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In the scaling limit k>0, £~ such that y =k¢ is fixed, the k-dependent susceptibility x(lz,T) can,
according to the scaling hypotheses of Kadanoff and Fisher, be written as x(ﬁ,T) =
EX .(y)+0(£""). We exactly compute the scale functions X .(y) for the two-dimensional Ising
model in zero magnetic field. We then compare the various phenomenological scale functions
(Ornstein-Zernike pole approximate, Fisher approximate, Fisher-Burford approximate, Tarko-Fisher
approximates, etc.) with the exact X .(y) for the two-dimensional Ising model. This comparison
provides insight into those regions of y = k¢ where these phenomenological scale functions are
applicable. Such insight is important since the region of experimentally accessible y is rather limited.
We then use these results to examine the method of data analysis used in critical scattering
experiments. We conclude that no experiment to date unambiguously and directly establishes that the

critical exponent 7 is greater than zero.

I. INTRODUCTION

In the past decade a great amount of study has
been given to x(k, 7) (the K-dependent susceptibility)
in the scaling region where

T-T,, k-0, (1.1)
such that if £(7) is the correlation length
y=kE(T) (1.2)

is fixed. For a magnetic system x(ﬁ, T) is the
Fourier transform of the spin-spin correlation
function [and for a fluid x(k, 7) is the Fourier trans-
form of the density-density correlation function].
As T— T, the correlation length £(7) and the ther-
modynamic susceptibility x(0, 7) diverge and are
usually parameterized as

5”€3|1- T/Tclw
and

X0, T)~ Cou|1 = T/ T, |

(1.3)

(1.4)

[where + (=) denotes that 7~ T, from above (be-
low)]. In the limit (1.1) and (1.2) Kadanoff! and
Fisher®3 assume that x(k, T), which is a function
of the two variables k and T, reduces to essentially
a function of one variable

x(k, T)= &7 X,(9)+ o(£) . (1.5)

The functions X,(y) are referred to as scaling func-
tions.,

In general X .(y) are functions which depend on
the system under consideration. However, for
physically realistic systems no exact calculation
of X.(y) has ever been carried out. Therefore,

12

studies of X,(y) have been of an approximate na-
ture, and over the years a large number?*-10 of
approximates to X,(y) have been proposed. The
most famous of these phenomenological approxi-

mates is that of Ornstein and Zernike, *
Xoz(¥) = %L+ 9371, (1.6)

while some of the more recent approximates are
those of Fisher,?

Xp(y) =A@+ 22, 1.7
and of Fisher and Burford, ®
1 2,2\1/2
Xrp(y)=A _‘_T—( +0eV) (1.8)

1+y

Each proposed approximate scaling function has
certain virtues in that each incorporates some
general feature which X,(y) is expected to possess.
However, without some exact X,(y) it is impossible
to fully assess either the range of y over which the
approximates are expected to be useful or the
quantitative accuracy of the approximates. It is
the primary purpose of this paper to make such a
detailed study of these phenomenological approxi-
mates by comparing them with the Fourier trans-
form of the exact spin-spin correlation function of
the two-dimensional Ising model in the scaling
limit, =13

In Sec. II we examine the analytic structure of
the scale functions X ,(v) for the two-dimensional
Ising model in zero magnetic field. To keep the
mathematical derivations to a minimum, we put
all computations into a series of appendixes so that
in Sec. II only the barest facts concerning X,(y)
are presented. However even this may not be of
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interest to the general reader who is most inter-
ested in our conclusions concerning critical-scat-
tering phenomenology and experiments. If this is
the case we recommend that the reader only look
at Figs. 1 and 2, and begin reading at Sec. III, and
only when necessary (or interested) go back and
read the relevant results of Sec. II.

In Sec. III we give a detailed comparison of the
various scattering approximates [i.e., Ornstein-
Zernike pole approximate (1. 6), Fisher approximate
(1.7), Fisher-Burford approximate (1.8), Tarko-
Fisher approximates, ® etc. ] with the exact results
of the two-dimensional Ising model., This com-
parison will provide insight into the regions of y
(=k£) where these formulas are applicable (for ex-
ample, how large does y have to be before the
Fisher approximate is good to 5%?). Such insight
is important since the region of experimentally ac-
cessible v is rather limited at present (the largest
values'*~# of y range up to no more than 65, but
perhaps 20 to 30 is more typical). Thus one does
not want to use a phenomenological formula for
some scale function that is not expected to be valid
in the range of y in which the experiment is con-
ducted. Table V summarizes these results.

In Sec. IV we use our six-place values of the
scale function X (y) as “data” over varying ranges
of y and try by using various phenomenological
scaling functions (Fisher approximate, Fisher-
Burford approximate, etc.) as fitting functions in
a least-squares program to extract the critical ex-
ponent 7. The exponent 7 is defined? by the large-
v behavior of X,(y),

X.(y)~ Cy7, 1.9

and the scaling theories of Kadanoff! and Fisher??®
predict that 7 is related to ¥ and v [see (1.3) and
(1.4)] by the relation

y—»OO

@2-nv=y. (1.10)

The results of our least-squares “experiment” are
summarized in Table VI. These results will then
lead us to conclude that no experiments**=2® to date
clearly and unambiguously establish that n>0. We
then discuss what we feel would be an unambiguous
determination of . We recommend that this pro-
cedure (which depends upon use of the Fisher-
Langer?® approximate) be used in the future rather
than the methods that have previously been used. 2

II. DISPERSION REPRESENTATION OF X, (y)

For the two-dimensional Ising model in zero mag-
netic field we find that the scale functions X,(y) of
(1.5) [see Appendix A for a precise definition of &
and y in terms of the interaction energies E; and
E, and the inverse temperature (k; 7)™] can be
written as

x0)= 2 ay 2.1)
(n)( r
Z y)
= e d 2.2
n=0 j;) yo+y y ( )
=2 X, (2.3)
n=0
with
(2")(y)§.0 n:l’ 2, 3’ . (2.4a)
p&V(y)=0, n=1,2,3,... (2. 4b)
0 for y<2n-1
@n=1)(,y =
P y) = and has no singularities for (2. 4c)
y>2n-1, n=2,3,4, ...
0 for y<2n
@n) _
) = and has no singularities for (2.4d)
y>2n, n=1,2,3, ...
and
p & (y) =2%%4(sinh2B,E, +sinh2B,E,)'80(y - 1),
(2. 4e)

where E; and E, are the interaction energies and
Be=(ksT,)™". Inwords, (2.1)-(2.4) mean that

X,(y) has simple poles®’™! at y=+{ and branch
points at y=x (2n+1)i, n=1,2,3, ..., and X_.(v)
has only branch points which are located at y=x 2,
n=1,2,3,.... InFig. 1 we qualitatively display
the analytic structure of X,(y). In Fig. 2 we plot
for 0=9=14 the functions X,(y)/X.(0). For a dis-
cussion of how to compute the infinite sum in (2. 2)
or (2. 3) see Appendix B. Also in Appendix B in
Table VIII we give the values (to at least six deci-
mal places) of X.(y)/X,.(0). For y>20 the expan-
sion (2, 10) below may be used to compute X,.(y).
The computation of X’(y) is discussed in Appendix
C. In Fig. 3 we plot X&(y)/x®(0) and the func-
tion (1 + %)™ for comparison,

Many authors®?=% have developed the connection
between critical phenomena and field theory. In
this language the Ising model is a Euclidean field
theory, and the scale functions X,(y), which are
the two-point functions, are expected to obey a dis-
persion relation of the form (2.1)-(2.3). [This is
not to say the structure of p{"(y) is that of (2. 4). ]
This dispersion relation is expected to be valid for
either the two- or three-dimensional ferromagnetic
Ising model of arbitrary spin®® and arbitrary, finite-
range pairwise interactions. Thus the dispersion
representation (2.1)-(2. 3) represents a very gen-
eral point of view in which to discuss X,(y). For
this reason we discuss our computation of X,(y)
for the two-dimensional (nearest-neighbor, spin-3)
Ising model in this language.

We first reiterate the point that (2. 4e) gives the
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FIG. 1. (a) Analytic structure of X,(y) in the complex
9 plane. The branch points at + 2r+1)i, =1,2,3,...,
are square-root-type singularities, and the symbol X
denotes a simple pole. The poles are the Ornstein-
Zernike poles. (b) Analytic structure of X.() in the com-
plex y plane. X.() has only branch points which are lo-
cated at +2xni, n=1,2,3,... .

Ornstein-Zernike pole (1.6) with
%y = 2% (sinh2B, E, + sinh2B,E,)/® .

In Appendix C we show that the spectral function
p2(y) is given by

0 for y<2

@) =
P (M) =< o5 (% = 4)172
—ﬂ-(sinhZBcEl +sinh2B,E,)!/® —

fory=2. (2.5)
From (2.5) we see that p®’(y) has a square-root
branch point at y>=4. In Appendix C we show that
both p&™1)(y) and p2"(y), n=1,2,8, ..., display
square-root-type behavior near threshold.

