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We explicitly construct the one-parameter family of solutions, 7(8;v,A), that remain bounded as 8— oo
along the positive real 8 axis for the Painlevé equation of third kind

ww' =(w)P—0"lww +2v8 (w3 w) + w1,

where, a5 86—, 7 ~ 1 —AT(v+1/2)27207""!/2% ~2%, We further construct a representation for
Y(4;v,A) = —In[n(2/2,v. X)), where (1;v,A) satisfies the differential equation

Y N = (1/2)sinh(Qy) +2v ¢~ sinh(y).
The small-0 behavior of 1(8;v,)) is described for [\ <7~ ! by
n(0;v,\) ~ 2°B6°.

The parameters o and B are given as explicit functions of A and v. Finally an identity involving the
Painlevé transcendent 1(8;v,A) is proved. These results for the special case v=0 and A = 7' make rigorous
the analysis of the scaling limit of the spin-spin correlation function of the two-dimensional Ising model.

. INTRODUCTION
The Painlevé equation of the third kind is

—-—( - —w+2(aw2+ﬂ)+-yw3+%, (1.1)
where prime denotes differentiation with respect to the
variable 6 and @, B, 7, and 0 are constants. The im-
portance of (1.1) in the theory of ordinary differential
equations was first discussed by Painlevé! and later by

Gambier.?

In this paper we develop the theory for the one-pa-
rameter, bounded (as & —« along the positive real
axis), solutions of (1.1) when the constants o, 8, ¥,
and § satisfy

a(- 12+ B/ 1 =0

Under the assumption (1. 2) there is no loss in generality
if we consider in place of (1.1) the equation

(1.2)

w-;-%(w')z_% w+ 2 - 1)+w3-~—— (1.3)

where v is a constant.

If we denote by 7(8;v, A) the one-parameter family of
solutions of (1.3) that remain bounded as # approaches
infinity along the positive real axis, we shall prove

Theorem 1:; The function 7(6;v, \) satisfies (1.3) and
for sufficiently large, positive 8 and Rev> -3,
7n(0;v, 2) has the representation

1 - 71(951’, X)

— Gt:v. 2 .4
1+0(6;v,2) Gltv, M), @.42)
t=20, (1. 4b)

where
Glt;v, \) =20 Al g, L (50), (1.5)

n=0
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(1.6a)

7, exp(-ty) y-l)”
gx(f,*’)~[ & TE T (y+1 ,

and for n=>1

g2nd<t;V):(_ 1)"/ dy1 see
i

e Zmi
X d}’hd

A E%E-(——il?ﬁ (yf*'l)y]

2n n
x[}}’ (3’;’*‘3’;,1)-1] [}:11 (3’%: = 1)] .

The parameter X is subject only to the condition |al

< R{t) where R({} is the radius of convergence of {1.5)
viewed in the complex A plane. Simple bounds on R(f)
follow from the inequalities of Ref. 3, Eqs. (3.156)—
(3.159). The restriction Rev> — 3 can be lifted in (1. 6)
by first changing the contour of integration to the con-
tour ( which is the contour beginning at infinity and
looping around the branch point at y =1. The additional
factor sinm(v - 3) can be incorporated into A,

{(1.6b)

It is an important feature concerning the theory of
the function 1(8;v, ) that if we define ¥(t;v, 1) by

1) n(8;v, A) = expl- p(t;v, V)],
(ii) ¥(t;v,X) =0 as t— -+,

1=289,
(1.7)

then we have

Theorem 2: For t sufficiently large and Rev> -

d)(t; v, h): Z(;) )‘2"‘1 wiud(t; V), (1. 8)
n=
where we have
Dy (E;v) =2g,(4;0) (1.9a)
and forn=>1
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FIG. 1. Quantity B(o,v) as a function of o for various values of
v, The slope of B(o,v) at =0 is 2y + In2+ {2 +v), For v=v*

=~ (), 0245 the slope is zero. For v >v* (<v* the slope at the
origin is positive (negative), For v =0 the minimum of B{c,v)
occurs at 0=0, 23, The scale of the figure is too large to see
the B{o,v) <1 behavior for v=0, For v <0 B{o,v) vanishes at
o=1+2v,

=t Yty

y [2ﬁ1 (y ,.1) v-1/2 +2rﬁl y _1) vd/Z]
i=1 yj+1 3=t ',"1'1
(1.9b)

With 9,., =, in (1.9b). Again the restriction Re(v) > - %
can be lifted by using the contour ., To examine the
analytic properties of 7(8; v, A} and ¥{#; v, A) in the com-
plex A plane, representation (3. 38) is useful.

