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ABSTRACT

In the past decade a number of authors have reported
the measurement of a non-zero value for the critical ex-
ponent N. We analyze the method of data analysis in
these critical scattering experiments and conclude that
no experiment to date unambiguously and directly estab-
lishes that N is greater than zero. We then discuss
what we feel would be an unambiguous determination of 7.
These conclusions are a result of our computation of the

-dependent susceptibility x(E,T) for the two-dimensional
Ising model in zero magnetic field. In the scalipg
Hnit ks0, £+ such that y=k¢ is fixed, y(K,T)=f" X, (¥)

+0(£Y/v)(§is the correlation length). We compare these
exact results with the various phenomenological scatter—
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ing approximates (Ornstein—Zernike, Fisher-Burford, etc.'
This comparison provides insight into those regions of
y=k{ where these approximates are applicable. Such in-
sight is important since the region of experimentally
accessible y is rather limited.

INTRODUCTION

In the past decade a great amount of work has gone
into the study of critical magnetic scattering. If the
inelasticity effects are negligible and multiple scat-
tering may be neglected, then the neugron scattering
cross sectigp is proportional to the k~dependent suscep~
tibility x(k,T), where X is the momentum traEsfer. This
is the so-called quasielastic approximation. For a
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If there were more than one length scale present in the
problem, then we would find (8) being violated. From
here on we assume N=N and no longer distinguish between
n and n.

Once one has (8) and demands that the scaling functions
connect onto (3) in the y*0 limit and onto (é)3i2 the
y+e limit, then one obtains the relationship™’”’

simple spin system the k~dependent susceptibility x(¥,T)
i{g related to the static spin-spin correlation function

<g 04>
0 ﬁ by +> 2

. 2
x(&,T) = % . R[<"o"-§ >M ] (1)

>
where M_ is the spontaneous magnetization. For k=0
s

x(ﬁ,T) reduces to the thermodynamic susceptibility x(T)
0D iti T the
As T approaches the critical temperature l.,

correlation length g(T) and the thermodynami? suscegti-
bility Xx(T) diverge and are usually parametrized by

En E(t,l 1=/ ™ (T+Té

(2-n)v=y. €))

PHENOMENOLOGICAL SCALING FUNCTIONS

We now discuss the problem of the measurement of n.
First of all, the mere definition (4) of n makes it im-
2) possible to directly measure for the simple reason that

no experiment is performed exactly at T=T . From an
experimental point of view, the definitiof (7) is more
appropriate. Thus a direct measurement of n involves
measuring cross sections for large y. If one assumes

the one-length scaling hypothesis, then small-y measure-
ments allow one to determine Y and v and by (9) to deduce
(T=TC,k*0). (%) n. Unfortunately the mathematical limit y+= in (7) can-
not be performed in the laboratory. Experimental values g_;
of y range up to 65 but perhaps 20 to 30 is more typical.
Thus one has the problem of extrapolating the data into
the regime where (7) is a valid approximation to the
scaling functions X _(y). This extrapolation involves
assuming a phenomendlogical formula for X _(y) and using
this in a least squares fitting program. ~Thus to discass
further the measurement of n we must discuss various

and B
x(1) ~ ey, /1 17T (1) 3

-3
The critical exponent n is defined by

e = . —2+n
~
x(k,T.) v Chk
One notes that the exponent 0 is defined by a property
of the system for T exactly equal to TC’ whereas Y and v

are defined by an approach to TC. In Table I se summar-

ize the experimental results for n (for magnetic rystems).
The scaling region is defined by the limit

T, k40 (5a) phenomenological approximates for Xt(y).
¢ In general X (y) are functions which depend on the
such that the scaled variable system under consideration. However, for physically
realistic systems no exact calculation of X, (y) has ever
y=kg is fixed. (5b) been carried out. Therefore the phenomenoclogical formulas

for X,(y) have been of an approximate nasuii,lgnd over
the years a large number of approximates™’ ~*% have been
proposed. The most famous of these phenomenological ap-
proximates is that of Ornstein and Zernike