Using (2.5) we can compute X'(y), i.e., the

two-particle cut contribution to the scale function
X (y):

X&) (y) =2"3/47")(sinh2B,E, + sinh2B,E,)'/®

X (1 +3992 ) 1+ @+ 192 - G
(2.6)

ORT T T T T T T 1T T T T T 1

090 |
080 —]
070 —
060+ ]

050— —

040}— X_(0) —

030[—

0.20— —

O.l0f—

I

6 7 8 9 0 1 121314

y

. i
FIG. 2. Scale functions X,(9)/X,(0) for the two-dimen-
sional Ising model, where X,(0) are given in Table II,
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FIG. 3. Three-particle contribution X®(y)/X8(0) to
the scale function. For comparison the Ornstein-Zernike
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From (2.6) for y—

8 lny — +0(y%).
2.7
This could have been anticipated from the fact that
p®(y)~ 9y for y~o, Using the standard conven-
tion that logarithms should be treated as a zero
exponent,® we see the “n assigned to X?’(y)” is

X®)(y) =2%*17Y(sinh2B,E, + sinh2B E,)"/

zero. Of course, the same is true for the Orn-
stein-Zernike pole (1.6)., In Appendix D we show
that for n=1,2,3,... asy—~
2n 2n=1

XE(5)= gy L oL ) (2.8)

y y
and

2n=1 2n=2
xeg=c;, YT (A2 )

with C} constants,

Thus if we consider only a finite sum of terms
in (2.2) [or equivalently (2. 3)] we will obtain a
zevo 1. We find that for the two-dimensional Ising
model

X.()= C13"7/4[1 + (Cylny+ Cy)y™ + Cyy2
+ (C5Iny+ Cg)y™2 + (CyIn%y + Cglny + Co)y™*
+0(y°In*y)] , (2.10)

for y—-o, The numerical values of the coefficients
Ci, 2=1,2, ..., 9, are given in Table I. Analyti-
cal expressions for C;, i=1, ..., 9, along with a
derivation of (2.10) can be found in Appendix D.
The first term in (2.10), C;y""*, was computed by
Fisher?” and Wu. %" The second term in (2. 10) was
computed by Ryazanov®® and by Vaks, Larkin, and
Ovchinnikov®® (however their value for C, is incor-
rect). The important point to emphasize is that
the critical exponent 17 emerges from the dispersion
representation only when the entire many-particle
cut structure is considered.

TABLE I. Coefficients Cy, i=1,2,...,9, in the large-y
expansion of X, (y) [see (2.10)] for the two-dimensional
Ising model, The coefficient C; (and only C;) depends
upon E; and E,. We give the numerical value for the sym-~
metric lattice E;=E,. Analytical expressions for Cy,
i=1,...,9, can be found in Appendix D,

.

C

1. 074 999 32429, .
1. 606 640 946 86. .
0.394 8576169, . .

— 0,191 406 2500, , .

— 0,759 388 8850, , .
0. 365 650 9050, .

~0.168228 1494

—1.422921830. ..
0.036 1961956, . .

W0 O U W
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TABLE II. Exact values of the scale functions X, (y) at
9 =0 (for the two-dimensional symmetric Ising model) are
compared with the expansion (2.3). X{(0) is the contri-
bution to X,(0) coming from the z-particle cut.

Exact results Perturbation-expansion results

xH(0)=21/8=2, 593679109302 02
X8(0)=0,002112 454 5415

X,(0)=2,595793633

X82(0)=0, 000002 067
X10) +X8(0)=2. 595791 563 843
XD0)+X3(0) +x8(0) =2, 595793 631

X.(0)=0, 0688655379 X®(0)=2""/8(127)"1 =0, 068 799475173
X%(0) =0, 000 066 005

X2(0) +x4(0) =0, 068 865 480

On the other hand, the small-y properties of
X.(y) are completely dominated by the lowest-lying
singularities of X,(y). For example, the value of
the scale function at the origin, X,(0),**~*® which
by (2.2)

(n ’
X,00)= Z [ ay

is given to a high degree of accuracy by the first
few terms in (2.11), For the symmetric lattice
E, =E, we compare in Table II the exact values of
X.(0) (to ten significant digits) with the approxima-
tions X*(0), x2(0)+x®(0), etc.

The small-y expansions

(2.11)

X.(9)= 122 Ry (= 1) (2.12)

and

X () =2%4(sinh28, E, + sinh28, Ep}/%(1 + y?)"!

+ 20 By (= 1)y (2.13)
=0
are discussed in Appendix E.

The values of Rj; and R3;, j=1,2,..., 5, for
the symmetric two-dimensional Ising model are
given in Table III,

One can also expand X, (y) for small y as

TABLE IIl. Coefficients R§; and R3; in the small-y
expansions (2,12) and (2.13), respectively, for the two-
dimensional symmetric Ising model,

R, Ry
0,688 0074%x1072
0,982 85048x107

0.16380828x10"3
0,29783323x10™

0.2838091 x10™
0,8326690x1076
0.346 0674 %1077
0.1758059x10"8
0.10186013%10%?

[SICNEVUR S
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TABLE IV. Coefficients 23, and 23, for the two-di-
mensional Ising model [see (2,14)] are in the second and
fourth columns, respectively. The estimates 22 [see
(3.3) and (3.8)] are in the third colum (P should be
compared with the exact Z3,), The fifth column contains
the Tarko-Fisher estimates [see (3.11)], and should be
compared with the exact Z3,.

B W N

n Z;n ZE:IB Ezn E)T;'IF
0. 999196 337 0.999 8918 0,999 059x107" oo
0.7924044x10 0,108%x107  0,4290832x107%  0,420%1072
0.1093350x107 0,526x10°7  0,5241301x10°%  0,502x107
0.3117391x107% 0,323%x10"  0,812396x10™
0.1261657x107 0,217x1071

. w
LNV 2
( t(y) =1+ (_1)n+1 E;ﬂyZn . (2' 14)
Xi(o) n=1

Clearly the Ornstein-Zernike pole approximation
corresponds to Z,=1 and Z,,=0 for n=2,3,4, ... .
We find that the values of Zj, are again determined
to a high degree of accuracy (see Appendix E) by
the lowest-lying singularities (where, of course,
for 23, the first contribution for n=2,3, ... comes
from the three-particle cut). In Table IV, col-
umns two and four, we give =3, for n=1,2,...,

5. We defer comparison of these numbers with
available series-expansion estimates until Sec. III.

III. PHENOMENOLOGICAL FORMULAS FOR X,(y)
A. Ornstein-Zernike

The simplest approximate to X,(y) is the Orn-
stein-Zernike pole approximation

Xoz(3) =% +y?)h . (3.1)

Of course, if for T'<T, there is no pole term in

X _(v), then this will be a poor approximation. How-
ever if a pole term is present, we expect (3.1) to
be an excellent approximate for small y. To il-
lustrate this we compare in Table V, row 1, the
Ornstein-Zernike pole approximate (3.1) (with x
=1) with the exact X,(y)/X.(0) for the two-dimen-
sional Ising model. One sees that to within 5% ac-
curacy the simple pole gives X,(y)/X,(0) in the
range 0=y=11.2, Thus even though 7=4% is con-
sidered large, the Ornstein-Zernike pole approxi-
mation is quite good over a large range of y, i.e.,
y=11, Note that for y=11 the scale function
X.,(y)/X,(0) is only 0. 86% of its value in the for-
ward direction y=0., Stated slightly differently we
conclude that any experiment that wants to mea-
sure 77 must be in a region of y where the pole term
does not dominate.

The fact that the coefficients Z3,, #=2,3, ...,
in (2.14) are small (see Table IV) is somewhat of
an indication of the dominance of the pole term for
small y. The reason we say “somewhat” is that
the expansion (2, 14) does not converge for y=3

for X,(y).

In the x-ray scattering studies of argon for T
> T, by Lin and Schmidt, > these authors scale
their data and find that y must be greater than 12
to find significant (i.e., greater than could be ac-
counted for by uncertainties in the intensity mea-
surements) deviations from Ornstein-Zernike.

B. Fisher approximate

The Fisher approximate? is

Xp(y)=A(L+y2)ym2, (3.2)

The constant A can be chosen to reproduce either
X,(0) or to reproduce the leading term of the large-
y expansion of X.(y), in which case A is set equal
to G, of (1.9). To do this one must have an inde-
pendent method of determining either X,(0) or C;.
The analytic structure of Xy(y) consists of two
branch points at y=+4.

If we set A=1 and compare Xz(y) with X,(y)/
X,(0), we find the deviations exceed 5% for y>0.17.
Setting A equal to the known value of C, (see Ta~
ble I), then in Table V, row 2, we compare Xz(y)
with X,(v). Note that y must exceed 163 for Xx(y)
to reproduce X,(y) to within an accuracy of 5%.

No experiments at present!*~2?* can reach such a
high value of y.

