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We compute exactly the one particle reduced density matrix p(r) of a system of impenetrable
bosons in one dimension at zero temperature. We do this by relating p(r) to a certain double
scaling limit of the transverse correlation function of the one-dimensional spin 1/2 X-Y model.
We study the asymptotic behavior of p(r) for large r. This expansion contains oscillatory terms
which arise due to the intrinsic quantum mechanical nature of the problem. We use these results to
discuss the analytic structure of the momentum density function n (k).

I. INTRODUCTION

One of the model systems that has generated consider-
able interest is the system of bosons in one dimension inter-
acting with the potential c6(x; — x ;). In particular, the limit
c— oo corresponds to a gas of impenetrable bosons. The
ground state many particle wave function of this system of
impenetrable bosons was first derived by Girardeau.' The
study of the one particle reduced density matrix (which we
refer to simply as the density matrix) was initiated by
Schultz? and by Lenard.’

In this paper, we report an exact calculation of the re-
duced density matrix for this system at zero temperature.
Let ¢y, (%, ,X;,....Xx,7) be the normalized ground state wave
function of N impenetrable bosons on a chain of length L at
time 7. The density matrix p, (x — x',7) is defined by

L L
prix —x\7) = N‘r dx, - f dxy_,
o b

X ¢N,1_ (X1 Xy y Xy X,T)
X'/’FV,L(xnxz s X 1X'50)- (1.1)
In particular, we study p , (x — x’,7) in the thermodynamic

limit: N— a0, L 0 such thatp = N /L isthe constant parti-
cle density, and we write

px—x',r)=  lim
N—oo,L—w

In the following sections we will derive an exact answer for
p(N=p(r,0). In the remainder of this section we will describe
the main features of the result.

Let x = k.r (k- = Fermi wave vector). (Note that in
our paper k. = 1, whilein Ref. 3, k; = m.) Then p(x) has the
following asymptotic expansion:

P (6 —X'7). 12)

Pow 1 1 3sin2x
x)= —=2_ 11+ ————(cost—- —)
A | x|/ [ 8x? 4 + 16x*
3 11
— — 31 2x O(x—?° .
256x* ( 8 cos ) Ok )J 1.3
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where
p., =me'271°4 —¢=0.92418... 1.4

[in Eq. (1.4), A = 1.2824... is Glaisher’s constant].

Lenard® derived an expansion of p(x) for small x [see
Eq. (56) and (57) of Ref. 3]. We have used these results to
extend the expansion to order x ° [Lenard expanded p(x) to
order x *]. The result is

x| |x|? x* 11x|? x®
X)=1— — + — —
PE) 6 T or T 120~ T3s0r 5040
122)x| ( 1 1 )x8
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FIG. 1. p(x = kr) as a function of x. The dotted line is a plot of Lenard’s
upper bound.
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EIG. 2. Schematic plot of n(k ) as a function of (k /k,), showing the k 2
singularity at the origin. The arrows mark the points of nonanalyticity of
n(k ) where a derivative of n(k ) diverges.

We use the expansions (1.3) and (1.5) to plot p(x) as a
function of x in Fig. 1. We also plot Lenard’s upper bound
px)<(e/x) '

The expansion of p(x) for large x has the following gen-
eral structure:

_ P & Con & cos2mx
pex) = lel/z [1+ Z x21 + Z 2m

n=1 m=1 X

2 Conm = sin2mx [ & Cinm
X( nzo xZn ) + mZ:l xz"' +1 ( ngo xz" )]
(1.6)

This expansion enables us to study the singularity structure
of the one particle momentum density function n(k ). n(k ) is
defined by

nk)=Qm) ' Jw dre = *p(r).

The |x| ~ '/ falloff of p(x) for large x leads to a
|k | = '/? singularity in n(k ) at the origin. The terms with
sin2mx and cos2mx in Eq. (1.6) lead to additional points of
nonanalyticity for n(k) at k = + 2mke(m = 1,2,...). At
these points some higher derivative of n(k ) diverges. For
example, atk = + 2k, d *n(k )/dk * is divergent. Note that
a system of free fermions has a sharp Fermi surface at zero
temperature, while for the system of impenetrable bosons
only the second derivative of the momentum distribution
function diverges at k = 4 2k,.

In Fig. 2, we show schematically the behavior of n(k ) as
a function of (k /k). The arrows mark the points of nonana-
lyticity of n(k ). Figure 3 shows the branch cut structure of
n(k )in the k plane. All the branch points in Fig. 3 are square
root branch points.

The full answer for p(r) is written out explicitly in Sec.
7. The behavior of p(r) for nonzero temperatures and for the
case when c is finite has been discussed in Ref. 4.

(1.7)

Il. FORMULATION OF THE PROBLEM

A. Relation between the boson problem and the X-Y
model

Schultz? approached the boson problem by replacing
the continuum by a lattice of evenly spaced lattice points,
with lattice spacing €. He expressed the density matrix on
this lattice as a determinant. Lenard® showed that one can
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k
— ( X
F
FIG. 3. Analytic structureof n(k ) in the k plane showing square root branch points at k = + 2mk,, m =0,1,2,....
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take the thermodynamic limit before the continuum limit to
obtain p(#). Therefore, from Eq. 80 and 87 of Ref. 3 we have

p(N = lim (pe)~'p,, @1
€—0,5—> 00
s€ = r fixed
where
G, G, w G,
G G G,_
po= L ° : I, 22
2 :
G ¢ G - =~ G
with
isimr me, for m=£0
Gp={am T ’ 2.3)
— 14 2ep, for m=0.

We follow Schultz and compute p(r,7) by relating it toa
certain double scaling limit of the XX correlation function of
the spin XY model in one dimension. This model is defined
by the Hamiltonian

Hy= — Z [(1+}’)SXSX+l + (1 — )58 +1+hS]
B Q.4

where S| = 107, @ = x,p,z, and 0% are the usual Pauli matri-
ces. In Eq. (2.4), ¥(0<y<1), is the anisotropy parameter and
h is the magnetic field in the z direction. We impose cyclic
boundary conditions S, , , =S,. We denote the ground
state transverse correlation function in the thermodynamic
limit (N—o0) by p, . (R,5;7) defined by

P REN=(ST(O)S k41 (1)) . (2.5)
In Eq. (2.5) the brackets denote the gound state expectation
value.

For the anisotropic X— ¥ model,
P (Rt = 0;)=p,. (R;y) can be written as®

G, G, Gr
1 G, G, o G
pxx(R,‘}’) - 2 .0 1 R—-1 ,
4 :
G;(sz) Gw(fo) Gl
2.6)
where
—7  [(h — cosp)® + ¢ sin’p]'/?
2.7
for ¥ = 0 this reduces to
2 sinmg,,, for m=£40,
— Tm
G, = 5 (2.8)
-1+ =@, for m=0,
wT
where
cosd, = h. 2.9

Comparing Egs. (2.3) and (2.8), we see that the determinants
in Egs. (2.2) and (2.6) are identical when
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p= L and € = arccos(? ). (2.10)
T
Under this identification
Ps = 2p,,(s5;0). 2.11)
Ase—0,h—1 ~ and wecan writee = (1 — A2~ 172,

The equivalence can be established in a similar manner for
the time dependent case.

To use Eq. (2.6) we need to evaluate determinants of
very large dimension. This in general is very difficult to do.
However, when y40, the determinant (2.6) has been studied
in great detail in Ref. 6. There it was shown (for the general
case 1=0) that for h < 1

S Fon, t,y)] 2.12)

n=1

Pxx (R7t97) =pxx(w) exp[

where

Pa(0) =20 + V] P (L — 4

and ‘
FOO(R,5y) = (2n) =12~ ¥(2m) =2 J' dg, J' do,

— IRp; — itA,
2n [e ¢, A(Aj ]+])] (2 14)
b A sin(172)0(e; +@;41)

with é,, , , =¢,; Imé; <0, = 1,2,--,2n; and

A=A (p)) = [(cosp; — k) + ¥ sin’p,; ]2 (2.15)
All reference to the original determinant has been eliminated
in this formula.

We define the double scaling limit of o, (R,f;7) (denot-
ed by lim. following Ref. 7) by A—1 ~, ¥—0, R— o0, t—> 0
such that

2)] 1/4 (2 13)

X

r=(1—h?»R, (2.16a)

T=41-h, (2.16b)
and

g=v(1—-h%) "7 (2.16¢)
are held fixed.

We now use Egs. (2.1) and (2.11) to recover p(r,7) as

The calculation of this paper is based on the assumption that
the two limits in Eq. (2.17) can be interchanged. We thus
have

p(r,7) = lim lim 27(1 — & @2.17)
C g—0

(2.18)

plrr) = lim lim 2m(1 — h%)~Vp (R,57).