2 - - it exp(~ ty,)
Yonuy (t;¥) = En_:l_/ AT f AYana [l‘l —2"'_3)"‘]
1 1

As emphasized by Painlevé! the point 6 =0 plays a
unique role in the theory of the third Painlevé trans-
cendent. It is the only point in the finite 8 plane for
which a branch point or an essential singular point of a
solution of (1.1) can occur, Furthermore it has been
shown!? that if 6 =0 is an analytic point, then the solu-
tion is a meromorphic function. Thus it is important
to examine the behavior of a solution of (1. 3) in the
neighborhood of 6 =0, It is easy to demonstrate that for
t—~0 {(=26) a formal solution of (1. 3) is

w(t/2) = Bt°{1 — vB(1 - 0) 19 + By(1 + o) fi*°
+[12B2(1 ~ o) - & B1 - 0)?] 2% + 0(P)},
(1.10)

where — 1< Re0 <1 but otherwise ¢ and B are arbitrary.

In general a solution that behaves as (1.10) for ¢t ~0
will not remain bounded as f =+, When 0 <A< 7 the
bounded solution 7(¢/2;v, ) behaves as (1.10) for t—~0
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but the coefficients ¢ and B are now functions of A and
v. Using Theorem 2 we shall prove

Theovem 3: The solution n(t/2;»,)) has the small-¢
expansion (1, 10) for 0 €A < 1/7 where

o=0(A)=(2/7) arcsin(m}) (1.11)
and
B= B(U, V)
_ oot L2(1 - 0)/2) T((1+0)/2 +v) (1. 12)

r¥((1+0)/2) T(1-0)/2+v)’

where I'(x) is the gamma function.

In Fig. 1 the function B(0, v) is graphed. Using Theo-
rem 3 we can determine the small f behavior of
1{t/2;v,1) for A= 1} (see Sec. IV.1, also the case A< 0
is discussed).

We conclude our presentation of the theory of the
Painlevé transcendent 7(0;v, A) by proving a useful
identity (0 <A < 7).

Theorem 4: If we define the functions

=1t T 2 exp(-fy,)
funltiv) = — [ dyy [ dYzn [,Hi W

-1\" 1 n
x (Z=2) ——— 111 (43,-1)
(3’1 + 1) yi¥ 3’3*1]34 Y
(1.13)
with v, =y, then we have

31 +9(8;v, M)]n74/2(8;v, 1) exp [ f dx{%x'rrz(x;v, 2)
8

x {1 =12 (e;0, WP ~ (' (30, V)]

14
* Sy A, x))v}]

=exp [—ré Rz"fz,,(ze;v)] s

(1.14a)

where prime denotes differentiation with respect to x.
Using definition (1.7) of the function ¥(¢;, A) the above
identity becomes

cosh39(t;v, A) exp {% f dss [—C—iﬁ)z

¢
+ sinh®p + %—1 sinhzéqb]}z exp [— Z‘ Az"fz,,(t;l/)] )

(1.14b)

where all § functions appearing under the integral sign
are functions of s, v, and A,

Theorems 1,2,3, and 4 are proved and discussed in
Secs. I, III, IV, and V, respectively.

For the special case v=0 and A =7} these four
theorems make rigorous the analysis of the scaling
limit of the spin—spin correlation function of the two-
dimensional Ising model carried out by Wu, McCoy,
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Tracy, and Barouch.?® It is perhaps not inappropriate
to describe in some detail how the above theorems fit
into the work of Ref. 3. However it should be stressed
that the remainder of this section is irrelevant for the
mathematical discussion that follows in Secs., II-V.

If we denote by £ the correlation length [£ = £(T),
T = temperature, and £ =« as T — T% where T, is the
critical temperature] and by (oo. 004, ») the spin—spin
correlation function for the two-dimensional Ising model
on a square lattice, and if we further assume for sim-
plicity of presentation that the vertical and horizontal
interaction energies are equal, then by scaling limit we
mean that limit

E—oo, R=(M +N/?2—voo (1. 15a)
such that
t=R/t is fixed. (1. 15b)

In this limit the correlation function (o) (o, y) becomes?

