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We compute the time-dependent spin—spin correlation function (0% (0) ofgﬂ (1)) at zero temperature for the one-
dimensional XY model in the double scaling limit R = =, 2 > 17, y = 0%, 7 — =, such that the scaling variables
(1 - h2)V2R, 4R, and L1 ~ h?)7 are fixed. Here v is the anisotropy parameter in the spin hamiltonian and 4 is the

external magnetic field in the z-direction.

Of all the one-dimensional spin systems that have
been studied [1], the simplest and best understood
quantum model is the spin 3 XY model [2]. This spin
system for /V spins located on a line is defined by the
hamiltonian

N
Hy = —/2 ((1 +7) TS (L= S Shy + hsf)

M

where S = %o;-", a=Xx,y,z, and of are the usual
Pauli matrices, v is the anisotropy parameter which
we take to be 0 <y < 1, and X is the magnetic field
in the z-direction. We consider the case of periodic
boundary conditions and thus take Sy, | =S7. At
zero temperature it is known (3] that there exists
spontaneous magnetization in the x-direction:

M, = [2Q1 + )]~ V2 4141 — p2)1B Q)

which clearly vanishes for either y > 0" orh > 1".

The large R and large 7 behavior of (ST(0) ST, g (1)}
was studied in refs. [3] and [4], and a description of
the scaling behavior near the critical points y = 0 and
# = 1 was given in ref. [5]. To be precise, the correla-
tion function (S§(0) ST,z (7)) was computed [5] in
the two distinct scaling limits:

Region A: For fixedy>0welet R>o0,h>1",
7->eosuch that r, =(1 —h)y 'R and
ta = (1 — h)7 are fixed and are of order
one.
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Region B:  For fixed h <1 we let R = oo,y - 0Ot
7> such that rg =yR and tg =
(1 — h2)1247 are fixed and are of order
one.

In region A (B) (S7(0) S7, g (7)? is expressible in terms
of a scaling function of the variables r, (rg) and

+1
taltg) [5]17F.

However, this is not.the complete description of
the scaling behavior of (S7(0) ST, g (7). In particular,
one cannot go continuously from the scaling function
of Region A to the scaling function of Region B (or
vice versa). To be able to study the transition from
one region to the other, we must analyze (S7(0) ST,z (7))
in the double scaling limit; that is

Region C: WeletR—>oo h > 17, vy>0%, 7>
such that 7= (1 — h2)I2R, g = y(1 — h2)~1/2
and ¢ = 3(1 — h2) 7 are fixed and are of order
one.

In Region C the resulting scaling function, sometimes
referred to as a crossover scaling function [6], will be
a function of the three variables r, g, and ¢. Note that
g is expressible in terms of the interaction constants
of the hamiltonian (1). Region A will be recovered in
the limit 7 — o0, g > oo such that 7, =jr/gand 15 =1
are fixed; and Region B will be recovered in the limit
r—> o, g >0, ¢t —>oosuch that rg =rg and tg = 2g¢ are
fixed.

#1 As shown in ref. [S], the scaling variables ¥ and 7 (r

and tg) of Region A (B) occur only in the combination
(I’?\ _ t?\)l/Z[(r% _ tﬁ)l/Z]‘
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If we denote by lim the scaling limit in Region C,
then the result ¥2 we find is

lim My 2(ST(0) ST, g (1) = Fy(r, 8, 1)
C

=exp ['_FZ(rs g, t)] (3)
with -
FZ(r:g’ t)=n§l h2n(rsg5 t) (4)
where

h2n(rs g, t) = (2’1)‘1(277)—27! f dkl i f dk2n

X ﬁ {exp(——lrk] - lte,) (ej — 6]-+1)} (5)

j=1 €]' ki+k"—]+1

and we take k,, . = k. The quantity € is given by

& = e(k; ) = [(kF +12) (& +u D] 112 ©)
where

fetivi—g? for0<g<1
a {g+\/§2——7_ forg>1

and Q)
_ |e-ivi-gZ for0<g<1

'u—{g— g2 —1 forg>1.

We conclude with the following remarks ¥2;
(1) Examination of

f dr eikr f dt el [Fy(r, g, 1) — 1]dt

shows that the quantity e(k, g), plotted in fig. 1 as a
function of k for various values of g, is the dispersion
curve for the elementary excitations (spin waves) ¥3.
Furthermore, any excitation consists of an even num-
ber of these elementary excitations.

(2) For fixed ¢ and large r the behavior of the func-
tions i1,,(r, g, t) depends qualitatively on the param-
eter g appearing in e(k, g). For the case g <1 the be-
havior is oscillatory and for g > 1 the behavior is non-
oscillatory (for g = 1, F,(r, g, t) = 0) 3 Specifically,
hap(r. g, t) is asymptotically equal to exp(—2nRefir)

#2 Details to be published elsewhere.
*3 This was first discussed in refs. [3] and [4].
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e(k,g)

Fig. 1. e(k, g) as a function of k for different values of g. (1)
£=20;Q¢g=10;3)g= 1/\/5; 4)g=04;(5)g=0.2and
6)g=0.0.

for all g, and for g < 1 this decreasing exponential fac-
tor is multiplied by a sum of oscillatory terms of the
form exp(¢i2m Im pur),m=0,1,2, ..., n. In both
cases these exponential factors are multiplied by

some power of r, depending upon #n, and times some
constant which depends upon n and g.

(3) From fig. 1 we see that for g <2-1/2, the mini-
mum excitation energy, €., = 4g2(1 —g?), occurs at
k =k in =(1 —2g%)1/2; and for g >2-1/2 the only
minimum is at £ = 0.

Hence, in the complex w-plane the closest singular-
ity, corresponding to the 2-spin wave state, occurs for
a given g at min(2, 2€,;,,)-

(4) The limit g - O for fixed r is of interest, since
in this limit the quantity

p(r, = lim ngl2F,(r, g, 1) ®)
g0

is the time-dependent, one-particle reduced density
matrix for a system of impenetrable bosons in one
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dimension [7]. The factor m was chosen so that
0(0, 0) = 1. The evaluation of this limit will be the
subject of future work.

The authors wish to acknowledge the many useful
discussions with Professor Barry M. McCoy. This work
was supported by National Science Foundation Grants
Nos. PHY-76-15328 and DMR 77-07863.A01.
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