B. Double scaling limit of p,. (A, 1; v)

Inlim; we may expand A4 (¢,) around ¢ , ; = 0and res-
cale ¢ ; by

g, =1—-hr%"k, (2.19)
to obtain
A@ )= (1 —he(k)), (2.20)
where
H.G. Vaidya and C.A. Tracy 2293
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ek )=e; = [(k] +p))k] +u*H)]"?,
with
p=g+i(l —g)"? @22

and u* is the complex conjugate of i, and g is given by Eq.
(2.16¢). Similarly,

sinf(p; +@;, )=3(1—h 2)1/2(kj +k; ) (223)

We scale the integrals in Eq. (2.14) using the formulas
(2.19) - (2.23) and denote the scaled functions by
h @"(r,1, g). Substituting in Eq. (2.18), we get

(2.21)

p(r,r) = lim 7 g'? exp[ — H (71,1, 8)1, (2.29)
g—0
where
H@rng= S n 2@ g) (2.25)

n=1

and

B, g) = % f dk, - f dk,,
y ﬁ Iie/irk,‘ife:(ej—fjJrl)]
=1 fj(kj+kj+l)
(2.26)

We will now restrict our attention to the case 7 = 0 and
denote the above functions by H (z,7, g) and 4 ®"(r,g),
respectively.

k2n + 1 EIcl .

IIl. ANALYSIS OF h#"(r,g)

The integrands in Eq. (2.26) have branch points at &
= 4 iu, + iu*. Their analytic structure is shown in Fig. 4.
In the limit g—0 the branch points pinch the real axis in pairs
leading to logarithmic divergences in g. The general struc-
ture can be seen to be the following for g<1:

FIG. 4. Analytic structure of the integrand in Eq. (2.26) in the k; plane. We
show the branch cuts + and — around which the contour of integration
over &, is bent.
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h@o(r, g)

2n
=C5In*(gr)+ Y CEY . (MIn* ~"(gr) + o(1),

m=1
3.1)

where C %" are constants and C ?")(r) (m=£2n) are functions
of r independent g. It is clear that we need to sum these
logarithmic divergences systematically to take the limit
g-—-0.

We can show that the constant C$* (with the factor
n ' of 2.25 included) in Eq. (3.1) is twice the constant C,,
appearing in the small variable expansion of the functions
S5, () of the two dimensional Ising model [see Eq. (3.146) of
Ref. 8). In the Ising model the coefficients multiplying the
divergent terms satisfy certain relations so that on summing
up the divergences to all orders one gets a simple ‘Inz’ diver-
gence. Something similar has to happen in Eq. (3.1) if we are
to get a finite result in the g—0 limit. The relation between
the constants multiplying the leading divergent terms sug-
gests the possibility of expressing the divergent parts of
h @(r, g) in terms of the Ising model functions.

The functions f;, (¢ ) and the related functions g,,, , | ()
are given by*

fu®=(=tyn= "y [y,

f ¢ T o2 —1), 32
le;ll(yjz"I)I/Z(Vj"’.VjJrl)jl:-Il(yj ), G2)

where y,, , | =y, and

g2"+1(t)=(—1)"J; dyl'"J. dYrn 1
1

—ty;

2n 41 e"yj 2n (y + )_»1
>< [ — . .

,H, (y}—l)“sz:I, 1T Fisi
X [[ 04 -D-

j=1

The result which we derive in Sec. 4-6 is, for g<1,

(3.3)

H(zr,8) = 2F(z:.87) + Hlzr,G @ gn] +o(1),  (3.9)
where

Fzen= S 2%.(en) (3.52)

Ggn= 3 2" g (g9 (3.5b)

n=20
and H [z;r,G (z; gr)]is given by Eq. (6.43). We assume that the
error estimate remains o(1) after carrying out the sum over n
in Eq. (2.25).

Note that in the right hand side of Eq. (3.4), the g depen-
dence is only through the functions F (z; gr) and G (z; gr).
These functions can be expressed in terms of Painlevé func-
tions of the third kind® and their behavior as g—0 has been
studied in detail.’ In this limit F (7 ~'; gr) has the correct
divergence to cancel out the factor g'”? in Eq. (2.24) and
lim,_,G(r ';gr)=1.

Our strategy for deriving Eq. (3.4) is the following: We
bend the contours of integration in Eq. (2.26) into the lower
half plane as illustrated in Fig. 4. Each integral now sepa-
rates into a sum of two parts, one each around the * 4’ and
* _ * branch cuts. Now, & @(r, g) is a sum of 2 *" integrals.
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We then separate each integral such that the divergent parts
are expressed in terms of £, (gr) and g,,, . , ( gr) with coeffi-
cients that are functions of » alone. Then summing up

h @(r, g) to all orders leads to Eq. (3.4).

In the next section, we will systematize the evaluation
of the 2 2" integrals in # ®"(r, g), using a transfer matrix for-
mulation. In Appendix A we give a detailed evaluation of
h @(r, g) as g—0. A study of Appendix A is instructive in
understanding the basic strategy involved in the solution of
the problem. The transfer matrix formulation enables us to
analyze the 2 *" integrals in A ®”(r, g) in a systematic
manner.

IV. TRANSFER MATRIX FORMULATION

As illustrated in Fig. 4 and Appendix A, each integral
separates into a sum of two pieces; one coming from the +
branch cut and the other coming from the — branch cut.
We denote this by using a state vector o ;= + foreach *y;”
variable of integration. [0 ;= + ( — ) implies that the y; in-
tegration is carried out around the + ( — ) branch cut.] All
the 22" integrals in & @"(r, g) can be written out systematical-
ly as follows:

hCr,g)= Y h§” (r,8), 4.1
P

where Pis a permulationof (/) + signsand (2n — /) — signs
1=0,1,2,---,2n, representing the branch cut around which
each y, integral (j = 1,2,--,2n) is evaluated.

We introduce the symbol = with the following mean-
ing: The two sides of = are equal only after carrying out
integrations satisfying the conditions (i) each y variable is
integrated on f°dy ;e ”’and (ii) the integrand has an over-

and

M. (2% + 1)
+

—ir

e 1

all factor
T | N o R
on:iId ! jgn !
for an integral over y,, y,,....

We introduce the notation § dy with the following meaning:

u(r, g) = fdyf( »7)

means that the equality in Eq. (4.2) holds on integrating over
all the y ; variables in f( y,r)(y=y,, ¥,,, V., ) With the con-
ditions (i) and (ii) above.

On changing the integration variables as in Appendix A
we can write

9= [d 3 (o |M1D)e)
X (o, |M.(2,3)|03 ) (03, IME(Zn,l) |oy )
4.3)
= [ fl M- 12902+ 1)
“4.4)

where 2n + 1=1 and “Tr” denotes the trace of the 2 X2
matrix on the right. Here,

My(% — 1,2))

4.2)

+ -

e "y +20) Yy 1+ 2

= Yoy 1+ Yy + 2 Vo1 +Yy
Y21 -2 et 21 —2i)

Vaj—1 Iy Y21 +J72j_2lj
4.5)

+
= (J’2j + 21)(Y2j + Y30 + 2D

1 e

(.sz + 2’)()’2j + Vi

+ ir

4.6

(ij - 2[)(}’21' + Yy 1)

It is clear that in the odd variable integrals we can set
g = 0. The even variable integrals diverge in the limit g—0.
The aim is to get enough y,;’s in the numerator to make these
integrals converge and at the same time factor out integrals
identical to £, (gr) or g,,, , ,(gr) (after rescaling as in Ap-
pendix A).

The matrices in Egs. (4.5) and (4.6) have the structure

[( 1y (12) ]

azx  Qan*

and will be denoted by [(11),(12)] for the sake of compact-
ness. In this notation

M, - 1,2))
_ [ e‘ir(ij—l + 2i)
Vo1 + Dy +2i ’

Yy + 2
¥l ] 4.5)

Yoy_1 Ty

2295 J. Math. Phys., Vol. 20, No. 11, November 1979

(yzj - 20()’2,‘ + V21

—2)

|

We now use the identity
(.sz— 1+ £ 20!

= (sz—l o 21)-1[1 —J’2j(}’2j_1 + ¥y £ 2~ I] 4.7
to write

Mo(2 — 1,2) = M — 1,2)) + M(Qj — 1,2))

(4.8a)

and

M. 225+ 1) =M%+ 1)+ MP(2,2% + 1),

(4.8b)

where

M@ —1,2) = [e‘ir: (ij— 1+ 2")(,1’2," 1 +J’2j)‘ 1] s
(4.9a)

H.G. Vaidya and C.A. Tracy 2295
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Mg)(Zj— 1,2)) = — Vo [e_ir(yli‘l +yy + 2~ 1’0] ’ Fg?(l_’Zk)

‘ (4.9b) 1
M2+ 1) = [e "[(py +20(yy. 0 +20]7 Y, :Iz[ I1 M@ - 1.2)M Q2 + 1)]
2y 4. 0] '] (@10 =
and [(.sz )(yZJ +y21+1)] ] ( a) XMgl)(zk_ 1,2k) (417)
. N In Eqgs. (4.14) and (4.17) the product is replaced by 1 for
MPQ22%+ 1) = —y,le "[(yy +2(yy,, +20) k=1.1InEq. (4.14) t0 (4.17), k = 1,2,3,... and the “#”’ and
X(yy +¥y1 +20]71,0] (4.10b) “g” dependence is understood. In the above equations the
Hence, starting variables is either y, or y,, but it is understood that
in the actual product the starting and ending variables are
. — —1,2ny, (2n)
H(zr,g) = Z"h 5, 8) (4.112)  chosen so as to match the variables of M s on either side.

