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In conclusion, the angular distribution of the

magnetic scattering in chromium can be described,

as in other 3d metals, in terms of 3d free-atom
form factors. The data are best fitted by having
a 60%-3d-orbital-40%-3d-spin contribution to the
induced moment both above and below the anti-
ferromagnetic transition temperature. The or-
bital and spin susceptibilities, for our samples,
were found to be (98+3)X107° emu/mole and (65
+2)xX107° emu/mole, respectively. These re-
sults are consistent with measurements of the
total susceptibility and gyromagnetic ratio of
chromium. The magnitude of the localized in-
duced moment has been found to be essentially
temperature independent, in the 25-100°C tem-
perature region. Thus we do not observe the
characteristic temperature dependence expected
from an intrinsic localized spin.
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We study near T, the correlation function (0,0 of the two-dimensional Ising model.

In this Letter we present the results of our
computation of the Fourier transform of the spin-
spin correlation function (0,,0,,) for the two-di-
mensional Ising model in the scaling limit 7
~T,, K=(N*+M?*)!? - with (T - T,)R tixed and
of order 1.! We use these results to show that
the asymptotic formula of Fisher and Langer?
provides a much better method of extracting the
critical exponent 7 from neutron scattering data
than do the formulas of Fisher® and Fisher and
Burford.*

More specifically, we have computed

F(0)=1imR4(0,,0,,,) (1)

in the scaling limit, where {= kR, K is the inverse

1500

correlation length [~21n(1+v2)I7/T, -1/ for the
isotropic Ising model], and the subscripts +, =
refer to above and below T,, respectively. The
momentum-dependent susceptibility is

XE 1= 5 3 e T Mopo,,)-ma), (2

M== N: - 00

where 9? is the long-range order parameter. In
the scaling region we define

X,(» = lim &"'x(E, 1), 3)

Ry K= 0
where y=k/k is fixed and of order 1.
We have evaluated X,(y) and these are plotted

in Fig. 1 for y not too large. For large y (>20)
the asymptotic expansions given below, in Eq.
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FIG. 1. The scale functions X,(y)/X,(0), where X,(0)
are given by (19).

(15), are accurate to five significant figures.
Assuming that inelasticity effects are negligi-
ble® and that multiple scattering may be neglect-
ed, then the neutron cross section is proportion-
al to x(k, 7). The critical exponent 7 is then de-

fined from X,(y) by the limiting behavior
x, (M) =x,y % as y—oo. (4)

Unfortunately, it is not possible to perform the
mathematical limit of (4) in the laboratory (there
exist virtually no data in the scaling region for
y>50, and y~30 is perhaps typical®). Therefore,
in order to make contact with this definition it is
necessary to extrapolate the data using some
phenomenological formula. The most popular
form used to fit the data is that of Fisher,?3

Xp(p)=A(1+ %)Mt (5)
An improved form is that of Fisher and Burford,*
X () =A(1+ By )31+ 5% 7. (6)

Both (5) and (6) have been proposed for 7> T,
and reduce to (4) as y—~x.

We have used our computed values of X ,(y) as
data and performed a least-squares fit using
Xr(¥) and Xg(y) (see Table I). If we use a range
of ¥ which includes y=0 and cut off at some limit
of the order 30 to 50, we find that X5(y) gives
7 =0.10, while X(y) with a range of 0 <y <10
gives 1 ~0.02. This situation is improved by not
using the data around y=0. For example, for
100 points over the range 20 <y <60, X;(y) gives
n =0.13 and X () gives 1 20.18. X () fits
the data quite well in the sense that the computed
values from the fitted X(y) reproduce the input
values of X ,(y) to three to four significant fig-
ures. Yet, there is an error of approximately
30% in the predicted n, and nearly 50% error in
the predicted n from X;(y).

TABLE I. This table gives the predicted critical exponent 7 from a
least-squares fit to a phenomenological formula. The formulas are given
in the left-hand column, The upper row gives the interval over which the
formula was fitted. The number of data points, which are equally spaced
and equally weighted, is also given. The upper (lower) value of 1 is for
data above (below) T,. The asterisk means that some of the fitted values
differ from the input values by 1% or more.

