
- de* T w\de 6 do

2v 92 3_1
+5 (w*-1) + w w (5.3)

where v is a constant. We call (5.3) the restricted Painlevé
Equation of the third kind.

Let us denote by n{0;v,\) the one-parameter family of solu-
tions of (5.3) that remains bounded as 6 — « along the positive
real 6-axis. Then we have14

5.1 Result No. 2

For sufficiently large positive 6 and Rev > —%, the function
n(6;v,\) defined above has the representation
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o

1-n(6;v,\) . _ 2n+l .
Lm0y ) - Gx;v,\) = nzzlox g2n+1(x,v)

where 20=x

gl(X;v) = S; (yz 1)2<Y+1>

and for nZ1 _
2n+l

OO
n e
g (x:v) = (-1) g dy, - (‘ dy —2 1
2n+1 ! J 2n+l ]El (y>-1)z

1

L

[ n

-1
<y]+l> Hl(y Vi) ﬂ (yzfl)

If we define (x;v,\) by
M wv = e IV g,
(ii) $(x;v,\) = 0 as X = +oo,
then Y(x;v,\) satisfies the differential equation

Pr o+ x'lqﬂ = %sinh(2y) + 2vx ! sinh(y).

Furthermore, $(x;v,\) has the representation:

5.2 Result No. 3

v = 5P L eow)
n=0

with

¢1(x;v) = 291(x;v)

229

(5.4)

(5.5a)

(5.5b)

(5.6)

(5.7)

(5.8a)
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(e o] o0

2 2n+1l
2n+1 %Y = o S‘ dyy - S' Y ont1 jHI

1 1

+ ] (;JTO (5. 8b)

Notice that both 9on+1{X:v) and ¢2n+1(x;v) are in the form
of iterated integrals: Define the linear operator X

0¢9) () =§ do, (e 28 (eay) ey (5.9a)
1

where the measure dci is
1
-1 vis
do, = do(y) = @Tl dy. (5.9b)

Consider the eigenfunctions and eigenvalues q>j and )‘j’

t

(iji)(x) = xj (e,v)¢ji(x;e,v), (5.10)

Then we can rewrite (5.8b) as

® 2n 2n
Yone1 V) = 20T 5‘0 da [(e’}{ e, * (e e)_} (5.11)
where the vector [e) is
(yle) = e"(é*'e)y

and the scalar product ( , )i is

(.9, = fl do (v) o (y) £(y) -

Using (5.11) in (5.7) and recalling n=e—¢, we have
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<o a'j+oo 1 - aj_
1-25 0 “Ni A
n(©;v) = | — H —L (5.12)
=1 1+)\j \ =1 1+)\j N

where

(5.13)

The representation (5.12) clearly displays the behavior of n(6;v,\)
in the complex x-plane (recall )\ is the integration constant
parameter). It is an open problem to find explicit formulas for
)\ji and ¢ji(x) .

If we examine the small distance behavior of the functions
$ont1 (x;v) as given by (5.8), we find14)

1 +
4’2n+1(x"’) = 02n+10r<x> + 32n+1+ o(l) -0 (5.14)

That is to say, the logarithms do not increase in order when we go
to the {Y-representation. Thus

0
2n+1
Seeiv) = LT e, o)
n=0
1 +
=cr@n<;>+B+o(1) (x—=0) (5.15)
with
o 2n+l
n+
T = Z A “on+1
n=0
and
- 2
n+1l
mB=-) N\ B, L (5.16)

n=0

We expect (5.15) to be valid whenever the series expansions for ¢
and B converge. There is a very simple physical argument for the
case v =0 that gives (5.15). For v=0 the nonlinear differential



232 CRAIG A. TRACY

equation (5.6) is essentially the spherically symmetric version of
(1.1), the nonlinear Debye-Hiickel equation. In Debye-Hiickel
theory 4(x) is the electrostatic potential of the field of the ion
cloud surrounding the test charge at the origin. As x—- 0, we
must see the bare test charge that is located at the origin. Hence
the factor ¢ & (1/x). The quantity B represents the potential due
to all other ions of the cloud at the position of the test charge.

The mathematical problem is to extract from (5.8) the coef-
ficients o941y and By and then sum the resulting series
(5.16). We have

5.3 Result No. 4

o =0o(\) = %arcsin(m\)

w
]

B(o,v)

= g 3¢ [?((1-0)/2) I(((1+0)/2)+ v) (5.17)
r3((1+0)/2) T(((1-0)/2)+v)" ’

We notice that ¢ does not depend upon v. This is easy to under-
stand since the logarithm in (5.14) comes from the region of inte-
gration variables yj large in (5.8). In this region
((yj—l)/(yj+1))v~ 1. Also we see that x = 1/ (o0=1) plays a
distinguished role in these formulas. It is precisely \ = 1/7 that
is needed in the Ising model.