For examples, a typical string involving F{( ») might be
“~ M P(1.)FP(B8—2k + DM P2k + 7,2k + 8).
where G,(1-2n)=G,(y,, y,,J,, ) enumerates all possible Itis also clear that the value of k in F{(p) (j = 1,2,3,0r4)is

products of 2n matrices with/ M ()’sand 2n —1) M{")’s.  chosen to fit the missing variables between two successive

In particular, M 3)’s. The case where the two M ()’s are adjacent [either

»
2n M@ — 1,2DM @(2,2j + 1 M®Q2j2i +1
Gollotm= T] MOQ— LDMOGY+ D) @128) oy s e s
=0

XM P(2 + 1,2/ + 2)], is accounted for by choosing
and FP=1, F{=1. (4.18)

00
> n
n=1
S n

2n
“i27 N [ dy TG (1-2n),  (4.11b)
I=0

n . .
G, (152m) = H MOQj— L2)MPQj2+1).  (4.12b) We define the generating functions

j=1

o0

FXy)=F XN yzrg)= Y Z"F(y), for j=14,

In Egs. (4.12), y,, . 1 =1 a1
Separating out G, (2n) and changing the order of sum- (4.19a)
mation in the remaining sum, we have and
H(zr,g) = de i n = '22" TrG,(1—2n) FO(y)=F X y.zrg)
n=1

L = $ 2 FP, (), forj=23.  (4.19)
+ > Yy n'Z"TiG(1-2n) H=0
[=1n=10+Dr2 4.13) In Eq. (4.19), y symbolically represents all the y; varia-
‘ bles appearing in F2( y, z;r,g), F$(y), and F{?, ,(»). The
choice of the y;’s is determined by factors on either side, as
illustrated in the discussion following Eq. (4.17).

where [x] is the largeét integer <x.
Now let us look at the structure of G,(2n), /5~0. Each

term has / M gzy)) s seperateq by a string of M {})’s. There are Before introducing a transfer matrix notation for the
four such distinct strings given by second term in Eq. (4.13) let us write down G, (2n) and
FRQ—2k+1) G, (2n) explicitly:
k—1
=| I M@+ DM G (1—2m)= ¥ MO - 12)FQ@—m1-2 — 1)
=1
@97 7 @ (i
X (2 + 1,2 + 2) | MOQ2k,2k + 1), (4.14) + M (2,2 + DF (2 + 1—»2n,1—>2(12 ]20a)
F§Q, 22k +2) = n[MP1,2)F$)2—2n,1)
k
= [ M 22 + DM P2+ 1,2+ 2), (4.15) + M PQn,1)F §)(1—2n) (4.20b)

j=1

k
F§, (152 + D= [[ MOG - 1L)M O+ 1),

Jj=1

since in Eq. (4.19a) all the » terms are identical on integra-

tion (they are equivalent to a cyclic relabeling of the varia-
(4.16) bles which does not change the value of the integral).

and Similarly,

n—t
G, (1—2n)= % { S [MPDFLC2%k + DM Pk + 1,2k + DFS) 5 2Kk + 2-2n,1)
K=1

+ MPQn,)F(1—2k )M D@k, 2k + DFP 2k + 1->2n)]
+ 3 [MPADFD_ =2k )M PQk2k + DFS) 5, 2k + 152n,1)

k=1

+ MO, HFY | (1—2k — DM PRk — 12k)FP 50, (2k——>2n)]]. (4.21)
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We now use a transfer matrix notation to enumerate the
matrix products in G,(2n). G;(2n) has ! M ®s each of which
is either even (M ) or odd (M ). We construct the com-
pound transfer matrix

N (yR)=A(y.z;r,8)
[+ e
0 MP(WFO(pz2y MP(DFP(y2)].
e | MPWFO(p2) MP(NFD(p2)

Then symbolically

G,(1-2n)= % [Tr® A (y;2) 1, - (4.23)

The subscript ‘“2r’° denotes the power of z > in the expansion
in power of z in the right hand side of Eq. (4.23). Tr® de-
notes the trace over .4 ( y;2) which is treated as a 2 X 2 ma-
trix as in Eq. (4.22). For example,

TrP AN (p;z) = M P(PF D yiz) + M P(P)F @ p;z), (4.24)

=M P(PFO(y2M P()F V(y;2)
+ M P(Y)F O y;2)M P()F Y y;2)
+ MP(PF O(p2)M P(p)F O p;2)
+ M P(DF O p2)M P (D)F P y;2). (4.25)
It can be readily seen that, together with Eqs. (4.19) and
(4.23), Eq. (4.24) leads to (4.20b) and Eq. (4.25) leads to
(4.21) on introducing the appropriate integration variables.
The notation of Eqs. (4.22) and (4.23) is introduced for book-
keeping purposes and it is to be intepreted only in terms of
sums of the form (4.21). The reader is advised to start with
Eq. (4.4), substitute Eq. (4.8), and write out some terms ex-
plicitly to see that Eqgs. (4.12a), (4.13), and (4.23) generate all
the contributions to 4 ®"(r,g).

Thus, we have

H(zrg) = de[ i n =122 TrG, (1—2n)
n=1

+3 5

In=[{(+1)/2]

=2 Te [V (p2) T, ]
(4.26)

We can do the sum over » in the second term to write

H(zrg) = J dy[ $ 1127 TrG, (1—2n)

n=1

+ 31 T y;z)’]. 4.27)

We write

lim A (y, 7~ L) =4 (y;r). (4.28)
g—0

It should be kept in mind that Tr.#( ;z) ’ has an overall
cyclic structure, namely, the last variable in the trace = the
first variable [see for example Egs. (4.20) and (4.21)].

V. ANALYSISOF .+ /(y,;z)

A. Factorization of F/(y,;z), j = 1,2,3,4

We first introduce the notion of connectedness. Two
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matrices are connected if they have at least one variable in
common; otherwise they are disconnected. Thus, if two fac-
tors are disconnected in the matrix form, the corresponding
integral is a product of two integrals. We denote the fact that
the two matrices are disconnected by introducing a bar (])
between them. We will aim to reduce FV( y;z) to F®( y;z) in
a form such that the divergent part (as g—0) is disconnected
from the matrices on both sides. We can then integrate over
the variables of this factor independently of the other varia-
bles in the matrix product.
We now use the identity

MPQ—1,2)=MP 2 — 1) +y,, M (% — 1,2),
(5.1)

where

MP@—1)=[e "5y, +2]
and

M2 — 1,2))

= —.sz_'_l 1 [O:(}ﬁjv 1+ 2’)(}’2_,'_ 1 +.V2j) B 1]’ (5.2v)
to write
FRQ—2k+1)

, k-1
=MOQIMPE)| T] MO+ 1)

j=2

(5.2a)

X MPQj + 1,2 + 2)]M§,"(2k,2k +1)
+y.MP2,3M°(3,4)

k—1
x[ I MO+ DM@ + 1,2 +2)

j=2
XM OQk2k + 1).
(5.3)

The product is replaced by 1 fork = 1,2and k= 1,2,....

Carrying out the same procedure repeatedly and
defining

E®Q—2n + 1)
n—1 .
- [ I 7y s s M@+ DM Qi+ 1,2 + 2)]
J=1

XM ®P2n2n + 1),

(product=1forn=1), n=1.2,3,.., 5.4

we have
F{P(2,3)=E{"(2,3) (5.5a)
and
FR(2—2k + 1)
k—1
= S EPQ-2+ DMPQI+ 1)
I=1
X|FQ Q1+ 22k + 1)+ ER(2—2k + 1),
for k =2,3,.... (5.5b)

In the integrals involving the y; variables of E {)( y), we
cansetg = 0. We adopt the notation that we can setg = Oin
all the integrals with the E ()’ as integrands.

Defining the generating function

EVNpy=ENyzn= S 2 EQ(y), (5.6)

n=1
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we can write the recursion relations (5.5) in a compact form
FO(p)=E(yM P (») | FO(y;2) + E O (p;2).
5.7

Matching the power of z on the two sides of Eq. (5.7)
reproduces Eq. (5.5) for k = 1,2,..., after introducing the ap-
propriate integration variables. Note that we cannot algebra-
ically solve Eq. (5.7) for FV( y;z) since it is an equality only
under the integral sign.