C. Fisher-Burford approximate

The Fisher approximate (3. 2) can be made to
match the leading term of the large-y behavior of
X,(y), but not the correct small-y behavior. To
overcome this objection, Fisher and Burford® pro-
posed the following approximate:

2,,2\n/2
yoa L Pey)

Xpp(y T+y

(3.3)
for scale functions [such as X,(y)] that have a pole.
The constant A is determined by requiring

A=X,0) (3.4)

and the constant ¢, is determined by requiring that
(3. 3) reproduce the leading term of the large-vy ex-~
pansion of X,(y), i.e.,

Apg=Cy, (3.5)

where C, is given by (1.9).
For the two-dimensional Ising model ¢, can be
determined exactly, '

¢,=0.02941386... . (3.6)

The careful reader will have noted that what we
call the Fisher-Burford approximate, i.e., (3.3),
is slightly different than that in Fisher and Bur-
ford.® The difference is due to the different defini-
tions of the scale variable. Here we let y=k¢,
with £ the exact correlation length (see Appendix A
for details). Fisher and Burford let x=k&;, with
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TABLE V, This table compares the exact scale functions X, (y) for the two-dimensional Ising model

with various approximate scale functions.
(see text for definitions), The approximates Xoz (), Xp®), Xgs®), (1+Zfy%—

The various approximates are given in the left-hand column
Z3ph), (1+3%y° - Ziyt

+2Ey01 X @ (y)/x220), X @), and X&) are all normalized to unity at =0, and hence, are com-
pared with the scale functions X,()/X,(0). The error in percent is defined as the exact value minus

the approximate value, divided by the exact value, The upper row gives the error,

Thus, for instance,

the Fisher-Burford approximate Xyp(¥) agrees with the exact X, )/X,(0) to within 0,1% over the

ranges 0 <y <1,land 15900<y <o,

The second column specifies if the comparison is with the scale

function X, (y) (T'>T,) or with the scale function X_(y) (T<T,). Three dots indicate that this region was
not determined, The last row gives the comaprison of the Fisher-Burford approximate Xgg (y) with
the parameters ¢,, 1, and Xgp(0) determined by a least-squares program with the exact X, () (see Sec.

1V for discussion),

Error
Approx. 0.01% 0.1% 1% 5% 10%
X0y ®) T>T, 0=<9<0.3 0=y<1,1 0=y<4,0 0=y<11,2 0syp<21
0z T<T, 0=y<0,1 0=9<0.2 0=y<0.3
Xe(v) T>T, 200000<y<eo 15900<y<eo 1170<y<ew 163<p<w  B4<p<oo
FY T<T, 200000<y<wo 15900<y<w 1185<y<e 185<y<%o 80<y<w
0=y<0.3 0=y<1.1 0=y<4,2 0syp<15 0=y<e
>
Xrs0) T>T 200000<y<w  15900<y<ew 1145<y<w 138<y<c
(L +2Ey?2 - Thyyt T>T, 0=y<0.3 0=y<3.8 0=y<6,6 0=y<10,8 0=y<13,8
2 4 T<T, 0=9<0.8 0=y<1,1 0=9<1.9 0=9<2,5 0sy<3
(L4537 — Shyh + Shyd)t T>T, 0=y<0.3 0=y<3.4 0=y<6.4 0=y9<9,2 0sy<1l
T<T, 0=yp<1,1 0=9<1,5 0=y<2,1 0=y<2,6 0=9<2,9
Xoz @) +X8 (@) T>T, 0=y<l12 0=<y<40 0=y<250 0=y<1500
c y
Cyy-1/4 T>T, 200000<y<eo 15900<y<ew 1170<y<o 163<y<®  (4<y<o
1 T<T, 200000<y<e 15900<y<e 1170<y<w 184<y<ew 82<y<w
Xt @) T>T, 47<y< 15.7<y < 5,4<y<ew  2,5<y< 1,7<y<»
FL T<T, 40<y<eo 12.4<9<®  5,5<y<®  3,6<y<eo  3F<y<w
Large-~
Expagnsiin T>T, 5.5<y<e 3.5<y < 1.6<y<eo  1,2<y<o 1, 1<y<w»
©.10) T<T, 6,7<y< 3.5<y<» 2,7<y<eo  2,/1<y<e 1,9<y<o
X® )
}5)(% T<T, 0=yp<1.1 0=9<3.8 0=y<19 0=9<102 0=y<287
0=9<0.1 0=9<0,3 0=y<1,2 0=y<4,1
x1) < y y<0. y<1. y<4,
¢ ) T<Te  146000<y<w 10350<y<w 585<y<eo 45<y<w0 0TV
X&) T<T, 0=y<0.3 0=y<1.0 0<y<4.8
260<y <o 0=y<e 0=p<e
Xrp ) not
ith >
Ivgv‘* T>Ts  iminable 17.5<y<51 8,8<y<103 0=9<310 0=y<800

3Least-squares value,

&, the second-moment definition of the correlation
length. The second-moment definition is such that
the second term in the inverse expansion (2. 14) in
terms of the x variable is always x 2. Hence the
connection between our y and the x variable is

iy?=a? (3.7)

where one uses Zj (Z;) above (below) T.,.
Comparing the analytic structure of Xp5(y) with

X ,(y) [see Fig. 1(a)] we see that Xpz(v) has re-

placed the infinite sequence of square-root branch

points at y=+i(2n+1), n=1,2,83, ..., with a single
branch point of order 7/2 at y=+i$;!, Also com-
paring the large-y expansion of Xyg(y) with the ex-
act large-y expansion of X,(y) [see (2.10)], we see
that Xyp5(y) does not reproduce, other than the
leading term, the correct large-y behavior [the
same remark holds for the Fisher approximate
(8.2)]. InSec. IV this deficiency of (3.2) and (3. 3)
will be crucial in understanding why many experi-
ments that use either the Fisher or the Fisher-Bur-
ford approximate in the data analysis for determin-
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ing the exponent 7 are in serious doubt.

In Table V, row 3, we compare Xgp(y) of (3.3)
with A=1 and ¢, given by (3.6) with X,(v)/X,(0).
To within 10% accuracy, Xgg(y) reproduces X,(v)/
X,(0) for all y. To within 5% accuracy Xypg(y) is
slightly better than Ornstein-Zernike for small v,
but for large ¥ one does not obtain this accuracy
until y >138.

One can also use (3. 3) with the exactly known ¢,
to obtain estimates for the coefficients =3, of
(2.14). From (3.3) it follows that

SE =[P 2 (R 1)

x(Fer-2)ori-(Fen-n)e]. @

Using =1 and ¢, given by (3.6) we obtain from

(3. 8) the Fisher-Burford estimates for the coeffi-
cients Z;, for the two-dimensional Ising model. For
n=1,...,5 wegive the numerical value of Z)g,? in
column 3 of TableIV. These estimates should be
compared with the exact £;,incolumn 2, Table IV.

-1
D. Approximates (1+23y2-25y*)  and
(+33p" =23 425 p%)

Using the known values of Z3, 23, and Zg(see Ta-
ble IV) we compare the approximates (1 +Zj;y%
-Z;yH ™ and (1+239°
in Table V, rows 4 and 5, respectively.

E. Xoz(»)+X3)(y)

Though the contribution to X,(y) from the three-
particle cut is expressed in integral form in Ap-
pendix C, we can evaluate this integral numerically
and compare X,(y) with the sum of the Ornstein-
Zernike pole and the three-particle cut contribu-
tion, In Table V, row 6, we give this comparison.
The three dots indicate that we did not determine
this region of accuracy. One sees the rather sur-
prising result that X,(y) and Xoz(y)+ X8'(y) agree
to within 0.1% in the region y less 40, It is inter-
esting to note that X ®’(y) is only 4.6% (10.6%) of
Xoz(y) at =10 (20). We find that X®’(v) =X 4(v)
when y~ 542,

F. y~2*n approximate

=241

Since (by definition) X ,(y) approaches C;y™*" as
y—oo, there is a region of sufficiently large y
where it is possible to replace X.(y) by C;y>*".
For the two-dimensional Ising model Table V, row
7, shows that this region is for y quite large. For
example, for C;y""/* to give X.(y) to within 1% ac-
curacy y must be greater than 1170.

G. Fisher-Langer approximate

When y2*" is not a good approximation (and we
expect this to be the case for all present experi-

-3y + 2395 with X, (v)/X(0)

mental work) and y>1, we must consider correc-
tions to the leading-order term in the large-y ex-
pansion of X,(v). Fisher?® and Fisher and Langer®
have argued that for y—

X.(9)~ Coy®(Lx Coy "+ 3y, (3.9)
with « the critical exponent describing the diver-
gence of the specific heat, v is defined by (1. 3),
and C, and Cj are constants with C, being non-
negative. For the two-dimensional Ising model v
=1 and y*’¥ is replaced by Iny [see (2.10)]. The
form (3.9), which we call the Fisher-Langer ap-
proximate, has more recently been discussed by
Stell, ** by Polyakov, 3! by Fisher and Aharony,”
where the coefficients C; have been computed to
order €® using the €-expansion techniques of Wilson
and Fisher,* by Brézin, Amit, and Zinn-Justin, *
and by Brézin, Guillou, and Zinn-Justin.** Hocken
and Stell® (see also Ref. 44) show that the ratio
C;/C; is the negative of the ratio of the specific-heat
amplitudes above and below 7,. For the two-di-
mensional Ising model the third term in (2.10) is

a special case of this result.

For the two-dimensional Ising model we compare
in Table V, row 8, the Fisher-Langer approximate
(8.9) (with v=1, y*/*~1ny, and the coefficients C,,
C,, and C, given in Table I) with the exact scale
functions X,(y). For all y>5.5 the Fisher-Langer
approximate (3. 9) agrees with the exact scale func-
tions X,(y) to within an accuracy of 1%.

We plot in Fig. 4 the quantity (C, Iny+ C;)y™ to
illustrate the importance of this term relative to
the leading-order term C;y""*. We see, for ex-
ample, that at y=20 the correction terms in the
Fisher-Langer approximate are of the order of
25% of the term C;y™ "%,

In Table V, row 9, we compare the large-y ex-
pansion (2. 10) with the exact scale functions X,(v).
For all y>6, 7 the expansion (2. 10) reproduces the
exact scale functions X,(y) to within an accuracy
of 0.01%. It is interesting to compare the overlap
of the pole term (above T,) and the large-y expan-
sion (2.10).