<00' OUM,N> :R'1/4F*<f) +R‘5/4F1t(t) + O(R-5/4),
(1.16)

where F,(t) and Fy,(#) (these are commonly called scal-
ing functions) are functions of the single variable ¢ de-
fined by (1. 15b).

In Secs. II and IV of Ref. 3 an expansion valid for
large ¢ was developed [these results are summarized
by Egs. (2.26)—(2.30) of Ref. 3]. The expansion for
F_(f) is the right-hand side of (1.14a) of Theorem 4 (for
A =71 and »=0) times the factor (2£)!/* (sinh2B,E,

+ sinh28,E,)} ¢, The expansion for F,(t)/F_(t) is the
right-hand side of (1.5) of Theorem 1 (for v=0 and
r=7-1), These infinite series expansions are only use-
ful for large {. For small ¢ the functions gy,,,(f;¥) of
Theorem 1 behave as

Zonet (V) = Cop i (In1)2"* ¢y, (Int)2 0 = ¢

+¢y(lnf) +cy+0(1) (t—0) (1.17)

and similarly for the functions f,,(f;») of Theorem 4.

Therefore, to study the small-f behavior of F,(f) the
representation of F,(t) as an infinite series of multiple
integrals is not directly the most convenient represen-
tation. This representation of F,(f) as an infinite series
of multiple integrals can be thought of as the coordinate
space analog of the dispersion integral representation
of the two-point function. What is needed is a way to
sum up this dispersion integral representation.

In Ref. 3 this was accomplished in two ways. One
way (that of Sec. V) was to develop a separate perturba-
tion scheme valid for small {. The other method (that
of Sec. VI of Ref. 3) was to introduce an integral equa-
tion that could be solved in terms of Painlevé functions.
This approach led to the representation of F,(f) in terms
of Painlevé functions {these results are summarized
by Eq. (2.39) of Ref, 3]. In terms of Theorem 1 of this
paper F,(t)/F_(f) was shown to be the left-hand side of
(1.42) for v=0 and A=7"! and in terms of Theorem 4
F_(2) was shown to be the left-hand side of (1.14a) for
»=7-1 and v=0 times the factor (2#)!/*(sinh28,E,

+ sinh2B, E,)}/ 8. The methods used in Sec. VI of Ref. 3
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though correct are not rigorous. Theorem 1 of this pa-
per rigorously proves that the infinite series represen-
tation of F,(¢)/F_(f) is simply related to Painlevé func-
tions, and likewise Theorem 4 rigorously relates the
infinite series representation of F_(f) to Painlevé func-
tions. Stated somewhat crudely, the Painlevé trans-
cendents 1n(f;v, A) are the functions that sum the dis-
persion integral representation of the two-point func-
tions F,(t).

In light of Theorems 1 and 4 the small-¢ behavior of
F(t) follows once the small-¢ behavior of 1(t/2;0, 71
is known. To determine this behavior the analysis of
Ref. 3 had to make crucial use of the unpublished
thesis of Myers® where Painlevé functions of the third
kind arose in the study of scattering from a strip.
Though Myers’ analysis is rigorous it gives only the
small-f behavior of 9(£/2;v, 1) for the case v=0 and
A=7"1, Theorem 3 gives a direct proof (that is, the
scattering problem is avoided) of the small-f behavior
of n(t/2;v,\). Theorem 2 is essential to prove
Theorem 3.

1. THEOREM 1 AND THE FUNCTION Giz; », \)
A. Restricted Painlevé equation of third kind

The most general Painlevé equation of the third kind
is given by (1.1) where the constants o, 8, v, and &
are arbitrary. If we assume that the constants o, 8, v,
and 6 are restricted so that (1.2) is satisfied, then (1.1)
can be reduced to (1. 3). To demonstrate this we let

w(z) =An(9), (2.1)

where z denotes the independent variable in (1.1), and
A and B are constants that are to be determined. Sub-
stituting (2. 1) into (1.1) it follows that

# =Bz,

dn _1fam\* 1dp Al , B 1
a6t n\a6) “eas B 0" "AB o
yA> o 6 1
i (2.2)

This equation is of the form (1.3) if we have

cA B

*E-——AB =2v (2.33)
and

A? )

%Z—Z-W=L (2. 3b)
From (2.3b) we see A and B are given by

A2 — (_ 6/’)/)”2, B __.(__ 57)1/2. (2. 4)
In order that (2. 3a) is satisfied we demand

2u=a/(W == p/(~ )2 (2.5)

which is just (1. 2).