Next we use the identity
MO+ 1) = [(y,; +2)70IMPQ+ 1)

+ M2+ 1), (5-8)
where

Mf_,l)'(Zj +1)= [e' ir(}’zj+ y +20)7 1:}’21:1 1 (5.92)
and
M2+ 1)

= ‘—J’2;+1 1()’21 + Vo4 1" 1[0’(}’2,' +20)° l] . (5.9b)

Using this identity repeatedly, we can write
|[FQ2—2k+ 1)

LISTIFR @2k - 20|

I=0

XE®, |k =21+ 152k + 1)

+ |[EQRQ—2k +1), k=12,.. (5.10)
The bars represent the fact that these factors are not

connected to the matrices on the side of the bar when intro-
duced in the integral. In Eq. (5.10)

F3 ,(2-2k)
k—1
= [ 1 M@+ DM PR + 1.2+ 2)]
j=1

X [(par +207 40}, (product=1 for
k=1, k=12,.,

EQ, (1204 1)
{
- Mf,”‘(l)[ T v M 9@ — LMY 22 + 1)],

j=1
(product=1for/=0), /=0,1.2,., (5.12)

(5.11)

and
EQQ—2k+ 1)

" k . “ . 13
— MO (2,3>[ TL 7o MP@ — 1,20M 42 + 1)],

i=2

(product=l1fork=1), k=12,... (5.13)
Defining the generating functions
FO(p)=F N pzrd= 3 2" 'F9., . (»),
n=20
(5.14a)

EO(p)=E@(pzn= 3 2" 'EQ, (3), (5.14)

n=0

and

EO(y)=ES(pzn= $ ZEQ(), (140

n=1

and using the recursion relations (5.10) and Eq. (5.7), we can
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write
FO(y2)=E Y p:)M () | FO(y;2) | E D (y;2)
+ EC(yM P (DIEP(y2) + EX(p2) .
(5.15)
A similar analysis of FP( y;2), F¥( y;2), and F)( y;2) re-
sults in
FO(y2)=zE Y p2)M ' (y) | FO(y;2) | E P(3:2)M 5(p)
+ zE Y p)M P (M ED(y2)M §(p)

+ E9(y;2), (5.16)
FOp2)=E Vp;2) | F(y;2) | E P (p;2) + E O p32)]
XEX(y;2) + EO(p;2), (5.17)
and
FO(p;2)=2E O y;2) | FO(3.2)|[EP(p;2)M 5 )
+ 2E(y;2) |E Ay, 2)M §()
+ 2ZE Ny, )M (1), (5.18)
respectively.
In Egs. (5.16)—(5.18)
ENp=ENyzn= 3 2" EQ. (),
n=0
=456 (519
with
E®=1,
ES) ., 12-2n+2)
= EOQ—2n + DMPQn + 1,20 + 2),
for n>1, (5.20)
EP=MPQ),
EY . (1-2n+1)
=y, MY (1L2)EPQ—2n + DM P20 + 1),
for n>1, (5.21)
and
E® =1,
ES (1-2n+1)
=y, M (1,2)EQ(2—2n + 1), for n>1. (5.22)

On the right hand side of Egs. (5.15)~(5.18) all the di-
vergences (as g—0) are in the F ®( y;z) term. F ) is discon-
nected from the factors (which are convergent) on either
side. The integrals over the y; variables in F§;), | (y) factor
out, and these can be done independently of the other inte-

grations. We will analyze F*'( y;z) in the next subsection.

We will summarize our notation here for reference: (1)
In E ”(y) or F{”( ), y stands for the n y; variables appear-
ing in E ’( y) or F{”( ). (2) In the generating functions
E Y y;2) or F( y;z), y stands for an arbitrary number of y,
variables. (3) The choice of the y; variables in a factor is
determined by the y ; variables on either side. For examples,

EX(PFSO(PE ()
=E P31 =Y F Y=V s m 1)

XEE;I)(yn+m71_>yn+m+p72)' (523)
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DIAGRAM TERM IN INTEGRAND
X
i Y
+ (Y]+2|) for j odd
x
j (y]+ 2i)” for j even
- (y;—2i) for j odd
x [: j
] (y}.-—2i)'I for j even
X====X -1
j l"’l ()']-+yl,,)
Example
+ — (Ys-zl)
X==—=x e ————
4 5 (Y4+2')(Y4+y5)

FIG. 5. Diagrammatic representation for the different functions of y; occur-
ing in the integrand.

(4) A bar separating two factors indicates that these factors
do not have any y; variables in common. For example,

EQ(») |[FODN=E P (3= F S (Yu s 1=V o m) -
(5.24)

(5) A product of two generating functions is understood in
the following sense: Let

F&(yn= § 27FE(y) (5.25a)
and a

F™(y2)= i Z"F{™(y) . (5.25b)
Then, "
FO(p2)F ™ p;2) 5
Eﬂizz" :2: F{y,—y)F ™ (31—, 1) (5.26)
and i )
FO(y2)| F™(p;2)
= i z nf F{(y,—y)F (p 1 —p,) - (5.27)

n=2 I=1

B. Analysis of F“( y;z)

At this stage we will intorduce the diagrammatic nota-
tion of Fig. 5 to represent the different terms in the inte-
grand. We can write F$) , | (2—2k + 2) in the following
form by multiplying the pairs of matrices
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M P22 + DM (2 + 1,2 + 2) in Eq. (5.11):
k
FQ. 252k +2)= [ [6@i—2 + 2,6 2~ + D]

i=1

X [(y2k+2 +2)~ 1,0]

(product=1 for k=0), (5.28)
where
a(2j—2 +2)
_ (P31 —20)
(.sz + 21)(y2j + Yoy 1)(y2j+1 +)’2j+2)
— 2ir
+ d (5.292)
(yzj +2i)(y2j+1 +2i)
+ _
=X---- X ---- X
2 2j+1 2+ 2
efzir -+
—_— X X X (5.29b)
(y2j+1-+-21') 2 2j4+12i+2 )
and
o+
b(2j—2j+2)=e "X X ---- X
% 2+1 2% +2
+
et X - XX . (5.30)
2% 2 +12+2

In the second term of Eq. (5.29b), we can integrate over
Y2j 1 (and set g = 0). Thus,

- +
X ""X +e(r)x X b

241 242 2 2j+2

.
a@j-Y +2) = X----
2}

(5.29¢)
where
e(r) = e*Z”f dxe  "x(x +2)"'. (5.31)
(4]
We can write Eq. (5.28) in the following form:
FQLQ-%+)
=FR 1Q-2k+2)+ > FQ, Q-2 +2),
=1
(sum=0for k=0), k=0,1,2,.., (5.32)
where
k +
F$ . 122k +2)= [( I a@—2 + 2)) 2k>< , ,0],
i=1 +
(product=1 for k =0), k=0,1,2,...
(5.33)

is a diagonal matrix and
FQR i 12(—2k +2)
I—1
=[] e@~2+ 2),0] [0,b (2U—2] + 2)]
i=1
k
X [ [aQj—2] + 2),b (G2 + 2)]}
j=1
J N + 1
X [ xX ,0f,
2k +2

(first product=1 for / = 1, second product=1 for
I=k),

(5.34)
Using the identity
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+
b(2j—2y+2)= ;<_b1(2j+1,2j+2)+b2(2j,2j+1) X,
j 2i+2

(')(l—+2n)

(5.35) + z F(1-2) S 52 + 1-2nm)
where
o) ; D) ;
B+ 1LY+ D= X ---n X (5.362) " ,; P (=24 DIFS - (4 2-2m)
2%+1 2j+2 (a)
and % (12n),
o n n=23..,  (540b)
b,(22i+1)=e ;( ---- 2j>§ 1 (5.36b)  where
we can factorize F{) 22k
ze F3) 1 2(2—2k +2)as F(s) (1-2)=[0,6,(1,2)] H [a(2i—2] + 2), 0][ ]
FQ 12022k +2) =4
Tth;) 1(2—"21)|S§lk)_21+2(21+ 1->2k 4 2) (product=1forj=1), j=1,2,.. (5.41)
FPQ-2+1D)|FS) 5, QI+252k+2), is the transpose of F {P( y) (under the integral) and
Ik, k=1,23,., .
< B3N Fo 152+ D= (06,121 ] [a@i—2+ 2),0]
where r=1
_ . (product=1forj=1), j=1.2,... (5.42)
=[06,(1,2)] jl=—Il [a(2—2 + 2.6 =2 + 2)] We define the generating functions
+ 00
X [ x 0/, FO(y)=Fyzrg)= Y 22" 'FE ., (p),
n n=0
(product=1forn=1), n=1,2,.., (5.38) (5:432)
n—1 S
FE(-2n+ D= T[ (@@~ + 2),01[0,6,2n,2n + 1)] SV =S Npzrge)= 3 2"S{Np),  (543b)
i=1 B
(product=1forn=1), n=12,... (5.39) FO(ypn)=F®(yz;rg)= i Z2"FE(y), (5.43¢)
Carrying out a similar factorization for .S {(1-—2n), we i
get the relations and
SO(1,2)=FP(1,2) (5.40a) FOy)=FNyzro)= S 2"+ 'FQ, (9.
n=1
and (5.43d)
Then Egs. (5.40) imply that
SO p2)=F @ (y;2)|S O p32) + FO(y;2)|[FO(p32) + F®'(y32) . (5.44)
Solving for §"( y;z), we have
S y2)=[1 - FO (3]~ {FO (332) + FOp;2) | F (332} (5.45)
Using the relations (5.32) and (5.37), we get
FO(y2)=[1 - FO(p2) — FO(y)[1 — F® (3] = 'FO(32)] - FOp)[1 - FO'(y2)] 7" (5.46)

What Eq. (5.46) says is the following: F ’( y;z) (j = 5,6,8, and 9) are 2 X 2 matrices each term of which is a power series in
z. The coefficient of z " in the power series is an integrand with » variables. If we evaluate all the integrals and sum up the power
series, we will get a function of z, 7, and g. On substituting these functions in the elements of F )( y:z) and carrying out the
operation on the right hand side of Eq. (5.46) we get an equality. At various stages of the above procedure we have factored out
integrals so that they can be done for the different F {’( y) s independently of one another.