H X3(y)

Below T, in the two-dimensional Ising model the
lowest-lying singularity is a two-particle cut. In
Table V, row 10, we compare X_(y)/X_.(0) and
X®(y)/x2(0) [see (2.6)]. To within 1% accuracy
the two-particle cut contribution to X_(y) repro-
duces X_(y) for all y=19,

I. Tarko-Fisher approximates

Tarko and Fisher® have proposed two approxi-
mates for the scale function X_(y) (and specifically
for the two-dimensional Ising model). The first
approximate is
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FIG. 4. Quantity (Cy lny +Cs)y'1, where the coefficients
C, and C; are given in Table I,

X1(9) =A[L = p+ p(L+y?/a) 2@ (3.10)
and the second approximate is
2,,2\n/2

x@(y)=4 (1+07y) (3.11)

[1 — A+ )\(1 +y2/4)1/2]2 .

In both (3.10) and (3. 11) the square-root factor

(1 +?%/4)"? is introduced to produce the known lo-
cation of the square-root branch point y=+ 27 [see
(2.6)]. In both (3.10) and (3.11) the constant A is
chosen so that X 15(0)=X_(0).

In (3.10) we determine p by requiring that the
large-y expansion of (3. 10) reproduces the leading
term of the large-y expansion of X_(y) [see (2.10)],
i.e.,

Cy=AGp)%". (3.12)

Since we know 7 and C, for the two-dimensional
Ising model we can exactly compute p,

$=0,4159906... . (3.13)

We compare in Table V, row 11, (3.10) [4=1 and
p given by (3.13)] with X_(y)/X_(0).

In the second Tarko-Fisher approximate (3.11)
¢ and X are determined by requiring that the
small-y expansion of (3.11) reproduce exactly the
coefficient =3 of (2.14), i.e.,

Ty =i A —-5nd? (3.14)

and the large-y expansion of (3.11) reproduce ex-
actly the leading-order term C,;y~"%, i.e.,

C,=A4p"/ 2, (3.15)

If we now use the exactly known values 7 =i, A
=X_(0)=0.0688655379 ..., Z;=0.0999059...,
and C;=1,07499932..., then we find that (3. 14)
and (3. 15) have no real solution. That is there are
no real values of A and ¢ given the exact informa-

tion X_(0), T3, and C, that will satisfy both (3. 14)
and (3. 15).

However, one can “almost” satisfy (3.14) and
(3.15) by taking

¢=0,20 (3.16a)

and

A=0,45 . (3.16b)

As a check on (3.16) we use these of values of X
and ¢ to predict a £;=0,0987... and C,;/X_(0)
=15.5... (as compared to 15,61020... ).

Using (3.16) in (3.11) we compute the Tarko-
Fisher approximate and compare this with X_(y).
We give the results in Table V, row 12. The
Tarko-Fisher approximate (3.11) with A=1 and the
values (3.16) reproduce X_(y)/X_(0) to within 3%
for all values of y.

We can also use (3.11) to estimate the coeffi-
cients Zj, in the expansion (2.14) of X_(y). Ex-
panding (3.11) and using n=% and the values (3.16)
we obtain the Tarko-Fisher estimates T3 for n
=2, We give Z{F and ZJ¥ in Table IV, column 5.
They compare quite well with the exact values.

Tarko and Fisher® by use of series-expansion
techniques give the estimate 2;~0.13x10%. One
sees that the series-expansion result is in consid-
erable error,

IV. CRITICAL SCATTERING AND THE EXPONENT 7

A. Scaling the experimental data

Though the scaling hypothesis®*? (1. 5) has been
known for some time, most authors'*~?® do not at-
tempt to scale their scattering data. Clearly for
T> T, and near the critical point the scattering suf-
ficiently close to the forward direction (2£<1) can
be fit by the Ornstein-Zernike pole approximation
(3.1) of (1.5). Using this three-parameter fit (the
parameters are v, £, and the normalization con-
stant %;) the correlation length &, and hence the
scale variable y=£k£, can then be determined. Once
v is determined one can then test the scaling hy-
pothesis (1.5) for larger values of y. Since the
pole term always scales, it is in the large-y re-
gion that any breakdown of scaling will occur. We
strongly recommend that all data be presented in
scale-variable and scale-function language.

B. nand

Once one has determined v (and the scale vari-
able y), then a natural candidate for the exponent
nis

n=2-vy/v. (4.1)

That is, scaling will be true if 7 as defined by (1. 9)
is such that

n=n (4.2)
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so that

y=@2-nv. (4.3)

It is instructive to compare 1 and 7 not in %
space, but rather in coordinate space. Here the
spin-spin correlation function {oyo 3 ) is expected
from the scaling hypothesis!’? to be of the form

F.(#)

(0p02) = Rz + o(R-%2m) (4. 4a)
as

R-ew, T-Tg, (4.4p)
such that

t=R/§ (4.4c)

is fixed. For the quantity 7 in (4. 4a) (d is the di-
mensionality) to be equivalent to the critical expo-
nent 7 defined by (1.9) we must have

F,(0)=F.(0)%0 . (4.5)

Statement (4. 5) is the crucial statement.

Now suppose that we examine the correlation
function away from T=T,, and scale all variables
according to (4.4c); then away from T =T, (that is,
t—=) we observe, say, that the correlation func-
tion (oy0g ) “scales” as

Fu(t)

(0p03) = R~ T o(R 'd*z'ﬁ) . (4.6)

That is, 7 is determined by scaling the correlation
function {(oyo3 ) far (£~ =) from the critical point,
To verify that F,(t) is the actual scaling function
F,(t) we must show that lim,., F,(£)20. The scal-
ing hypothesis says that this will be the case if
when we scale the correlation function {(c,03) we
include all O(1) terms [O(1) with respect to
R-¥2-1] Ag an example of how Ornstein-Zernike
fails the scaling condition (4. 5) in the two-dimen-
sional Ising model we present the following ex~
ample. Suppose that when we scale we include only
the terms of order e~ (that is, we neglect all terms
of order e, ¢t | ), Then for the two-dimen-
sional Ising model one would obtain

1
n=z,

@.7n
and for the symmetric lattice for F,(¢) the result!3
F(t)=2%8n-14 4K (1), (4.8)

where K(#) is the modified Bessel function of
zeroth order, and ¢ is given by (4.4c). Now since
Ky(t)~ - Int as ¢~ 0 we see that

lim F,(£)=0 . (4.9)
t=0

Thus if F,(¢) [as defined by (4. 8)] were the actual
F,(t) for the vso~dimensional Ising model, then the
scaling condition (4. 5) would fail. However, from
a numerical point of view how easy (or hard) is

(4.9) to see? In Fig. 5 we plot F,(#) as defined by
(4. 8) and the actual F,(#) for the two-dimensional
Ising model. One sees from Fig. 5 that F,(¢)
doesn’t “turn over” until £~0,019, and so, one has
no indication that lim,., F,(#)=0 until one is in the
range £=0,019,

As one considers the contribution to F,(¢) from
the €™, e, ... terms the position of the maximum
of F,(¢) moves toward the origin and still (4.7) and
(4.9) hold, until the infinite sum of terms gives the
correct F,(¢) with F,(0)#0.

C. Least-squares “‘experiment’

In Sec. III we discussed several phenomenologi-
cal formulas for X,(y). Here we use our six-place
values of X.(y) as “data” over various ranges of y
and try by using various phenomenological formulas
to extract the critical exponent 7. As was made
clear in Sec. III, the pole term is so dominant in
the region y<10 that one should not use data from
this region in attempting to extract 7. For in-
stance, if one uses the Fisher approximate X (y)
[see (3.2)] to fit the data in the range 0 <y <10,
then a least-squares fitting program gives n=~0.02.

In Table VI we present our results. Basically
no more need be said; however, we make a few
comments. For example, for 100 data points over
the range 20 < y< 60, Xy(v) gives 70,13 and
Xep(y) [see (3.3)] gives n=0.18. There is no real
difference between the Fisher approximate and the
y72*" approximate. The Fisher-Burford approxi-
mate fits the data quite well in the sense that the
computed values from the fitted Xy5(y) reproduce
the exact input values of X,(y) to three significant
figures. In Table V, row 13, the Fisher-Burford
approximate Xyg(y) with the values =0.175635,
$.=0.057098, and A =2.66869 [these parameters
were determined from a least-squares fit of Xzg(y)
to 100 values of X,(v) equally spaced and equally
weighted over the interval 20 <y<60] are compared

1] N T Y

| [ 1]
000! .0002 0005 00l 002 005 Ol 02 030405 | 2 345

FIG. 5. Function 7, @) =r"12%/8¢/4 K () and the scale
function F, () as functions of t=R/£,
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TABLE VI. This table gives the predicted critical exponent 7 from a least-squares fit to a phenomenological formula,
The formulas are given in the left-hand column (see text for definitions). The upper row gives the interval over which
the formula was fitted, The number of data points, which are equally spaced and equally weighted, is also given, The
second column specifies if the data are above or below T,.