Using Result No. 4, we can determine the behavior of
nx/2;v,\) at x=0:

5.3.1 0<x<1l/7

n(x/2iv,\) = Bx“{l— vB Y(1-0) 2 x}7C

+ B VZB_Z(l—c)'4 -+ B-Z(l—cr)_zj\

%2729 O(XZ)} . (5.18)
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5.3.2 \x = /7
n&/2iv, 17 ~ %x[v%zx—C(v)@'lx+:11: (Cz(v)—l)]
where
Clv) =1+ zv[mz- 2y - ¢(v+1)] (5.19)

and Y(x) = (d/dx) & ' (x), I'(x) being the gamma function.

5.3.3 X\ > 1/7 (for simplicity we set v=0)

nx/2:0.\) ~ "?1% xsin[ 2p ?m(x/B)+2¢(u)]. (5.20)

with ¢ = 1+ 2ip and

T'(iy) = lF(iy)Iew(Y)

1
= — T\ o)
y sinh y *

5.3.4 For \ < 0 use

1

=*‘—‘n(x 2w 0 (5.21)

nx/2;v,-\)

In Case 5.3.3, the origin x=0 is the limit point of a set of zeros
and in Case 5.3.4 for )\ < -(1/7), the origin is the limit point of
a set of poles on the positive real axis. The asymptotic spacing
of these zeros and poles follows from the above formulas. These
zeros and poles are intimately connected with the eigenvalues
)\ji(e;v) as can be seen by recalling (5.12).

6. F, _(x) IN TERMS OF y(x;0,7})

Comparing Result No. 1 with Result No. 2, we see

i)

+(x) _1-n(x/2:0,7 1

- L . -1
f‘l(x) =l inx/2: 0,20 = tanh [ 3 ¢(x;0,7~ *)]. (6.1)
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This relates the ratio of F+(x) to F _(x) to the Painlevé funct1on
n(x/2:0,n 1). We still need a relation of Fi(x) to W(x/z 0,7
{or lIJ(X;O,ﬂ_l)]. This we have in the next result.

6.1 Result No. 5

f‘_(x) = exp <Z )\Zn (2n)( )>
= cosh%kP(x,O,)\)exp[—% S};drr,[;(r)] (6.2)
where
) - sinh%y (6.3)

the ¢ being ${r;0,\).
From this representation and the short-distance behavior of
$(x;0,\) of the previous section, we havel?) for = /7
2 1 3

1
- -3 1
F - 11430 + = 1
i(x) Cx {1 xQ + 16 + 32 X R

1 4, 2 1 5 4
+———256x (-9 +Q+8)+0( )} (6.4~
with Q@ = ¢ (x/8)+v, y=Euler's constant.
Some comments:
(1) The RHS of (6.2) locks almost like an action. If one varies
.the pg(r) in (6.3), one gets

2 1 d
%—;E + 2 Ertk = - Lsinh(2y) (6.5)

which disagrees with (5.6) by a minus sign.
What is the correct interpretation of the RHS of (6.2) ?

(2) As Result No. 5 is stated the identity holds for all x
though its application to the Ising model is only for A=1/7.
Does the variable A have a physical interpretation? If we
keep \ as a yariable and compute the short distance
behavior of Fi(x;)\) , we find that the anamolous dimens i02n3)
is now a function of x. This suggests the Baxter model.
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(3)

7.

In Reference 14, (6.2) is generalized to v#0 in which case
£(r) of (6.3) becomes

2
£r) = G—B - sinhZLp - 47” sinhzéxp. (6.6)

Recently Ablowitz and Segur24) have shown a deep connec-
tion of the Painlevé transcendent of second kind

‘f;’zv = ZW + 2w 6.7)

and the long-time behavior of the modified KdV equation.
Equation (6.7) is a special case25) of Result No. 2 (or
Result No. 3) and thus the solution that is needed in the
modified KdV analysis is known . 25) Ablowitz and Segur26
have also obtained this same solution to (6.7) using the
inverse spectral transform method. Does the generalized
v#0 identity (6.2) when analyzed in the K4V limit have any
applications ?

n-POINT FUNCTIONS

The generalization of Result No. 1 to the n-point functions

has been recently given by a number of authors . 27 -29) We will
not write down the formulas here but merely note the form of the
answer in the scaling limit: First for T— T;

3 _n - .
lim A6 (O'MINI O'M

S~
]

eXp(fn)

v LK
fn - kZIZ fn

where frsk) is a 2k-dimensional integral. For T-*Tg
1 _n LR I =
lim A6 (aMlNl GMnNn ) g exp(f )
1
_ 2
9p = 1det gy
S (K
P I D S
mij 2 7 ()i
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where 9231;‘ are 2k-dimensional integrals. ®)

We point out that the integrals fn and I(n}ij require
special care in treating singularities of the integrand. This point
is discussed in References 27 and 28, but the integrals appearing
in Reference 29 are ambiguous since no prescription for inter-
preting the singular integrals is given.
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