Carrying out the matrix multiplications in Eq. (5.33), (5.39), and (5.42), we can write

[arewa = av@0l, (5.47a)

f dyF®(y;2) = [0,4%(2)], (5.47b)
and

J dyF O (y;z) = [¢¥"(2),0], (5.47¢)
where
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D=¢V@re)= | dy 3 2", () (5.48)
n=0

P@=¢?Cre) = | dy il 2429, (5.49)
and )

P@O=¢"@re) = | dy il 2 (). (5.50)

In Egs. (5.48)—(5.50) )

a0, (221 +2)= jljla(2j—>2j + 2)] h;i o n=012.., (5.51a)

©0-2)2b100)| Te@-2+2)| X, n=123.., (5.51b)
and "

a2, (1-2n + 1)=b7(1,2) nﬁ:a(Zj—>2j + 2)]b2(2n,2n I+ D, n=12,.. (5.51¢)

A

In Eq. (5.51a) the product=1 for » = 0 and in Eqs. (5.51b) and (5.51c) for n = 1. Substituting Eq. (5.51) in (5.46) and
carrying out the matrix multiplications leads to Eq. (7.15), where

lim ¢'2(m ~ ';r.8)=¢2(r). (5.52)
g—0 .

C. Analysis of ¢%(z), j = 1,2,3

We first show that
4@
(D() — , 5.53
77 1 — ze(r)A (2) (5:53)
where
AGra=A@ = [a $ 7 a0, (5.542)
with
+ - + - +
Ao 1222k +2)= X ----X---- X X --- X , k=01,.. (5.54b)
2 3 4 2k +1 2k +2
Clearly,
7" =a,(2), (5.55)
+ - + + +
GO X -- - X oo X+ el) X X £, 2-4) + e, (e, (4) (5.56a,b)
and satisfies Eq. (5.53).
We will now prove Eq. (5.53) by induction. Let
A(2)
W42k +2 =[——] , 3.57
gor 1 ( )= 1—2e()A @) o1 (5.57)

where the subscript 2k — 1 denotes the coefficients of z2* ~ ! in the expansion on the right hand side (without the integration
over y). Then,

qg',3+ 122k + 1)=a(2—4)¢s?_ | (4—2k + 1) (5.58)
+ - +
¢[ X=--=X---=X +e(r) X X
2 3 4 2 4
x{og_1 +eM4*@D]p_r + -+ + &'t} (5.59)

where inside the curly bracket the variables of integration start from y, . Therefore,

k—1
g5% 122k + D=, 122k +2) + e (Nai+ ' + z e'(r)

x| DL @l + X X ==X A Ol (5.60)

Now
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+ - + - k—1
>2< .- >3< .- i( [4°@)] %, = >2< - >3< ---- >4< z ay_ (2 + Day QL+ 452k +2) (5.61)
I=1
k—1
= 3 Ay (22U Day_y 21+ 42k + 2) (5.62)
I=1
<[4%D)]y — a,Q)ay_ ,(4—2k + 2) . (5.63)
Similarly, it can be shown that
4 _
XX X A @l =4 @1y — @M @y, for 1=23k — 1. (5.64)

Using the relations (5.63) and (5.64) in Eq. (5.60), we get

4@
M. Q2k +2 i[ 5.65
Qo 1 ( )= 1= 2e0A @) s ( )
Hence, by induction, Eq. (5.53) holds.
In a,, , ;(2—2k + 2) we use the identity
- + +
X ==-=X = — X ----X 4+ X X (5.66)
-1 2 2ji—1 2§ -1 2
to write
.
Ao 1 (22K + 2)¢( )2( ---- >3< )aZk_,(4—>2k+ 2)
+ - + - +
— X e X e X emm e X mme e X X mmee X (5.67)
2 3 4 5 6 2k +1 2k + 2
Using the identity (5.66) for j = 3,4,---,k + 1 and defining
-+
Y@k + Dz X mmee X meee X oo X em= X, k=12, (5.68)
2 3 4 k k41
we obtain the recursion relations
a,(2)=r1(2) (5.69a)
and
@y 1252k + 2)=(— Doy 122k +2)
k
+ 3 (= o2+ Dage g0 (1 +2-2k+2), k=12,.... (5.69b)
I=1
We define the generating functions
rOQ=rrg = [d (=1 e, (), (5.708)
k=0
roQ=rogrg = |d 3 (= ' 0). (5.70b)
k=1
Then Eq. (5.69) implies that
(1)
A= L@ (5.71)
1 — o)
We can rewrite g, , , (87) (see Eq. (3.3)] as
k “ © k2 —’y'2k+1 -1 2 —1/2 L (y§j+1_g2)1/2 572
g2k+l(gr)=(_l) J d.Vz"'J- dyy s H e H (.Vj +Yj+1) (.V2k+2_g2) H—"“z“‘_“—l’/z_ (5.72)
3 3 =2 =2 = (5 —8)
= (— 1k N - . (5.73)
v f] e e 6
Now in 7, , ; (2—2k + 2) we use the identity
+ +
X =@) 7| X =y, X ] (5.74)
2 2 2
to write
"
[ @2kt D= @0 (= Daae) = [ oo X e x| (575)
Next we use the identity
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X -=--- X =y2;_:l[ X X _y2j+22jx ---- X (5'76)

%41 2%+2 Y412 +2 +1 2542
for j = 1,2,.--.k to write
+
[ar@=cr[aer~ [am x| (5.778)

and

J dyoe s 1 (22K +2)

k ! Yo +
=(—1)*(zo-‘{g2k+‘<gr)+ > 8 us1@) dy[n—”-x----x----x---x---- x
=1 j=1y2j+1 2 3 4 21 2+
My, \ +
—fdy(—L‘ﬁL)x----x----x--- X - X ], k=12,... (5.77b)
M vy, /2 3 4 2k+1 241

Itis clear that in the last term and in the integrals multiplying the g, . , (87)’s in the second term we can set g = 0. We do
this and define

eDzyr) = 5’: 2le(r) (5.78a)
=0
and
A= 3 2 (), (5.78b)
=0
where
eV =1 (5.79a)
and
) o I I—1
0= [“dy [ann 4207 T T 20 oL (5.79b)
(] 4] i=1 j=1
Then the recursion relation (5.77) implies that, as g—0,
'z =2~ '[G(zgNe(zr) — eP(zn] + 0 (). (5.80)
Similarly, we can show that
'Oy =1—ezr) + FP(@2)e(z;r) + 0 (), (5.81)
where
=3 246, (), (5.82)
=0
with
® %0 Ji I—1
() = f dy, f dy [[ e ™ T[ () + 520" (5.83)
0 0 i=1 i=1

This completes the factorization of ¢*"(z). 4”(z) and ¢(z) can be analysed in a similar manner by relating them to ¢"(z)
and functions of 7. These functions are in turn related to e7(z;r) (j = 1,2,3). We will not write down the details of this
calculation.

Note that the g dependence of the functions ¢**(z) (j = 1,2,3) is only through G ( gr;z). We use the fact
limG(gr,m H =1
g0

to take this limit in ¢*”(2). This leads to Eq. (7.7)~(7.9) on using e ®(#) = (27) ~ ' (which is shown later in this section).

We will next reduce ¢(7 = ';r) (j = 1,2,3) to their final form [Egs. (7.3), (7.4) and (5.96)}. The procedure is the same in
all three cases and will be illustrated for eV(7r ~ ';r).

Scaling out 7 in Eq. (5.79b) (r y ,—y,), we can write &{"(r) in the form of an integral over iterated kernels

e(r) = f do, - f do(y, +2ir) 'K (1L,2)K (2,3)-K (I —1,]), I>1, (5.84)
] 0
where
do, =e 7 dy, KUJj+D=0+y,.)" " (5.85)
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The kernel (y; +y;, ;) ™ ' has been studied in Ref. 9, where the eigenvalues and eigenfunctions are explicitly written
down. We use the results in Sec. E of this reference (for the special case v = 0)

fo " do,K (1,24, = 4,1, (D),

where
A, = msechmp

are the eigenvalues and

20 =@4,)" " f " dt expl — (£ — Dx/2)lg, (£)

are the eigenfunctions of the integral equation (5.86).
In Eq. (5.86)

9 (§)=C,F(3+ip 3 —ip;i —1¢) (5.89)
where v
C, = (p tanhmp)'? (5.90)

and F (a,b,c;z) isthe hypergeometric function. ¢, ( § ) satisfies
the integral equation

T e (8)
fl )

Writing the eigenfunction expansion for K (j,j + 1) as

KGj+1)= f “ao A, r, (D, G+ D)

and doing the integrations over y,—y, in Eq. (5.84), we can
write

&) = f: dpl,” ‘[ J: dx e"‘xp(x)]

(5.91)

(5.92)

X[f dye"(y+2ir)*‘x,,(y)]. (5.93)
0
Using Eq. (5.88) and (5.91), we can show that

J; dxe = *x,(x) = (2pA, tanhmp)'. (5.94)

Using this in Eq. (5.92), doing the sum in Eq. (5.78a) (which
in a geometric progression is z >4 p), and settingz =7 ~,
we get Eq. (7.3). A similar analysis leads to Eq. (7.4).