(10, 30) (10, 50) (20,40) (20, 60) (20, 80) (20,100) (20,140) (20,200)
Approximate 50 points 100 points 50 points 100 points 150 points 200 points 300 points 450 points
ish X ) T>T, 0. 086* 0,094 0,123 0,131% 0.136% 0,138* 0,142% 0,144%
Fisher approx. Xe(y T<T,  0.544*  0,514% 0.441%  0,421% 0.411% 0,405 0.397% 0.392%
Fisher-Burford
approx. Xgg®) T>T, 0.143 0.154 0.168 0.176 0.180 0,184 0.188 0.191%
O 4727 T>T, 0.095% 0.102% 0.125 0.133% 0,137% 0.140% 0,143% 0,145%
1y T<T, 0.551% 0.519% 0.443% 0.423% 0,413% 0,406% 0.399% 0.393%
Fisher-Langer T>T, 0.299* 0.281 0,264 0.260 0.258 0,258 0.256 0.256
Cyy 27+ Cy(lny)y>*n T<T, 0.228 0.233 0.241 0.243 0,244 0,244 0.245 0.245
Fisher-Langer T>T, 0.256 0,253 0.2510 0.2507 0.2506 0. 2505 0.2504 0.2504
Cy ™"+ (Cylny +Cyly™*"  T<T, 0. 251 0,251 0.2501 0.2501 0.2501 0. 2501 0.2501 0, 2501
Cy 2"+ By ™A _1)/A] T<T, 0.248 0.248 0.247 0.247 0,248 0.248 0.248 0,248
T<T, 0.268 0.264 0,257 0.255 0.255 0.254 0.253 0,253
-Fish
Tarko-Fisher T<T,  0.294 0.289 0.282 0.278 0.276 0.275 0.273 0.272
X1r®)
;‘é‘;l({;'F‘Sher T<T,  0.235 0.237 0.232 0.268 0.268 0.234 0.264 0.263
TF

2Some of the fitted values differ from the input values by 1% or more.

with the exact X,(y). The fit is excellent over ex-
perimentally accessible y, but the predicted 7 is in
approximately 30% error.

The reason for these large errors is that Xy (y)
and Xyg(y) are not really valid in the range of ex-
perimentally accessible y. The “7” appearing in
these formulas is the true 7 from a least-squares-
fitting point of view only when y3*" is a good ap-
proximation. As we have discussed in Sec. III,
this is not the case in the region y<1000, Instead

TABLE VIIL,

gives the reference to this work,

one must use the Fisher-Langer approximate [see
(3.9)]. Using (3.9) with the same data over the
range 20<y<60 with y*/*~Iny and C;~ 0 we find
from a least-squares fit an 7 with only 4% error,
If we use (3.9) with v=1 and, say C,=C,, then the
fitting program gives an equally good 7 and «
=-0,069,

It should also be noted that for the second Tarko-
Fisher approximate the values of 77 are both above

and below 3. This variation is not seen in any oth-

Experimental results for the critical exponent 7, The third column
gives the phenomenological formula used in the data analysis,

The last column

System Incident beam Phenomenological formula n Ref.
DAG* neutrons Fisher approx, 0.12£0,1 14
MnF, neutrons Fisher approx. 0.05+0,02 15
‘RbMnF, neutrons Fisher approx, and %~2*" 0,055 +0, 01 16
approx,
KoNiF, neutrons Fisher-Burford approx. 0,4+0,1 17
CO, light (2 —=m)v=7 assumed 0,074 +£0, 035 18
neon neutrons £™2* approx, 0.112: 19
K,CoFy neutrons Fisher approx, 0.2+0,1 20
MnTiOg neutrons Fisher approx, 0.2+0,15 21
argon X-ray Fisher-Burford and 0.1+0,05 22
2 =n)v=v assumed
B-brass neutrons (2 ~n)v=y assumed 0.077+0, 067 23

*Dysprosium aluminum garnet,
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er approximate and is presumably related to the
fact that (3.14) and (3.15) have no real solution,

D. Experimental results for n

Many experiments!*~%® have reported measure-
ments of 7>0, and we have summarized these re-
sults in Table VII. Those experiments!®22:23 that
assume (2 - n)v=v in their analysis are clearly not
providing an independent measurement of 7. The
fact that these authors show that 2v# v is just show-
ing that 7 [see (4.1)] is not zero. The remaining
cases use either the Fisher, Fisher-Burford, or
the %" approximate in the data analysis.

The first difficulty one has in assessing these
experiments is the absence of any test to ensure
that the data used is in the critical region, that is
to say, any test to ensure that the data scales.
However, if we assume here that all data used is
in the scaling region, then the largest values of y
range up to 65.

Our least-squares experiment of Sec., IVC shows
that all of the phenomenological formulas used in
these experiments are not trustworthy in this range
of y values. Furthermore, our “data” are good to
(at least) six decimal places, we have no problems
of resolution® or inelasticity corrections, *® and
still these approximates are unable to extract the
exponent 7. Also the value % is a large number for
7,*" and thus the two-dimensional Ising model
should provide the easiest test for these phenome-
nological formulas. Thus we must conclude that
any analysis of critical scattering data that makes
use of the Fisher, Fisher-Burford, or y %*" approx-
imate must be seriously questioned when it comes
to extracting the exponent 1 from the scattering
data.

We would like to give a series of steps that we
feel will lead to an unambiguous measurement of
7 (this assumes, of course, that the resolution and
inelasticity corrections are also made). We con-
sider the case T> T,, and only at the end remark
about the case T'<T,.

(i) Data must exist in both the large- and small-
k& regions (a priovi one doesn’t know large k¢ from
small k£, but in practice, some estimate for £ is
usually available). The data in the small-%£ re-
gion in conjunction with the Ornstein-Zernike pole
approximation allows one to determine £, and
hence the scale variable y=k£, If the data are ex-
ceptionally good in the small k£ regime one might
use a truncated version of (2.14) instead of the
Ornstein-Zernike pole approximate.

(ii) Test the data to determine if it scales.

(iii) Determine the value of y at which deviations
from the Ornstein-Zernike pole first become sig-
nificant (we denote this value by vo3z).

(iv) For the data which satisfy y> 1y, (and v
> 1) use the Fisher-Langer approximate (3.9) as a

fitting function. To not have too many fitting pa-
rameters one might first set C;=0. As a check on
the Fisher-Langer approximate, the value of the
exponent a obtained from the least-squares fit
should be compared with independent measure-
ments of o,

(v) ¥ the data are good enough to have seen the
exponent @, then fixing o to the best known value
is perhaps wise. A final fit with the Fisher-Lan-
ger approximate with this fixed o then gives an
improved estimate for 1. Furthermore if the data
warrant it, one can include the C;y-'/" term to get
a better fit. This term may prove important for
small «.

(vi) The value of 7 obtained should be indepen-
dent of the cutoff yg5.

(vii) If data exist below T, then this can provide
additional checks on the Fisher-Langer approxi-
mate. For instance, the only difference in the sec-
ond term in (3.9) for above and below T, is the sign..
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APPENDIX A: SCALE VARIABLES AND SCALE
FUNCTIONS X, ()

The two-dimensional Ising model on a square
lattice is specified by the energy of interaction

&=~ E1 Zk O‘j.ko’jyk—kl_Ez Z o.j.leo'j+1,}z ) (Al)
e vk

where the first (second) index of 0;,» Specifies the
row (column) of the lattice, and 0;,=t1. In what
follows we restrict ourselves to positive E; and
E, (the ferromagnetic case).

It is useful to introduce the following notation:
If an equation number is followed by an S, such
as (A2S), that equation applies only to the sym-
metrical case E;=E,=E,

We define
zy=tanhgE, , z,=tanhgE, , (A2)

and for the symmetrical lattice

2z =2y =2, =tanhgE, (A28S)
where 8= (ks T)'. At T=T,
sinh28, E; sinh2B, E,=1 , (A3)

or equivalently
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Z1oB oo+ R+ 29, —1=0. (A4)
In particular, for the symmetric lattice,

z,=V2-1, (A48)
In the limit 7~ T}, M?+N?~ e, such that (T - T,)

X(M?+N?)!” ig fixed, then the spin-spin correlation

function (og,q0y, ) has been shown''=" to be of the
scaling form

<0'0,0 O'M,N>=R-1/4F¢(t)+ O(R—SM) s (A5)
with

t= ‘Z‘Z2+Zl+zz_1l<zz(l—z§) + 21(1—23)

M2 NZ >1/2
=|z1254 2142, = 1] [212,(1- 2 DA - 2D 'R,

(A6)
where

[(gma e sz ]
If we define
£, o= 2125+ 2142, =1 2,1 - 2H)]H/2 (A8)
and
Epo= 212042042, - 1] [2,(1-2D]12,  (A9)

it follows from the work of Cheng and Wu2® that if
£, and £, denote the exact correlation lengths
(above T,), then

lim (—‘5x-> -1, lim ( & ):1 .