The condition (1.2) arises naturally in the following
context. In general if w(6) is a solution to (1.1), then
[Aw(8)]! is a solution to (1.1) with diffevent o, 8, v,
and 6 (here A is a constant). If we demand that
[Aw(0)]! is a solution for the same a, 8, v, and 5, then
A is fixed and the parameters o, B, 7, and 5 must
satisfy (1.2). From now on we discuss only (1.3).
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B. Function G(t; v, A)

As stated in the Introduction we denote by 7(6;v, 1)
the one-parameter family of bounded {as 6 —« along
the positive real 9 axis) solutions to (1.3). We associate
with 1(6;v, A) the function G(t;v, X) where
1 - 77(6: Vs }‘)

15080, %) (2. 62)

Gy, M) =
and

t=286, (2. 6b)

From (1.3) and (2. 6} it follows that G{f;v, \) satisfies
the differential equation

G”+£1 G- (1+27V) G=G"G*-2(G')* G
+% G'G+G - 27” G (2.1

where the prime denotes differentiation with respect to
the variable £.

Theorem 1 states that the one-parameter bounded
solutions to (2.7) are given by (1.5) and (1. 6). It is the
goal of this section to prove Theorem 1., The method
of proof is to substitute (1.5)—(1. 6) into (2.7) and ex-
plicitly demonstrate that this is indeed a solution.

We begin the proof of Theorem 1 by establishing some
useful identities which we state as lemmas.

C. Preliminary lemmas

Lemma 2.1: A necessary and sufficient condition that
G(t;v,A) as defined by (1.5)—(1. 6) satisfy (2.7) is for
£=0,1,2,¢°,

1 2v
& T 7 &~ (1 + T) &ornt

k=] kel-1

=2

1=0 m=0

1
{gzm[gfu-z-mm t7 83 (het-m)-

2y
- (1 + 7) g2(k-z-m)-1} Samet + 282 retemratl 82191 Bamet

- géhngImd]
(2.8)

where g,.4(t;V) are defined by (1.6} and for =0 the
right-hand side of (2. 8) is defined to be zero,

Proof: Since for £> 0 G(¢;v, ) has a finite radius of
convergence in the A plane we are allowed to equate
equal powers of X when (1.5) is substituted into (2. 7).
The precise form of the right-hand side of (2. 8) fol-
lows by simple manipulations of power series, Clearly
if (2.8} is true, then multiplication of this equation by
A4 and summing over & reproduces (2. 7).

If we define gy,,4(4;¥), n=0,1,2,++* by (1.6), then an
alternate representation of these functions for
n=1,2,*°" is

Lemma 2,2:

G (H;v) = (- 1)" f dyy*** f Y341
1

1
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i exp(-ty,) yl-1> "]

x {1 —z—"Th
[m {»5-1) (yﬁl

x |1 (9, 49,0 | (9gyama = D 11 (53,4 = 1)
i VitV Y1Yane 2 Yaja1 ’

(2.9)

where for n=1 the last product is replaced by unity.

Proof: (i) n=1 case

From (1.6) we have
et =) [Can [ [ o[ SRR
1 1 1

X(JU'1>V] yzz'l .
yj—l (3’1"‘3’2)(3’2 +3)

(2.10)

If we cyclically permute the integration variable labels
in (2.10), then we can write gy(f;v) as

, [T N N 3 exp(-fy,)
ga(t;v)=-§/ dy f dy dys [H P e 741
1 ' 1 2‘[ (55~ 1)

i=1

g (;:li) v ” :ym][(y%'l)(””‘)
+ (3% = 1)(9; +39) + (3] = 13, +93)]
(2.11)
with y, =y,.