(10, 30) (20, 40) (20, 60) (20, 140) (20, 200)
50 points 50 points 100 points 300 points 450 points
Xr() 0.086% 0.123 0.131% 0.142% 0.144*
0.441% 0.421* 0.397* 0.392*
Xepy) 0.143 0.168 0.176 0.188 0.191*
AyTm? 0.095 0.125 0.133% 0.143% 0.145%
0.443% 0.423% 0.399* 0.393%
Ayn-? 0.299* 0.264 0.260 0.256 0.256
+By ™ 31ny 0.241 0.248 0.245 0.245
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The reason for these large errors is that X;(y)
and X(y) are not really valid in the range of ex-
perimentally accessible y. The “n’ appearing in
these formulas is the true 1 only when (4) is a
good approximation. When (4) is not a good ap-
proximation, we must consider higher-order
terms in X,(), i.e., [see (15)]

-l/u] .

X, ()~ 2,9 2L £ (2,9 @7 4 20)y (n
(For the two-dimensional Ising model a=0 and
v=1and y%’? is replaced by Iny.) Form (7) has
been discussed by Fisher and Langer.? With the
same data, form (7) with y /Y ~1Iny and x,=0 pre-
dicts from a least-squares fit an 7 with only 4%
error. If we use (7) with v=1and, say, x,=x,,
then the fitting program gives an equally good 7
and o/v=-0.078.

We should point out that (1) 7 in the two-dimen- l

y)f yr£:) élfody

V2 +y'?

,pi ("

Y +y n=

72 = i X(n)(y)

sional Ising model is a large effect since three-
dimensional 7n’s range from one fourth to one
fifth as large*”; (2) the value @ =0 makes the sec-
ond-order term a minimal effect in two dimen-
sions, there being evidence that a #0 in three di-
mensions.? Thus, if a phenomenological formula
is unable to extract n from our “data,” then we
feel this is a strong reason, especially in light

of points (1) and (2), to reject this phenomenolog-
ical formula. Therefore, we conclude that (7)
provides a much better method of extracting 7
than do (5) and (6).

We commence our study of F, () by evaluating
the expansion for (0y,0,,’ derived by Cheng and
Wu?® to all orders. Letting T—7, and R—«, we
verify that if the horizontal and vertical inter-
action energies E, and E, are equal, then (o,
x0,,) R becomes cylindrically symmetric.
More importantly, we see that if X,(y) is repre-
sented as a dispersion integral,

(8

where p,?(y) is a multiple of 6(y — 1) and for n =2 p,™(y’) is zero for y’<n and has no singularities

for n<y’, then p,?"(y")=0and p_?"*Y(y")=0.

We find, upon scaling the leading terms given in Cheng and Wu,

X+(1)(y) - 211/8(1 X yz\ —1’
Xy =200 [FF(3, 15 3

(5

-5 =31+ 1AF(3, 2 3; -
Y1+ £ 3°)F(3, 3; 55 - 399 ],

(9a)
.Lyz)
(9b)

where F(a, b; c; 2) is the hypergeometric function. It is clear from (9a) that X ,™(y) is the Ornstein-
Zernike pole. However, in X_?(y) the singularity at y=+27 is not a pole but a cut.

We can also use the expansion of Cheng and Wu to study the approach to the scaling limit.

For T>T,

the first term of the expansion gives as an approximation for the susceptibility x(k, 7)

X(l)(kx,ky, T) =
Alk,,k)=a~- 7y, cosk,

[(sinh2BE, sinh2BE,) 2

-y, cosk,,

_1]1/4('}/1'}’2)1/2A—1(kx5k )
a=(1+2,")(1+2,2), 1,=22,(1-2,%, 1,=22,(1-2,%), z,=tanh(BE;), and

(10)

B'=kyT. For T<T, we restrict our attention to 2 =0 and find

x®(0, T) = [1 ~(sinh2BE, sinh2BE,) 21/4(24m) 1,3, L+ [ do,d @, cose, cosy,

A @y, @), (11)

To obtain the expansion for / small we consider the ratio x,(N) = {0,,0, y-1)/ {0400, x) in the scaling limit
and use the work of Wu'® which shows that it is given by