T-T, Ex.c T-T, gy,c
Thus in the critical region we can write £, ~ &, .
and &,~£, .. The subscript ¢ is to remind the
reader that (A8) and (A9) are npt the exact cor-
relation lengths for all temperatures, but that
(A8) and (A9) are asymptoticalfy equal to the ex-
act correlation lengths for 7= 7,. Thus (A6) and
(A7) can be written as

) 6T

(Al0)

=R/ (&,c &, )"/ (A11)

and
() (T e

£yec e
For the symmetrical lattice we have

£e= b=y (A138)
t=R/&,, (A11S)

and
R=(M2+N®)2E (A128)

The k-dependent susceptibility x(l.;, t) is by
definition

Z Z et(k"N+k3’M)(<0'o,o°'M.N>-mi) ,

Mz==meo Nzwco
(A14)
where M ; is the spontaneous magnetization. If
we are interested in the leading divergence of
(A14) as T—T,, then as argued in Sec., VIIA of
Ref. 13 we can replace the discrete summation in
(A14) by integrals to obtain for 7- T}

F.@)

B -1X(E: T) =

8-, )~ (&, &) fo tdtf do S

Xexp(ik, &, .t coso + ik, &, . tsing) ,
(A15)
where we used (A5). The only difference between
(A15) and the case considered in Ref. 13 is the ad-
ditional exponential factor in (A15). Performing
the ¢ integration (A15) becomes

B-1X(E, T) = 27T(£x,c gy,c)’,/s J‘” dtt3/4F+(t) Jo(ty)
0
+0((&,.£,0"%) , (A16)
with
=(RAE2 4 REED DY,

which for the symmetrical lattice reduces to

(A17)

R D) =27 1% [T a0 T+ oelY
0

(A168)
and

y=k&, , (A17S)

The case below T, is similar and we obtain

k= (R2+EE)/2

gix(k, T)=21(t,,. &,.)""® j " at [£2/4F_ ()
0

— (sinh2B, E; + sinh28, E,)' /821 /%] J, (tv)
+0((,c £,,0)" %), (A18)
which for the symmetric lattice reduces to

Bx(k, 7) =27&1/*

% f ) at[t®/*F_(t) - 2878 Jy(ty) + o(£7/*) .
0

(A188S)
Thus the scale functions X,(y) are given by

X () =2n [ dttE 0 Se) (a19)
and
X.(y)=27 Lw at[t3/*F_(t) - 21/*(sinh2B, E,
+sinh2B, E )8 t] Jy (ty) (A20)

with y given by (A17) [and (A17S) for the symmetric
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lattice], and Jy(x) is the zeroth-order Bessel func-
tion. Using the fact that |Jy(x)| =1 for real x and
the fact that the factors multiplying J;(¢y) in (A19)
and (A20) are non-negative, we obtain

X,(y)=X,(0) for all real y . (A21)

APPENDIX B: X,(y) IN TERMS OF A PAINLEVE
FUNCTION

The scale functions F,(f) of (A5) may be ex-
pressed in terms of a Painlevé function (of third
kind) which we call n(p).*'='* This Painlevé func-
tion satisfies the second-order nonlinear dif-
ferential equation

TA0 L (Y ey~ 5 ()

et "~ n(e) de
(B1)
with the boundary conditions
7(8) = — 6 [In(6/4) + vz ]+ O(6° In®6) (B2)
N

X,(y)=2%* n(sinh2B, E, + sinh28, E,)*/® J'w a6 8[1-=n(8)] exp(fw dxxlnx[l—nz(x)]—h(e)> J,(26y)
0 ‘]

and

as -0, y5=0.577215665...
and

is Euler’s constant,

7(0)=1=27"1K¢(260)+ 0(™*) (B3)

as -, where Ky(v) is the zeroth-order Bessel
function of third kind. We then have!!-3

F,(1)=2""%(sinh2B, E, + sinh28, E,)* /%61/*[1 % 5(6)]

Xexp (f avxlu (1= 7] 10) ,  (B)
]
where
0=13t (B5)
and
n(8) = <0n 4772 [(1-n?? —n’z])lne. (B86)
Then using (B4) in (A19) and (A20) we obtain
(B17)

X_(y):29/4n(sinhZBcE1+sinhZ,BcEz)”sjwde 9[[1+ n(8)] exp(r dxxlnx[l—nz(x)]—h(9)>—2]J0(26y), (B8)
0 6

respectively. Equations (B7) and (B8) are exact.
From a numerical standpoint (B7) and (B8) are

most useful as we only need to solve (Bl) numerical-

1y [subject to the boundary conditions (B2) and
(B3)] and then perform two integrations (again
numerically) to obtain X,(y). In Table VIII we
give the numerical values of X,(y)/X,(0) for 0=y
=20. For y>20 the expansion (2.10) may be used
to compute X,(y).

APPENDIX C: DISPERSION REPRESENTATION FOR X, (y)

In Ref. 13 it was found useful to write F,(¢) [see
(A5)] as

F,(#) = (20) *(sinh2B,E, + sinh2B,E,) °F,(t) ,

(C1)
so that (A19) and (A20) become
X, (y) =272 4(sinh2B,E, + sinh2B,E,)!/®
xj artF, (@) Jo(ty) (€2)
o
and
X_(y)=272'4(sinh2B,E; + sinh2B,E,)'
XJ dt t{F.(1) = 1Jo(ty) (C3)_
0

[

respectively. It was found'® that F,(¢) could be
written as
F.(1)= exp (- D f‘z“’(t)> , (ca)
n=1
F)=CWF.(1), (C5)
Zg(2k+1) (C6)
2=0
with
s = rwnt [Cay e | d,
1
X H H (3,-1) (€7

(y] 1/2( +yj+1)

(¥2s1 = 1) and

22D (1) = (= l)k”-(Zkﬂ)J; dyy -+ -

J. AY2pn
1
)1/2 H(y]+y;+1 I_I(yZJ_l

(C8)

(for =0 the last two products are replaced by
unity). For ¢—co, f®(¢) and g***V(¢) behave as

2k+1

Il e
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TABLE VIII, Scale functions X,(®)/X,(0) for two-dimensional Ising model for the range 0 =y <20, The values of X,(0)
for the symmetric lattice are given in Table II,

v X, )/X,(0) X.(¥)/X.(0) Y X, (»)/X,(0) X.()/X.(0)

0.0 1.0 1.0 9.6 0,111 969%107! 0.172715

0.1 0.990107 06 0.999 00256 9.8 0.107619x10°" 0,168 097

0.2 0, 961 569 44 0.996 026 65 10,0 0.103523x101 0.163670

0.3 0.91749753 0.99112256 10,2 0.996 593 X102 0,159 421

0.4 0.862179 65 0.98437114 10.4 0,960117x1072 0,155 343

0.5 0.80016026 0.97588017 10,6 0,925 644 X102 0,151 425

0.6 0,735 50589 0.96577953 10,8 0.893024x1072 0.147 660

0.7 0.67140359 0.954.215 94 11.0 0.862129x 102 0.144039

0.8 0,61006715 0,941 34730 1.2 0. 832 836 X 10-2 0. 140 555

0.9 0,552 84210 0.927 33732 ) ° :

. . : 11.4 0.805 043 %102 0,137202

1.0 0,500 396 69 0.912 35074 11.6 0,778644% 1072 0,133973

1,2 0.410302 0, 880086 11.8 0. 753 544 X102 0,130 861

1.4 0. 338357 0,845 751 12.0 0,729 662x1072 0,127 861

1.6 0.281458 0.810373 12.2 0.706917%x1072 0.124 967

1.8 0,236 439 0,774 775 12.4 0.685245x 102 0.122175

2.0 0.200612 0,739 595 12,6 0.664577x1072 0.119480

2,2 0,171 861 0.705292 12,8 0,644 845%1072 0.116 877

;:: g: i;g ng g ?Ziiﬁg 13.0 0. 625 9971072 0.114 362

P 0.113774 0. 610265 13.2 0,607982x 1072 0,111 931

. ° ° 13.4 0.590 751 x1072 0,109 581

3.0 0.100654 0,581 622 13,6 0.574258% 1072 0.107 307

3,2 0.896222x10"1 0,554 543 13.8 0,558 460X 1072 0.105106

3.4 0,802707x107! 0. 529 002 14,0 0.543321 x1072 0,102 976

3.6 0.722838x10°1 0, 504 942 14,2 0,528 803x10"2 0.100913

3.8 0.654139%x 107! 0. 482 305 14,4 0,514 872%1072 0.989136x10™!

4,0 0.594664x101 0,461 017 14.6 0.501497x10"2 0,969 762x107!

4,2 0, 542 ssoxlo'i 0,440 999 14.8 0,488649x1072 0.950979x10"!

j:g g:ig; 33?23—1 g:iﬁi i;g 15.0 0.476 3001072 0.932 765 x 1071

L8 0. 422 180 107! 0. 387 820 15,2 0,464 424 x1072 0.915092x10"1
. . 15.4 0.452998 x10"? 0.897 941 x10"!

5.0 0.390758%x10"! 0,372140 15.6 0.441998x1072 0.881293x10"!

5.2 0,362710x107" 0,357 374 15.8 0,431404%1072 0.865123x10!

5,4 0,337574x 101 0.343453 16,0 0,421 196%102 0.849417x10"!

5.6 0.314964%x10"! 0.330321 16.2 0,411 355x10"2 0.834156x10"!

5,9 0,294 555% 1071 0,317 926 16.4 0.401 863 x1072 0.819323 %10t

vl ) 0,276 072x 1071 0,306214 16.6 0,392 704 %1072 0,804 900x 10!

6.2 0,259 281><10': 0.295141 16.8 0.383864x102 0.790874%x10°!

gjg g;gg gg:zig_, g: ggi Szg 17.0 0.375325x1072 0,777229%10°!

6.8 0. 217207 x 10°* 0. 265334 17.2 0,367 076x1072 0.763953%x10"1

. 17.4 0.359104% 102 0.751030%x10"!