4 2,3
In this_ scaling limit Kadanoff and Fisher assyme
that x(k,T) which is a function of two variables k and
T reduces to essentially a function of one variable

_ 2,-1
xn = e o™ (6) Xz (9) = %o (1+y") 10

The functions X,(y) are referred to as scaling functioms. while sque of the more recent approximates are those of

As y*=* the large-y behavior of X,(y) defines an ex- Fisher,

n - 2,-14n/2

ponent R ) X, () = ACHy) /2. (11)
-2+
X, v ey o =). ®) b
- and those of Fisher and Burford,

The one-length scaling hypothesis states that n defined' (1+¢2 Z)n/Z
by (4) and 0 defined by (7) are the same. Furthermore it ) = A _-~££L____ (129
is implicity assumed that C, is non-zero and it repro- XFB y 1+y2 .

duces the constant C; in (4Y. Thus the one-length scaling
One notes that for y»« both (11) and (12) incorporate the

that
hypothesis stftes @ expected large-y behavior (7) of X, (y). Because of this

n=nm and Cl#o- C)) the "' emerging from the least-squares fitting of these
formulas to the data is interpreted as a determination of
Table I. Experimental results for the critical ex- n. We discuss the validity of this procedure below.

ponent n determined by direct measurements of the neu-
tron scattering cross section. The last column gives
the reference to this work.

Recently Wu, McCoy, Tracy, and Barouch!9-23 have com-
puted exactly in the scaling limit the spinm-spin correla-
tion function <0y 40 N> for the two-dimensional Ising

3 b

model in zero magnetic field. It is possible therefore

System n Ref. to compare the above phenomenological approximates with

nAcz 0.1240.1 5 the exact scaling functions X, (y) for the two-dimensional

MnF2 0.05%0.02 6 Ising model. This has been done by Tracy and McCoyZI,and

in Table IT we present some of their results.

RmeF3 0.055+0.01 7

K,NiF, awx D 8 DETERMINING

KZCOFA 0.2+0.1 9 Further@ore one can ask how well do the commonly used
' phenomenological approximates extract n(n=Y% for the two-

MnTi0, 0.2£0.15 10 . dimesional Ising model) from the exact X4(y). That is to sa

we can use the exact values of X,({y) as "data" over various
ranges of y and try by using various phenomenological formu
to extract the exponent n. From Table IT we can see that
the Ornstein-Zernike pole dominates X, {y) in the region
y<10. Thus since the Ornstein-Zernike pole term has zero
n one should not use data from this region in attempting

a Dysprosium Aluminum garnet

Recent re-analysis of the data now gives the scatter-
ing cross section consistent with the Ornstein-Zernike
pole aporoximation in the range y<iQ.



Table II. This table compares the exact scaling
function X+(y) for the two-dimensional Ising model
with various approximate scaling functions. The approx-
mates XOZ(Y), XL (y), and Xpp(y) are a1l normalized to

unity at y=0, and hence, are compared with the scaling
. . T4
function X (y)/X+(0). The quantity XFL(y)—Cly [1+C2

x2ny+C )y "] is the Fisher-Langer approximate. The error
in pertent is defined as the exact value minus the approx-
mate value, divided by the exact value. The upper row
gives the error. Thus, for instance, the Ornstein-
Zernike pole approximate on(y) agrees with the exact

X+(y)/X+(O) to within 5% over the range 0fy<ll.2.

Approx. 1% 5% 10%
Xy () 0<y<4.0 O<y<11.2 O<y<21
XF(Y) 1170<y<ee 163<y<= 64<y<o
XFB(y) 0<y<4.2 0<y<15 Osy<®
1145<y<e> 138<y<o
Cly_”l' 1170<y<e 163<y<o fl4<y<o
XFL(Y) 5.hcy<eo 2.5<y<e 1. 7<y<
Xpp(¥) 8.8<y<103 0sy<310 0<y<800
with LsV?

aLeast-—squares value.