We can similarly show that

&) = %J. dppA |, tanhmp.
0

Substituting in Eq. (5.82), summing up the series, set-
ting z = 7 ~ ', and doing the final integral over p, we get

=LA =29~ (5.96)

(5.95)

This completes our analysis of the second term in Eaq. ‘

(5.86)

(5.87)

(5.88)

| (4.26) in the limit g—0. On taking this limit we get the ex-

pression for H (7) in the final result (see Sec. VII).

VI. ANALYSIS OF G, (7—2n)
A. Factorization of G, (71—2n)

We can write

Go(lo2m)= [] [a(2i—2/ + D,b (2% + D).

i=1
The product in Eq. (6.1) has a cyclic structure, i.e.,
Yan o1 =0, and y,, . , =p,. Separating the a’s as in Eq.
(5.32), we have

(6.1)

Go(l—>2n)¢[ ] a@—2i + 2,0
i=1
+ 3 [F(1-2n) + F§,@-2m1)],
=1
(6.2)
where
F§21(1—2n)
n—1{
={0,6,(1,2)] [] [a(Z~2 + 2),6 (Y—>Y + 2)]
=1
— +
X I [a@i—2+2)0] [ X ,0] (6.3)
j=nl4 1 2n
and
n—1
F5-2n,0)= [T (a2~ + 2),b 2j—2 + 2)]
j=1
n—1
X [ le@-2%+2,0]
j=n—1+1
 [0,6,2n,1)] (6.4)

with I<n, n = 1,2,... . In Eq. (6.2) only the first term has a
cyclic structure. In Eqs. (6.3) and (6.4) the first product=1
for / = n and the second product=1 for /= 1.

By methods similar to those used in Sec. V we can derive the following recursion relations:

T n ! T
FY%,(1-2m)=F S (12 + S AP 12K [FE2 402k + 1-52n)
k=1

+FQ, (A=2k + D|F2 515 @k + 2-2n)}, (6.5)
where
FS2 a1 (2—+2n)—¢:1:"1: (a(Z—2 + 2),6 G~ + 2)] g I:II N la@—2 + 2),0][ §< ,o] , (6.6)
and ’
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n—1
Fi0,@-m)=FEQ-2m) + 3 {FQ_Q-2%) [FEY 5t 12k + 152n,1)
k=1
+ F(zi)@“’zk +1) |F(zlnl)— 2k,21(2k + 2—’2”,1)} s 6.7)

where

n—1—1
F§Y 1 (01=2n — D=[0,6,(1,2)] ] [a(2=2 +2),b (-2 +2)]

i=1
X T (a@—2+201[0b,2n—22n = 1], n>l+1, [>1. (6.8)
j=n—1
In Egs. (6.5)+6.7), I<n and n ; 1L,2,....
Defining the generating functions
F®on=F©Goprg= S I}"; 2"0*F$, (), fork=10and 11, (6.9a)
n=11=1
FOL0p)=F D oprg= $ !i 271 FD L (), (6.9b)
n=1[=1
and
FOCop=FPgopr= $ 'S 7~ 0'FE (), 699)
we have S
FOG15) £ F (32| FO@19) + 52 L FY'(52) + FO2)[FO, 1) (6.10)
and
FOGID): 322 FO2) + FOU2) FOG1) + FO2) | F 1) 611)

The reason for evaluating these functions at @ = 1 will be clear later on. We can now reduce F “?(z,1;y) and F 13(z,1;p) by
deriving recursion relations to get

FOe 1)z 2L 2F O] + FOD | FOGLs) + FO0 | F L) 6.12)
and
FOGID2 (22 —1)FO) + F ()| F P 1) + FOO | F 1), (6.13)
Solving for F?(z,1;) and F'¥(z,1;p) and substituting in Egs. (6.10) and (6.11), we get
FO% 1)+ — [1 = F¥'(32) = FO2) 1~ FO(2)] ~'FO(3)]
%[22 FO' () + FOU1 - FOO (24 4 1)rocp) 614
and

PO ly)= — (1= FO(3a) O = FO' (5]~ FO(3)]

x {z g; FO(y2) + FO(pz)[1 — FO (piz)] - '(z 5; _ 1)F<9>( y;z)] . (6.15)

F"9z,1;p) and F " "(z,1;p) each have one term without any derivative. On taking the trace the contribution of these nonderi-
vative terms to Tr[F“9(z,1;y) + F"(z,1;)] is of the form

Tr[d "'B—(47)"'B"]=Tr[4 -'B—4 ~'B)"] =0, (6.16)
where

A=1-F®(y;2) — FOp;2)[1 — FO(p2)] ~'FO(p;z) (6.172)
and

B=3FO(y;2)[1 — FO(p;2)] = 'FO(yz2) (6.17b)
since

FO(p2)=F(y;z) and FO'(yz)=F(p;2). (6.18)
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Thus, the nonderivative terms cancel out on taking the trace.

Substrituting the expressions (5.47) for F©( y;z), F®( y;z), and F ©( y;z) in Egs. (6.14) and (6.15) and carrying out the
matrix multiplications, we can show that

J dy Tr[FO%z,1y) + FOP )] = — %z di Ing(z) , (6.19)
z
where g(z) is given by
9(2D)=q@zrg) = [1 — 4P@q®° @] - ¢ @¢™" (@) — ¢"" @V @) + ¢V@9" @) 2)g>" (@)
— 4@V @4V - ¢V @4V D" @) - (6.20)
We need to evaluate 2*_,n~ 'z" TrG,(1—2n). Using Eq. (6.2), we have
$ 52 TrGy(1-2n)=2Re 3 n= 12" H a(2%—2j +2) + 2j 9 T [FOOE 1) + FOZ,19)] . (6.21)
n=1 n=1 j

The second term can be evaluated using Eq. (6 19) The first term will be analyzed in the next subsection.
B. Evaluation of . a(2/—>2/ +2)

Because of its cychc structure this term requires a different factorization than that of ¢‘”(z). Using the equation (5.29¢c)
for a(2j—2j + 2), we can write

[l a@—2 + D=6, @=2mD +e() 3 do_ 1011220, (6:22)
i=1 =1
n=12,..
where
+ — + -
@b, (2—2n,1)=(y, +,) " >2< >3< ----X ---ZXI---- §< ---- >< (6.23)
4 n— n
and
n— =+ - + — +
dyn 12— 1(2—2n)= II aQoY+D| X e X X X et X
j=1 — 2142 2n— 2143 2n— 2144 2n—-1 2n
(product=1 for /=n). (6.24)

We can write Jown the recursion relations
d2n —1,2n -1 (2—"2’1)#(12" -1 (2—’2’1) (6253)

and

n—1—1
dyy 1211 (2—2n)==ay, 1 (2—2n) + e(r) z Uy 1 Qo2m 4+ 2Dy 331 (2m + 4520),

=0

for I<n, n=23,... (6.25b)

Define

D (z,0)=D (z,w;r.g) = J dy i, [il 27 0¥ Yy a1 (9). (6.26)
Then, o

Dewy= |dy $ Ii 2710, () +ze(PNAd @D (). (6.27)

=

Hence,

Diz1)= —— [zA @] +zeA @D (). (6.28)
Solving for D (z, 1) we get

D)= — [2e(r)]~1 ~{In[1 —ze() @1} . (6.29)
Now we use the identity (5.66),

- +

2j>§1-__-2j>—+<+-2¢_2j>4<—1----2j>-<+2+2j>+<—12j>§2’ (5-66)
forj=0,1,.-,n — 1 in Eq. (6.23) to get
G Q2= (3 +9) 7 X o X e X X e g(— 1Pynzn 2k (2—21,1) (6.30)
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where

+ - + - +
Ponac(2221,1) = X -mm X aoam X X mmee Xomeme X e Xmme X (6.31)

2 3 4 2k— 1 2k 2k + 1 2n 1

In Eq. (6.30) the first term is equal to nf,, (gr) (on integrating over y). Define
Peo)=PGorg) + |dy 3 3 (— 1) 20Dy, (). (6.32)

n=1k=1
Then Eq. (6.30) leads to
dy § n-'2"a,, =F(zgr) + 2f iz,— PE.1). (6.33)
n=1 0 Z

We now use Eq. (5.66) forj = k& — 1 in Eq. (6.31) to get
Pana (@2, 1) = —py 0 2 Q2m1) 4 poy gk 2202k — 1)y, g, 2, (2k—2n,1), for 2<k<n, n=23,..
(6.34)

and

Pon2(P) =72 (y), n=12,... (6.35)
Thus,

i i (— 1) 20"y 0 (¥) = i i (= D"2"0™ [ = Panaic— 2(¥) + Pak — 226 — 2 (DWW 20— 2k 12 (D)] (6.36)

n=2k=2 n=2k=2
Adding and subtracting the missing terms on the left and right leads to
P@w) ~ @) = {Paa) ~ 1= 1O0) [y S Gopran(0)] 637
n=1
We can show that