7.0 0.205454% 101 0.256410 17.6 0,351 394 %1072 0.738448%x1071

7.2 0.194636x10"! 0.247938 17.8 0. 343937 %102 0.726197%101

7.4 0.184657%x107! 0,239 888 18.0 0,336 721 x1072 0.714260x101

7.6 0,175434x10! 0,232233 18,2 0.329736x10"2 0,702 634 %101

7.8 0.166891x10"! 0. 224 948 18.4 0,322972x102 0,691 301 %10t

8.0 0,158 964x10"! 0.218010 18,6 0,316 420%1072 0.680252%10"!

8.2 0,151 595><10': 0.211 397 18.8 0,310071%1072 0,669483%x107!

S:: g iggggg:ig_i g: 200 oo 19.0 0.303 915 x10™2 0.658 978 x 10™

5 8 0.152 351 x 10°t 0.193319 19.2 0.297 946 x10"2 0,648 732x 10"

9.0 0. 126 755X 10°* 0. 187823 19.4 0.292157x1072 0.638 733 x107!

9.2 0.121511 x 10°! 0. 182 566 19.6 0,286 540 X102 0.628977%107!

0.4 0.116 591 x 10°1 0. 177534 19.8 0.281 087 %102 0.619454x10"!

F@ () = (= 1)n77(25) 22730 _e_-:_nt Q- %m"l +0(t72)) gD (§) = (= 1 )eg-rt/2g3k-1/2
e -(2pe1t

ond (€9) x%ﬁ—/z—[l - 314+ 1)t v 0], (C10)
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respectively. Expanding the exponential in (C4) we
can write (C4) and (C5) as

F.()=1 ui Fe (1) (C11)
with
FE)=-7%0, (C12a)
FRW=-r20+0/20[ 2 0F, (C12b)
FOW == OW+r®@r - a/3r®er,
(C12¢)
etc., and
F.(2) =§, FERO() (C13)
with
FY (=g, (C14a)
ﬁ‘i3’(t) :g(S) ) +g(1)(t)f7£2’(t)
___g(S)(t) _g(l)(t)f(ZJ (t) , (C14b)
FP0)=g% 0 +g P (OFL (1) +gV OFP (1)
=5 @) - gD WD)+ )
{= FOD+3 20, (C14c)

etc., respectively. From (C1), (C11), and (C12)
we see that F2" (¢) behaves as 2™ as {—; simi-
larly from (C9), (C10), (C13), and (C14) it follows
that F&#*D () behaves as ¢ %Vt g5 =, Here the
term ‘“behaves as e™'” means that as ¢- « the quan-
tity is asymptotically equal to ¢™ times some
power at ¢.

Using (C11) in (C3) and (C13) in (C2) we obtain

X.(y)= wzl X&) (y) (C15)
and "
X.(y) = Zl X0 (y) 16)
where
X#r1 (y) = 272"/*(sinh2B,E; + sinh2B, E,)!/®
X fo Cat tEED (1) (ty) €17
and
X &7 (y) = 202"/*(sinh2B,E; + sinh2B,E,)Y/®
xf at LFEP (1) (1y) . (C18)

From the large-# behavior of F&1(z) [Fm (5)] it
follows that X"V (y) [X‘?"1 (y)] has singularities
at y=+(2n-1)i [+2n]. Thus from (C15) [(C16)] we
see that X,(y) [X_(y)] has singularities at + (2n—1)i
[+2#ni] for n=1, 2, 3,

From Ref. 13 we have

FO @ =1Ky1) , (C19)

where Ky(?) is the modified Bessel function. Sub-

stituting (C19) into (C17) (for #=1) we obtain

X5 (y) =25/4(sinh2B,E; +sinh2B,E,)"/8(1 + y?)
(C20)
This is the Ornstein-Zernike pole term.
Algo from Ref. 13 we have

F@ () =2 {2[K 3(1) - K4(D] - tKy (DKo(1) + SK3(0)}

X®(p) = 2°*(sinh2B,E, + sinh2B,E,)"/®r (fw dt K1) - KE(1)]d,(ty) - r dt 2K (OK(DJo(ty)
0 0

To put the integrals occurring in (C22) into a standard form we first use Nicholson’s formula

K, (2)Kf2)=2 f K, ,,(2z coshs)cosh(u £ v)s ds
0

in (C22) to obtain

X? (y) =25/*(sinh2B,E, + sinhZBcEa)”gn"(E
0

S|
T2J), cosh’s F@2,2 -0 -3 b cosh’s

where X =1%(4 cosh®s)™, Fla, b; c; 2) is the hypergeometric function of Gauss, *

2 2

® X N /A= g +1\ e A 1 A=—p+1 b2
R e L e e
0

Letting x =coshs in (C24) we obtain

IJ‘” cosh2s

(C21)
Using (C21) in (C18) [for n=1] we have
10, '
+g ) at tKA(8)To(yt)) - (C22)
o
48
(C23)
SEE;*;F(Z, 2;1;-2)
1 ds
F(2,1;1; - A)+ZL coshZs F(1,1;1; - 7\)) s (C24)
and where we used®®
bel, Aot (c25)
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: . a4 (" dx 2 =1 yz
X® (y) =2%%(sinh2B, E, + sinh2B,E,)"/°r lfx PR {[( o )F<2, 2;1; - e

1
T 242

The hypergeometric functions appearing in (C26)
are elementary.®® We have

F(1,1;1;2)=(1-2)1,
F(1,2;1;2)=(1-2)%,

and (c27)
F(2,2;1;2)=(1+2)1-2)3.

Using (C27) in (C26)

X® (y) =25/*(sinh2B, E, + sinh2B,E,)!/ & 1~

X[3, - (L+5)h+ (9D + 92k, (C28)
with
bl dx xZn
bef @ €29)

The integral (C29) is of standard form® (let x*=u)
and we have

I":‘IZ‘B(3—7L, %)F(:;) 3_"; %_n’ _%yZ) ’ (CSO)

where Blx, y) is the beta function.
show that?%

Finally one can

3Infz+ (22 +1)%] 5+22°
.3, 2\ _
FB,125-2)= 8z(1 +2%)°/2 +8(1 +22)
) 3(1 +42%) In[z + (2% +1)"/2]
N 162%(1 + 22)°/2 :
3(1 - 22%)
T1622(1 +2%)?°

5, (C3la)

F(3,2;%;

(C31b)

and

_15 In[z + (2% + 1)'/2]

64 2°(1+2%)°R
45 (1+22%)

T 64 21 +2%)? "
Using (C30) and (C31) in (C28) we obtain (upon sim-
plification) (2.6). From (2.6) we can calculate
(2.5). From (2.6) it is clear that X‘®(y) has
square-root branch points at y=+2{, There is no
logarithmic branch point in p‘® (y) since the quantity
[z +(22+1)'/?] does not vanish in the finite z plane.

In general X" (y) has square-root branch points
at y=2ni. To see this we note that from (C12) and
(C9) it follows that

I":fz")(t) NA,,e'z"'/t" (t-),

F(3,37L; -2% (82* +82%2+3)

(C31c)

(C32)

where X is a positive integer greater than or equal
to 2n, and A, is a constant. For =1, x=2, and
for =2, x=8. Then using (C32) in (C18) we con-

2 1 2
F(Z, 1;1;_:]—yj?>+4—9¢21r<1, 1;1;-%€5>]}. (C26)
I
clude that
X& (jy)~ 2'/*(sinh2B, E; + sinh2B, E,)'/®
XA, (m/n 2T (3= N (2nr -y (C33)

for y—-2x»". Thus the singularity at y=+2x¢ is a
square-root branch point. Since X#7(y) is even
the same type of singularity occurs at y=-2ni. A
similar argument shows that the singularities of
X% (y) at y=+ (2n+1) are square-root branch
points.

In Ref. 13 it is shown that we can write

ﬁian-l)(t)ZJ’ ayy -+ I AYap-1
1 1

% e-t(yl""'WZn-I)fFizn-l)(yl; Yoy o v ey y2n-l)
(C34)
and
pen= "y | aye,
A 1
% e‘t(yl*"'*”Zn)fF:z")(yn Yo v 3 Yan) 5
(C35)

where &, are functions of y; but not ¢£. In particu-
lar, from Ref. 13 [or using (C7) and (C8) in (C12)
and (C14)] we know that

FP(p) =17 pF - 1), (C36a)
2 1/2
-1
F® =91 -3( Yo )
(915 Y25 ¥s) ™ (Z-1)3%-1)
2
((y1 +92)(y2 +33)/ ’ ( )
and
¢ 2 3’%- 1\
F2 (yy, yo) =7 <yi— 1) (1 +92)2, (C37a)

2 2 1/2
) a1 -af (2= 1) (35~ 1))
F1, y25 ¥3, ¥4) =47 <~—‘“——'“—(y§ “D0E-1)

< (yz - y4)(y1 - 3’3) >2
(91 +32) (92 + 93) (v + ya) (e + 31) ) 7

(C37b)
etc. One can easily write expressions for the next

few FED and §37 by using (C7) and (C8) in (C12)
and (C14). Note that (C36b) and (C37b) are not just
simply what one obtains by substituting (C'7) and
(C8) into (C12) and (C14). Certain other simplifi-
cations have been made (see Ref. 13).