Table III. This table gives the predicted critical
exponent n from a least-squares fit to a phenomenological
formula. The formulas are given in the left~hand column.
The upper row gives the interval over which the formula
was fitted. The number of data points, which are equally
spaced and equally weighted, is also given. All data is
for T>TC. Recall n=% is the exact result.

(10,30) (20,40) (20,60)
Approx. 50 pts. 50 pts. 100 pts.
XF(y) 0.086 0.123 0.131
XFB(y) 0.143 0.168 0.176
¢y 2 0.095 0.125 0.133
Fisher-Langer
Cly—2+n+C2(kny)y_3+n 0.299 0.264 0.260
Fisher-Langer
Cly—2+n+[czlny+caly—3+n 0.256 0.2510 0.2507
Cly_2+n+By_3+n A;l 0.248 0.247 0.247

proximate X_(y) [see (11)] to fit the data in the range

0sys<10,then a least-squares fitting program gives n=0.02.
The results are presented in Table III. One notes there
is no real difference between the Fisher approximate and

-2+
the y n approximate. The Fisher-Burford approximate
fits the data quite well in the sense that the computed
values from the fitted XFB(y) reproduce the exact input

values of X+(y) to three significant figures. In Table

II, the last row, the Fisher-Burford approximate XFB(y)
with values n=0.1756, ¢C=0.057l and A=2.6687 [those para-

meters were determined from a least-squares fit of XFB(y)

to 100 values of X, (y) equally spaced and equally weighted
over the interval §O<y<60] is compared with the exact X (y).
The fit is excellent over experimentally accessible y, but
the predicted n is in approximately 307 error.

The reason for these large errors is that X_(y) and
XFB(y) are not really valid in the range of experimentally
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accessible y. The "n" appearing in these formulas is the
true n from a least-squares-fitting point of view only

=240 :
when y is a good approximation. But as can be seen
from Table II this is not the case in the region y<1000.
-2+n
When y is not a good approximation to X, (y) one
must consider the correction terms to . FisherZA and

Fisher and Langer25 have argued that for Yoo

~1/v
y

y“2+n[ltczy-(l—a)/v+c 1, 13)

+
X ~ ~
) v ¢y 3
with @ the critical exponent describing the divergence
of the specific heat. For the two-dimensional Ising

a/v
model v=1 and y / is replaced by &ny (see Ref. 21 for

the constants Cl’ CZ’ and C3). The form (13), which we

call the Fisher-Langer aggroximate, has more reiently
been discussed by Stell,?® Tracy and McCoy,20:21 geell

and Hochen,27 Fisher and Aharony,14 and Brézin,et.al.28
We now use the same "data" as above but this time we
use the Fisher-Langer approximate as the fitting function
As one sees from Table III the results are remarkably im-
proved. The experimental results listed in Table T used

e
aither the Fisher or the Fisher-Burford of the y N ap-
proximates in analyzing the data. From cur least-square
experiment we have shown that these three approximates
are not trustworthy in the present experimental range

cf y values. Furthermore, our "data" suffer no problems
of resolution or inelasticity corrections, and still
these approximates are unable to extract the exponent n.
Also the value n=Y% is a large number for 0, and thus the
two~dimensional Ising model should provide the easiest
test for these phenomenological formulas. Thus we must
conclude that any analysis of critical scattering data
that makes use of the Fisher, Fisher-Burford, or y'2+n
approximates must be sericusly questioned when it comes
to extracting the exponent n from the scattering data.
Recently Birgeneau’- has reanalyzed his neutrom scat-

tering data for KizNiFA and has concluded that his data

is consistent with the Ornstein-Zernike pole approximate
(1) in the range y$10. Basically the

pole dominates the cross-section to such an extent in th
range of experimental y that it is impossible to disting
uish between the simple Ommstein-Zernike pole appreximat
and the more mathematically complicated forms that one

expects on theoretical grounds.14’2 ’

We would like to give a series of steps that we feel
will lead to an unambiguous measurement of N (this assun
of course, that the resolution and inelasticity correcti
are also make). We consider the case T>TC, and only at
the end remark about the case T<I..