[# 3 #Puea(n = ro@11 - o), (638)

n=1
Substituting Eq. (6.38) in (6.37) and solving for P (z,0), we get
&’ [T P2) — I P¢w)]
(1 - o)1 - I9%w)]
For w = 1, both the numerator and the denominator in Eq. (6.39) are equal to zero. Using L’Hospital’s rule, we have

P(zw) = (6.39)

P = - 24 nl—rog]. (6.40)
2 dz
Equations (6.22), (6.29), (6.33), and (6.40) lead to
dy i n= 12" i a(2j—2j +2) =F(z;gr) —In[1 — IF'?(@) —ze(NI"V(2)] . (6.41)
n=1 i=1

Sustituting Eq. (6.41) in (6.21) and doing the integral using Eq. (6.19) leads to

dy i n = '22" TrGy(1—>2n) = 2F (z;gr) — 2 Re{In[1 — ' I(z) — z () V(2)]} — Ing(2) . (6.42)

n=1

We can now summarize the results of Secs. IV-VI to write down H [z;,G (z:gr)] [see Eq. (3.4)]

Hzr,G(zgn)= | dy i I 'TeA"(p;z) —2Reln[1 — F'P@E) — z e(r) P (2)] — Ing(2) . (6.43)
=1

The lower limit of integration in the first term of Eq. (6.43) is now zero. We have shown that in all the terms on the right hand

side of Eq. (6.43) the g dependence is only through G (z;gr).

y }\:Ve catr;l now use Eq. (2.23), (2.26), and (2.32) of Ref. 7, l !,lino q(z = 'ir.) = q(v), (6.46)
which say that
’ 2 . . - we get the final answer for g(r) which is written out in detail
glfé (@) expl —2F (@ 'gn)] = Po s (6.44) in the next section.

where we have expressed the constants in Eq. (2.32) in terms
of p,, given by Eq. (1.7). This completes the analysis of the Vil. RESULTS
&—0 limit of g '* exp[ — H (7 ~ ';r,g)]. Setting

lim IOz~ r,g) = [ O(p), (6.45) Using the results of Secs. IV-VI, we can write down the
g0

final formof p(#):
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p(r) = % (@ feV(r) — [N~ + 7 (DT @) O = 2@ '~ v:l‘)e(r)[e“’(r) il D RCITAN
. ) e (r
X (e —[@n~ "+ 77 'e*Ir "M} +eeP(N] 2R 7" + 2
X exp[ — HV(P), (7.1) — e e (e ()] . (7.9)
where p , is given by Eq. (1.4) and In Eq. (7.1), H"(r) is given by
e(r =e‘2”fwdxe"’*xx+2z - 7.2 Wy — g,
(r) ) ( ) (7.2) HY@F) = 22 HWO®F), (7.10)
N =1+ (i )1/2 Jw dp( 14 )1/2 where
T o sinh’*zp o w© ©
. 200 = [y [ a,
xf dye—r ) (7.3) o o
¥ y+ 2 X f[e"'y’Hy. vy % (7.11)
@ _ 7 \l/2 = psech'lrp 172 AL AL 2j+1 1L 2 Jn >
=1 - dp| ——*X J j i
T tanh*zp and
s [ dye-> %1:2")_ . (7.4) S O=F (D2t
ir «
° Y . . =| $ 1" Ter( y;r))’] , (7.12)
X, () satisfies Eq. (5.86) and is explicitly written down ~, .\

in Egs. (5.88) and (5.89): where #( y;r) is a 4 X 4 matrix of functions of y and . The
'O = 2D~ HeV(r) — &2(r)] (1.5 summation inside the bracket on the right hand side of Eq.

and (7.12) generates terms with m y,’s (m = 2,3,4...). The sub-
N . script # denotes that we keep all the terms with exactly 7 y;’s
g(n = [1—¢®(Ng* (D] — (g’ () in £, ( ;). The discussion following Egs. (4.21) and (4.22)
— "M@ + ¢ (g (g V(NG (r) explains the method of generating these terms in detail.
— ¢ (g ) — 4V P (gD, (7.6) In Eq. (7.12)
with ” MP(yF O(yr) ME(pnFP(p;r)
) = r-o om0 T MEGEoGn MEGoReGn]
O — [P '+ 7 (NI ) ’ ' (7.13)
7o) = e"{@r) ' — 7 (e — 11} 790 where M ( y;r) and M ( y;r) are given by Egs. (4.8b) and
V() (4.9b), respectively:
_ L1 @8 FO) = BV AR OME S (3) + B (),
eD(r) j=1,2,3, and 4, (7.14)
and I
where
FO) = — [‘1“)(’)[1 — ¢ Mg N + ¢ D OO + ¢ (g (7.15)
Ny) = 2 » N
q(r) LgPMg?' (") + ¢ (Ng®(r) g1 - ¢PMg" ()] + ¢ P(g? ()
EC(yiry = E@D(yir) = EO(y;nM P (yin),
[M V' ( y;P)is given by Eq. (5.2a) and E ( y;r) by Egs. (5.4) and (5.6)], (7.16)
ECYyny=E*Yy;n=E®(y;r), [E®(yyr) is given by Egs. (5.19) and (5.21)], .17
EW(pn=EXy;=EP(y;), [EP(y;) is given by Egs. (5.12) and (5.14b)], (7.18)
ECY(pr)=E*P(yr) =7 'EQ(p,MP(yr),  [MEP(p;r) is given by Eq. (4.82)], (7.19)
EM(p:r) = EO(p MY (NES(p;r) + EO(pyr) ., [EP(p;r) is given by Egs. (5.13) and (5.14¢)], (7.20)
EC )y =7 'E"pnMP(p), (7.21)
EC(y;r) = ES(pNES(y;r) + EO(yyr),  [E®©(p;r) is given by Egs. (5.19) and (5.22)], (7.22)
and
E(yir)y = ECO(pnM (i) . (7.23)

The 2 X 2 matrices E ” have functions of the y, ’s. Substituting these in Eq. (7.13), we carry out the trace in Eq. (7.12) and
pick up all the terms with n variables to obtain, £, ( ;7). In Eq. (7.16)+7.29)
EXNy,A=E 7w~ 'yr), forj=123,5, and 6. (7.24)

2308 J. Math. Phys., Vol. 20, No. 11, November 1979 H.G. Vaidya and C.A. Tracy 2308

Downloaded 10 Oct 2005 to 169.237.30.70. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



VII. ASYMPTOTIC EXPANSION OF p(r) FOR LARGE r

All the functions inside the curly bracket in Eq. (7.1)
can be expressed in terms of e'"(r), e'?(r), and e(r). It may be
shown that, for r»1,

_ e—Zir __1——_3_ 4
0= [1 e T )]' @1

To expand ¢(r) [Eq. (7.3)] and e@(r) [Eq. (7.4)], we
expand the ( y + 2ir) ~ ! factor in the denominators in pow-
ers of r ~ ' to write

P =1+ 3 O

n=1

(8.2a)

and

o0
D= Y CPrr,

n=1

(8.2b)

where

o 1
Cﬁ,” =(=1)" 1(2[)_,,(1)1/2.[ dp( P ) 72
T o sinh’7p

X f dye ’y" 'y, (») (8.3a)
0
and
C® - ( _ l)n — 1(21') — n( l )1/2 on dp( P SCCh?Tp )1/2
’ T o tanh*mp
X f dye y" 'y, (»). (8.3b)
(4]
Using Eq. (5.88), we can write
f dye y" " 'x,(»)
4]
_ ' n 20
(24,) (§+ 1)

where ¢,( £) is defined by Eq. (5.89). Using Eq. (5.91), we
have

» @,(5)
de-12r2 7
J %
_ (=D, dr ()
T Te-0 @ e
_ 2 G P4+ L=y —in) g

(=D I'G+ipl( —ip)

where, in Eq. (8.5b), I (2) is the gamma function. Substitut-
ing in Egs. (8.4) and (8.3) and doing the final integration over
p, we can evaluate C " and C‘?. We write down the first few
terms in Eq. (8.2). Forr» 1,

1 3 15

=14+ — + -
@ 8ir 12872 1024ir

525
kN o Y (A 8.6a
o TOCT) (8.6a)
and
1 3 45
() = . S
) 4ir 327 512ir°
525 _

— s TOCT) (8.6b)

Using the expansions (8.1) and (8.6), we can derive an
asymptic expansion for large  for the curly bracket in Eq.
(7.1). The expansion of H (r) is more difficult. We first note
the following: An integral of the form

f dyl...J dy,,ﬁe\'y’——-———ﬁ'(y)
o o j= II( y; +¥Yii1)

falls off as » —™, where

m = n + number of y; factors in the numerator of £, ()
— number of y; factors in the denominator of £, ( y)
— number of (y; + y;, ;) factors in the denominator.