Given (C34) and (C35) we see that

XiZn-l) (y) - 2ﬂ21/4(sinh2BcE1 + SinhZBcEz)llg
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XL ay - J: dyzn-lgfizn-l)(yn ) y2n-1)
VitYatee Yo
X - (C38)
(v +yo+--- +y2n-1)2+y2J3/2

and

X8 (y) =272 4(sinh2B,E, + sinh2B,E,)"/®

Xl. dyy -+ J; Ay2,FEP 1, - -+, V)

Yi+Yot .-+ Yo

x (1 +9a+ -+ 90+ 2572 (C39)
where we made use of the definite integral
J dtt et dy(ty) = ala® +y?)"%/2 (C40)
0

The square-root branch-point structure of X"V (y)
[Xx&n(y)] is especially clear from (C38) [(C39)].
can summarize the results we have so far obtained
by (2.1)-(2. 4).

In terms of X7V (y) and X?" (y) we can write the
spectral functions p®"(y) and p'3™(y) (for y real)
as

(271 -1) (y) =i y[X(Zn-l) (Zy + 0) XiZn-l) (ly _ 0)]

(C41)
and
pM (y) =im ty[ XM (jy +0) = X" (jv - 0)] , (C42)
where
X[ (iy£0)=lim X" iy+€), € yreal. (C43)

Numerically the integrals (C38) and (C39) can be
evaluated for » small by multiple Gaussian integra-
tion. This is how we obtained X!¥(0), X{®(0), and
X®(0) in Table II. A table of values of X!¥(y)/
X{(0) is given in Table IX.

APPENDIX D: LARGE-y BEHAVIOR OF X,(y»),
X3mD(p), AND X@(y)

The large-y behavior of X,(y) is determined by
the small-£ behavior of F,(¢) [see (A19) and (A20)].
From Ref. 13 we have for ¢~ 0

F()=FO)1+2t2+&12+ 5%
rit (- P+ ) +0RY)] (D1)
with
Q=1In(t/8) +vg , (D22)
= Euler’s constant ,
F(0) = (sinh2,E, + sinh2B,E,)/® ¢! 4 21112473 | (D2b)
and
A =Glaisher’s constant=1.28242712910062... .
(D2¢)

Using (D1) in (A19) and (A20) we obtain (2. 10),

TABLE IX, This table gives the three-particle contri-

bution i.e., X8)(), to the scale function X,(y). Aty=0,
X$(0)=0,002112 4545415, ., , .

y X2 6)/xH0) v XD 0)/X2(0)
0.0 1.0 9.5 0.58210
0.5 0,996 71 10,0 0,563 54
1.0 0,98700 11.0 0.52898
1.5 0.97143 12,0 0,497 57
2.0 0.95173 13.0 0,468 99
2.5 0,928 40 14,0 0.442 93
3.0 0,902 74 15,0 0.41912
3.5 0,875 66 16,0 0,39732
4.0 0,847 87 17.0 0.37730
4.5 0.81999 18.0 0,358 89
5.0 0,792 34 19.0 0.34191
5,5 0,765 31 20.0 0,32621
6.0 0,73903 22.0 0.298 17
6.5 0,71361 24,0 0.27391
7.0 0,68918 26,0 0,252 77
7.5 0.665 80 28.0 0.234 21
8.0 0,643 41 30.0 0,21781
8.5 0,622 01 32.0 0,20324
9.0 0.601 56 34.0 0.19022

36.0 0,178 54

38.0 0,168 00

40,0 0,158 46
where

C,=F0)2"" T (%)% coss, (D3a)

1“(Q)>2

Co={ 1ty ) tang D3b

: (r(%) e (D30)
INCIAS 1y _ 1 1
Cy=—tanim F(:T [vg -21n2 + () - 47 tangn] ,
8
(D3c)
=— 4% (D3d)
1 ﬁ
C5——Z §)> tangm, (D3e)
8
1/T{E)\?
6=Z<» Y > nd7[yg - 2102 + ) — rtaniin]
8
(D3f)
-y, 3g)
(522)2[ 41n2 + 2y +20E&) - wtandr - 1], (D3h)
and

Co=— BRI +4 102 - 2v) (- $E) + 37 tangm) + ¥*(%)
- mpE) tansT + 30’ (&) - Lnt- yp +21In2 - 5],

(D3i)
where I'(x) is the gamma functionand §(x) =d InI'(x)/
dx. The numerical values of C;, ¢=1,2, ..., 9,
are given in Table I.

We can obtain the large-y behavior of X y)
and X" (y) from the small-¢ behavior of f " (¢)
and g@" 1 (¢) [see (C7) and (C8)]. In Ref. 13 it was
shown that

n-l)(
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2n
FE N~ a, In0F+0(1)  ast-0  (D4)
k=1
and
2n=1
g# (B~ Db, (npF+0(1) ast~0.  (D5)
k=1

If we now use (D4), (D5), (C12), and (C14) in (C17)
and (C18), then (2.8) and (2.9) follow. From (D4)
and (D5) one might expect the leading large-y be-
havior of X¥ (y) [X?"(y)] to be (Iny)?"1/y?
[(lny)2"/4%] instead of (2.8) [(2.9)], but a simple
computation shows that the coefficient coming from
the Fourier transform that multiplies (Iny)?""1y2
[(lny)2"y2] vanishes. We have already seen a spe-
cial case of this in X" (y) and X? (y) [for example,
F® ()~ (Int)? as £~ 0 but X2 ()~ (Iny)/y% as y— «].

where
R(y)= 2)(&2""’(31) (E2)
=
and X (%1 (y) is defined by (2.1)-(2.3). We expand
R(y) as
R(y)= jZO (- 1)/R},9% (E3)
:Z; :L: (= 1) R0 2 (E4)
or
:2 RE™D | (E5)

where RZ"" is the contribution to R
the (27— 1)th particle cut.

3; coming from
From (C38) we easily

APPENDIX E: SMALL-y PROPERTIES OF X, (y) see that
We write X,(y) as @i+ o
() RV = ]ij! RE™Y (E6)
X,(y)=2%*(sinh2B,E, + sinh2B,E,)"%(1 +y*)™ + R(y) ,
(E1) where
RV =27 2'4(sinh2B,E, + sinhZBcEz)l/Bf dy, -+ f AYan(yy + oo + 95,V RIRFED (g L) (ET)
1 1
[
We can numerically evaluate (E7) by multiple Tr=1=-8,,
Gaussian integration methods for =1 and n=2. In D P I S
Table X we give for the symmetrical lattice R{> 4 AR (E9)
and R{Y for j=1, 2, 3, 4, and 5. We now approxi- N=PBe— By—Bs+2BB - B,
t R b +
e Fay by = B =~ By + 2B,y — B~ By + B + 28,8 — 3836 + B}
R NR(3)+R(5) , (EB)
and

which gives R3; to (at least) six decimal places (see
Table III). Higher accuracy can be obtained by im-
proving our estimates for R{¥ and R{? and consid-
ering the contribution from the higher-order terms,
i.e., R;?, R;Y, etc. We should note that (B7) is
(from a numerical point of view) ill-suited to com-
pute the coefficients R3; since in (B7) the pole term
is not explicitly separated from the R(y) term.
Given the coefficients R;, we can compute the coef-
ficients T3, of (2.14). Straightforward algebra

shows that

TABLE X, Coefficients R{}’ and R}’ for j=1,2,...,5.
See Egs. (E5) and (E6).
j 1‘32(3) R(5)
1 0.189202162%x107 0.39x107°
2 0.444089652%x1076 0,5x10"12
3 0,158202249x1077 0,1x10°1
4 0,714 385994x10° 0.6x10"17
5 0,376279852x10710 0.4x1071

o= = By + B} +2B285 — 3838y + By — Buo+2BeBs
+2B48g — 38,5 - 38385+ 4838y - 3 ,
where
By = (= R3;-2)/X.(0) .

To obtain the small-y properties of X_(y) we
write

1)¥(R3; - (E10)

X.(y) =D R§;(~1)iy? (E11)
=0

and

TABLE XI. Coefficients R}’ and R{} for j=1,2,3,
and 4,
i Ry Ry
1 0, 687994 7517 x 102 0.1265%107°
2 0. 982 849 645 x103 0.8360x10™
3 0.1638082742x1073 0.9715x10°11
4 0,297 8332258 %10 0,1568x10°12
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RéﬁZlRé?"’, (E12)

where R{2" is the contribution to R§; coming from
the 2xth branch cut. From (2.2), (2.3), and (2.5)

21/ e T(i+1)

_ . . /8 7

P (sinh2B,E; +sinh2B,E,) T3
(E13c)

Thus from (E13c¢) we can write for y-0
X® (y) = (217*/67)(sinh2B,E, + sinh2 B, E,)!/®

we have
= 5@y x (1= {5y" +7y* = ghoy®+ -+ ) (E14)
P2 (y
R :J; e dy (E13a) The contribution R} is
@i+ 1)1
25/4 © (2 A)/2 R(%):_-A—R ) , El5
= (sinh2B,E; + sinh2B,E,)!/® (—yT;%)—~ dy & 2451 2 (E15)
(E13b) where
J
R3 =212'/4(sinb2B,Fy +Sinh2/3¢Ez)”af dy, - - f AysF (915 V25 3, 98) (91 + Vo + 9+ 94) 72 (E16)
1 1
I
4y . - .
and % is given by (C37b). We have numerically RéjuRa‘? +R§‘§’ , (E17)

evaluated (E16), and through (E15) the quantities
Réf.’ for j=1, 2, 8, and 4. The results (for the sym-
metric lattice) are given in Table XI.

We now make the approximation

which is accurate to six to seven places. Given the
coefficients R5; we can easily compute Z3; of (2.14).
The coefficients R5,are in Table Illand ¥;;in Table IV,
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