(i) Data must exist in both ghe large- and small- k
regions (a priori one doesn't know large k& from small
k£, but in practice, some estimate for £ is usually avai
able). The data in the small-k§ region in conjunction
with the Ornstein-Zernike pole approximation allows one
to determine &, and hence the scaled variable y=kE&.

(i1) Test the data to determine if it scales.

(iii) Determine the value of y at which deviations
from the Ornstein-Zernike pole first become significant
(we denote this value by yOZ)'

(iv) For data which satisfy y>yOZ (and y>>1) use the

Fisher-Langer approximate (13) as a fitting functionm.
not have too many fitting parameters one might first tr
setting C;=O. As a check on the Fisher-Langer approxim
the value of the exponent o obtained from the least-
squares fit should be compared with independent measure
ments of a.

(v) If the data are good enough to have seen the e
ponent ¢, then fixing @ to the best known value 1s perh
wise. A final fit with the Fisher-Langer approximate w
this fixed @ then gives an improved estimate for n. F
thermore if the data warrant it, one can include the C3
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term to get a better fit. This term may prove important
for small @,
(vi) The value of n obtained should be independent

of the cutoff Yoz*

(vii) 1If data exist below T, then this can provide
additional checks on the Fisher—ganger approximate. For
instance, the only difference in the second term in (13)

above and 9elow T . is the sigsgzs Férthermore, Hocken
and Stell2 and BGézin, et.al“” have shown that the ratio

+
C,/C, is the negative of the ratio of the specific-heat
ap11

amplitudes above and below TC.

SCALING FUNCTIONS for the TWO-DIMENSIONAL ISING MODEL

In conclusion we give ShS analytical results of Wu,
McCoy, Tracy, and Barouch2 =23 for the scaling functions

for the two-dimensional Ising model in zero magnetic field.

For a derivation of these results along with a discussion
of their analytic properties, the interested reader is
referred to Ref. 20-23.

x+(y)=29"‘n(sinhsczl+sinhzecrs2)1/8 Jode 8[1-n(6)]

exp (J dx x lnx[l—nz(x)]—h(e)) JO(ZGY), (14)
<]

x_(y)=29/41r (sinhZBcE1+sinh28cE2)1/8 Eee[{ 14n(9)]

©

exp I dx xenx[1-n’@)1-h(8) )-2]3 (26y), (15)
(3]

i 2
neo)= (& (&) O [(1-n2(8)) 2= (n' (6)) 21 )ense, (16)
2n(8) 4n2(6)

. 32
n(8) is a Painlevé funciton of the third kind~ and sat-
isfies the differential equation

2
—Z—e—'2‘=%(g—g)z—%+n3-—é—%% an
with the boundary conditions
n(e)= ~0lan(e/6)+y] + 0(6>2n8) (18)
as 6-0, YE=0.57721S ..+ is Euler's constant, and
n(8) = 1-2n K (28 + o(e™%) 19

as 0« where K, {(x) and Jo(x) are Bessel functions,

0
Furthermore it is knownzz’z3 that n(8) can be written

for sufficiently large 6as (6= % t)

o0

L-n(e/2) _ (2k+1)
1+n(t/2) kEO g (t), (20)
21 -ty
g CZHL) (g (Lqyk ~ (2D J“’lem . T"e—z—g
1 1 j=1 (yj—l)
(21)

2k -1 _k 2
*rr(yj+yj+l) \TT_ (yzj-l)
j=1 j=1

(for k=0 the last two products are replaced by unity).
The analytic structure of X (y) is shown in Fig. 1.
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