%o (N)=max(1, a,) + krlim [- ZV2(Z + 1)Y27 7 + lim (78)%%(s; Z) — 772 lim
s$=>0

Z—>

x(s; Z)

where ¥,(s) and x(s; Z) are solutions to the integral equations

fotKO(l s =s'N\¥,(sds'=e ™
and
KK (s ~s'Di(s"; 2)ds’ = 217 “25,

and a,=z, (1+2,)(1 -2,)"%

1502
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Equation (13) may be solved iteratively when ¢ is small by Pearson’s method.!! We obtain'?
F,(H)=FO)[1zit0+ {étziglét39+0(t“92)], (19

where Q=1n(#/8)+yg, vg is Euler’s constant, and F(0)=0.64500244... . From (14) we obtain the
large-y expansion of X,(y),

X, (9)=Cy "4, £ (x, Iny+ 1)y 7+ 2,92 £ (2, Iny + 1)y 2+ O(y "4 In?y) ], (15)

where C=2""%7 x =0.06596477..., x,=0.10598171..., x,=0.02604669..., x,=-0.0126207..., «x,
=-0.05009292..., x,=0.056712179... .

To obtain F,(?) at intermediate values of ¢, we make use of the work of Myers® that expresses the
solution to (13) in terms of a Painlevé function 7(#6) of the third kind'* where

n”=n"n"?=-n"+n*=0"n (162)

n(6)= - 6(1nt6+yp) + O(6°In6) as 6—0; (16Db)

n(0)=1-271"K(20) + 272K ,%(26) + O(e %) as §—~w. (16¢)
We find

Fo (0= E@0Y4[159(L/2) 10 "2(1/2) exp [y dx(x /402 (1 = 77 - 2]} amn

We have numerically solved (16), and by use of (17) numerically interpolated between (14) and the
Fourier transform of (9). We have also numerically evaluated X,(y) to five significant places. When
y -0 these evaluations have been carried out to higher accuracy, and we find"

umJ 1-7/T,"*x(0, T)=C,, (18)
T~ Tc
with
€,=0.9625817321...=X (0)[21n(1+ v2)] /4, (192)
C.=0.0255369718...=X_(0)[2In(1+v2)] "4, (19b)

These are to be compared with the series results’® C,=0.962 59 +0.00003 and'” C.=0.026+0.0006,
and the accurate approximate results'® from (9) of C, = [21In(1+v2)] 7/42!1/8=0,961797... and C.
~[21n(1+V2)] 7421 8(127m) "1=0.0255124. .. .
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A generalized duality argument, similar to the treatment of the two-dimensional Ising
model by Kramers and Wannier, is used to locate the transition temperature of the eight-

vertex model in three dimensions.

In their original treatment of the two-dimen-
sional Ising problem,® before Onsager’s exact
solution,? Kramers and Wannier introduced the
dual transformation relating the partition func-
tion at high and low temperatures. Making the
reasonable assumption of a unique transition
temperature 7, they were able to locate 7T, as
the invariant point of the transformation, as well
as make qualitative statements about the singu-
larity at 7.

Subsequently, a generalized dual transforma-
tion was used by Sutherland® to locate the transi-
tion temperature of the eight-vertex problem in
two dimensions, prior to Baxter’s exact solu-
tion.* Whereas the Ising problem was self-dual,
the duality transformation of the eight-vertex
problem related models with different interaction
parameters, and thus provided no information on
the nature of the singularity.

It is the purpose of this Letter to extend the
work of Sutherland to the higher-dimension eight-
vertex model.

Consider a four-coordinated lattice in any num -
ber of dimensions which is loose packed, i.e.,
it may be divided into two sublattices A and B,
where neighbors of A are B, and vice versa. On
the edges place arrows, allowing only an even
number to point into each vertex. Let us assume
N vertices, and hence 2N edges. If one vertex
configuration is obtained by reversing the arrows
of another, these are called conjugate configura-
tions. Let us assign conjugate configurations
the same weight, and thus conjugate pairs have
weights a, b, ¢, and d, as in Fig. 1.

Let Z(a,b, c,d) be the partition function for this
problem, the eight-vertex model, which physical-

1504

+ F
—t— a ---:——-

F o+

R I
—>—t— a

+| £

+1 F
—> b —

=

o
Ho
o

———— !
-

'
Fo+

——t—— C -
+
= -

(o]
H.
_—-I
|

) Fio+
d ——

Flt

+ |+

— d -——fF--
FlF

FIG. 1. First column, vertex configurations of ar-
rows for a ferroelectric problem; second column,
weights for the eight-vertex model; third column, cor-
responding bond configurations.