®.7)
For example,
f dy, f dyze*'(y’”)——}&—— ~r 3 (8.8)
0 o (yy +22)
A study of the matrices in .#"( y;¥) shows that
~#=1 for [ odd
dy 1r A (yyr) ~ [’ ’ :
J y et () p for ! even. 8.9)

Thus, to obtain the expansion to 0(x ~*) in the Intro-
duction, we only need to study Tr.#( y;r) and Tr.¥ (y;r) %
The first term needs to be evaluated to the leading and next
leading order in x ~ ', while the second term needs to be
evaluated only to the leading order. Now,

TeA (yyr) = Te[MP(yDF O(p;0) + M P(ynF O (y;n)] .
(8.10)
We can use the expressions (7.14) for F( y;r) and F®( y;r)

| to write out the right hand side of Eq. (8.10).

We will illustrate the method of deriving the asymptotic expansion by a typical term in Eq. (8.10), namely,

TMP(BNE(p) =Tr Y 7= "M P(p,,3,)E (92,03 Van sV )-

n=1

(8.11)

Expanding the (y, +y, + 2/)~ ' term in M P(y,,p,) [see Eq. (4.8b)], we have

MP(p1y2) = —yre” "[(2) "+ §(», +,),0] + higher order terms,

(8.12)

where the higher order terms contribute to O (x ~*)and higher. Next we multiply out the matricesin £ (Y2 —p2,.0, ) [see Eq.
(5.4)] keeping the terms only to leading and next leading order. This leads to

N n—1
E®Q—2n,1) = [e*"[yl(y, +2)7MR Qo) = T 10 Q2my D, @m + 1-2n,1),

m=1

1(23,,’(2—>2n,1)] + higher order terms,
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where

k—1 + + — +
1 _\Q—2k)=(— 1)"*‘(Hyz, Hy2,+1)><'---><---->< X ----X, k=12, (8.14)
=2 2 4 2k 2%k
- - +
tR (12 + )= (-~ )k+1J’2k+1(H,V2j H.VZj+1)X"“X""X“' X ==meX---- X, k=12,
i=1 =0 ! 2 3 2k -1 2k 2k 41
(8.15)
and
& P k ij + — + — +
tR0-2%+ ==y JJ | —— JX---- X oo X X - X--es X, k=12, (8.16)
j=1 y2j+1 2 3 4 2k — 1 2k 2k +1

Substituting in Eq. (8.11) and making use of Egs. (7.10) to (7.12), we see that

Contribution from TrM @(y;E P (y;r) to HO@) = i 20 Re[IO) + 1A ]+ 0¢ ), (8.17)
n=1
where
) > ] [v<] 2"
190) = (- 1)"e-2"f dy, f dyoy T e ™0 +201@D " + 40 +92)]
0 0 j=1
+ -~ + - ! +
><[><----><----><--. X x] (8.18)
2 3 4 2n—1 2n
and

1&?(r)=(—1)"e—z"f dy, f d,e Tl e ™ 10D + 300 +2)]
0 0

=1
n—1 + - + ’ - + - + +
X ¥ {xxx X ><” X mmee X meme X e X ><><} (8.19)

"1 2 3 4 2m— 1 2m 2n 41 2m+ 2 2m4 3 2n— 1 2n

Expanding the ( y,;, , — 2i) and (y,; + 2i) factors in Eq. (8.18) and making use of Eq. (8.7), we see that

190) = "(’)(”2—2;)“ - [ e T (yf”f“)'l]

j=2 1:2

—-21r
j dy, - j ay,, He y’)’\\)’\“’)’z) H (.VJ +J’J+1)7 +0(@r ). (8.20)

J=1 Jj=2

Using the expansion (8.1) for e(7) and scaling 7 in the integrals in Eq. (8.20) (» y,—y,), we can write

- 2ir 1 o« ES
15 = esrz [(——' + Esr_z)L dyz-»-f dy,, He y’ II (y +y,,1)

ir 1_2 j=2
1 o0 oo
o= oo [ [ T 000 |+ 007, (8.21)
2)’2 (4] (0] j=2 j=2

The integrals in Eq. (8.21) can be analyzed by techniques similar to those used in the analysis of e '(#) and e ®(r). In
particular, we can show that

oy ® *® 2n — 1
> ”'”f dyz-'-f B T e T 0 4200 =27 0P = = (8.22)
n=1 0 0 ji=2 J=2 27
and
*}’-2"*1 1 L (2 3
J- dy, - f d)"2n ! H Vi +Y0) "y, =4m CP=—. (8.23)
n:l 1‘2 j=2 87
Thus we have
o —any) ~Ztr 23 s
Y w0 = ——t+-8— +0(@ ). (8.24)
n=1

The integral in 7 gf,’(r) facton’zes into two factors, each of which can be analyzed in a similar manner. Adding the two

contributions and using Eq. (8.17), we get
contribution from TrM P (y;)E V(y;r) to HO() = — 3;::32" + 62 1(:20 S42r +0(?). (8.25)
r

The remaining terms in Tr.#"( y;#) and Tr.#"( y;#) * can be analyzed similarly. The calculation is tedious but straightfor-
ward on using the integral equation techniques developed in the analysis of e ’(r). The final result is
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HOG) = - S0z 1 +(3—1 —119 cos2r)+0(r‘5). (8.26)
327 1024/ 8

Substituting H ’(r) and the expansion for the curly bracket in Eq. (7.1) and identifying r=x (since &, = 1), we get the large x
expansion in Eq. (1.3).
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APPENDIX A: FACTORIZATION OF h?(r,g)

In this Appendix we will carry out a factorization of # ®(r,g) as g—0 in terms of f>(gr), g, (gr), and factors that are
functions of r alone.
Along the branch cut — , we make a change of variables

k=-Vi-g iy, gp<m, (Ala)
so that
(k] + 1)k} + 1] (3, — 2072 — 8> + O (@), as g—0. (Alb)
Along the branch cut +
kj=\/1—gZ — iy, g<y; <o, (A2a)
so that
[k +uD)k} + 1]y, + 203 — )2+ 0(2), as g—0. (A2b)
Thus, using the obvious notation, as g—0
hOrg) =4[ D, rn®) +h? _ () +h?, (rg) +h® _ (re)] +o(1), (A3)
where
=y +y) 2 281/2
] o o 2 2 -
h® (r’g)zze-zlrf dy, J' dy, € 2(J’1 +V21)(,V1 g) , (A%)
g g (y, + 20)(y; — &) U +y, +20)
o o e— Ay, +y)
h (i) - (rg) = f dy, f dy, 2 12 2 1/2 2
¢ ¢ 0 + 201 = &)y, — 2035 — )y, +1,)
X[y +20°( — )+ (1n — 20032 — )], (AS5)
and
h2,(re)=h% _(rng), h®_(re)=h®", (rg). (A6)
Therefore,
h(rg) =Reh?  (re) + 1D _(r), (A7)
0 w0 —Ayvi+r)e 2 1/2
h(i)+(r’g):2e~2frf dY1f dy, e (1 —8&)
g g (J’§ *gl)l/2
n +2) 1
><[ ! _ T—— ] (A3)
(¥, +20(y; +y, +20) 20y, +20)  2(y, +20)
e—Zir ) dy e_ryl(y2 _gZ)l/Z w© —rys _2ir o -
- [T e [[ar 2 [ [ w
{ 2 42 g (y3 _gz) ! 2 g
< & 0 =8, [(31 + 207 + 4, (py + 20+ 3E + 4ip, + 20) + 2y, ] (A9)

(72 =)y, + 2)(p, +, + 2i)
In the second integral we can set g = 0. In the first integral in the y, integration we can set g = 0, and in the ¥, integration we
rescale y, —gyp, to get, for g—0,

— 2ir © d — — 2ir
R e =an S [T I
H (4]

n+2 i
o o — Ky +y)
e > ) +y
< ["an ["an [ Ny » ] (A10)
o o W+, +2) Ly +y, +2i 2y, +20) 2y, +20)
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Now

—ny,+y) 172
Tyt =) (e —4)
h® _(rg)= d (A11)
Joo | D+ 1 O+ A
—r(y,+yz) 1/2
-8 (le’2_4 )
d > +1-1]. (A12)
f & f @ (J’2 gz)l/Z(Jﬁ +y,) )’% +4

Rescaling and setting g = 0 wherever allowed, we have

—gr(y, +yz)(yz _ l)x/z o o efr(y,+y;)yI
hD  (rg)= J dyj dy + f dyj dy . (A13)
N Y 2@2 Dy 430 do e TR )03+ 8

We identify the first term with f, (gr), and substituting in Eq. (A7) we get the result, as g—0,

e—2ir o dxxe—'rx © 0 ’()'1+J’2)y1
h3(rg) =2f,(gr) + rRe( )+2J d f d
(r.8) = 2f,(gr) + 8, &) ol M ) TSR
-21r "(,V1+Y1) +
_ Re{ j dy, f dy, i ) n b4 n Y2 ] . (A14)
O+ +20 Ly +,+2D) 2(y, +20) 2(y, +20)

Thus, our objective of expressing the g dependence only through the functions f; (gr) and g, (g7) is achieved.
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