The quantity in the second square brackets in (2, 11}
can be written as

(33 - D(y3+ ) + (3= Dy +39) + (93 = 1y, +33)
=(y; +9)(yy; = D)+ (91 +y) ¥y~ 1)
+ (3, +33) (3295 - 1), (2.12)

Using this in (2. 11) and writing the three resulting
terms as one term (again by cyclically permuting the
labels of the integration variables) we obtain

gs(t;v)=-f dy:f d3’2f dy; [131 9522%%
1 1 1

Il (yj

x yj—l) "] y193=1
y;+1 (y4+ 303, +33)

(2.13)

which is (2.9) for n=1.
(ii) n=2 case
For n=2 the part of the integrand in (1. 6b) that is

not invariant under cyclic permutations of the integra-
tion variable labels is

(¥ = 1)(¥2 - D(ys + ). (2.14)

Under the five cyclic permutations of the labels
(1,2, 3,4,5) the quantity (2.14) becomes the sum of
five terms, viz.
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(%5 = 135 ~ (35 +99) + (3 - D(5E -
+ (3% = V(9] - D3y +35) + (3E -
+ (9§ - (¥~ D(yy +5)
= (95 = sy — D5 +31) + (51~ (339, = 1D (9 +3,)
+ (93 = (3293 = I3y +93) + (3] = D(syy - D{y; + )
+ (93 = D(3435 = D34 +ys).

1)(yg + ;)
(3} - 1(y; +,)

(2.15)
This can be written more compactly as
(¥ - 1)(y} = 1)( 95 +9,) +cyclic permutations
= (3} - 1)(y5yy = 1)( y5 +y4) + cyclic permutations.
(2.18)

If (2.16) is used in (1. 6b) for n=2 we obtain (2. 93) for
n=2,

(iii) General case

We write integrand of (1, 6b) as

i exp(-ty,) [y;-1 .
[ -1 (_T_Thl) (y +1) (3’;"’5/;.1) 1]

n
X (ypna +91) 11 (38, - 1), 2.17)

where ¥;,.0=¥;. The quantity in square brackets in
(2.17) is invariant under cyclic permutations of the
integration variable labels. We claim that

n
II'I‘ (9%, — 1)( 3304 +¥4) +cyclic perm.
n
= ,l:% (935.1 = D(¥192ne1 = (Yzng +¥4) +cyclic perm.

(2.18)

From (2. 18) the result (2.9) follows. To demonstrate
(2. 18) we first examine that piece of the left-hand side
of (2.18) which is of degree (2n+1). There are 2(2n +1)
such terms and they are of the form

Y393 e+ 2 32, Vonay + 333 ¢ * 233, v, + cyclic perm, (2.19)
‘This can be rewritten as
Y38 0 2 Yhnay 31 T 9193 ¢ * 930t Yanay + cyclic perm.

= 939%* ¢ * Y3nat Y1V2ne1 (91 + V2nug) +cyclic perm.  (2.20)

Now consider the terms of (2.18) that are of degree
2n ~ 1, These terms arise by replacing some y%, in
(2.19) by - 1 or y¥;,,4 by — 1. This can be done at »
places, Thus the second term of the left-hand side of
(2.18) is

= (b 3hna Vonaa 31+ 9392 o < Vhns V3nt Vamer Yy o 0

+ v} yhs 95 ¢ 9Enut)(Vpms +39)
+cyclic perm.

(2.21)

If one compares (2.20) and (2. 21) with the right-hand
side of (2.18), then one sees both of these terms are
present. The third term comes from leaving out an ad-
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ditional y3, 4 Or ¥{¥s,.4, a term which is again clearly
present on the right-hand side of (2. 18). Continuing so,
we see that the lemma is proved.

Our final lemma is

Lemma 2. 3:

1 2v
(V) + 7 &l (t;v) - (1 + T) gnat;V)

—a(= 1) f P f B

1 1
e+ exp(-ty v
x[m (y 2--1)”2 (y,+1)]

2
X [}31 (y; +J’M)'i] (3’13’2;,.1‘ 1) ,I:[z (J’%M -1)
k=1 Ral-1

xlz:% EO (yuox+yzx~z)(3’n.zm+y2k.1-zm)
{2.22)

with £=1,2,3,+++ and IT) ;(},., - 1) is defined to be
unity for k=1,

Proof: For notational convenience we denote by L,
the differential operator

_d [ 1d 2v)
Ly=gn+ig- (“1 .

From Lemma 2.2 we have

(2.23)

L, gpa(t;v)
=(- l)kf dy1"'f Y24
1 1
2k+1 exp(_ ty ) 1 2
X I;Il (YJ _ 1) (y F1 =1 (yj +yjd) (yiyud "1)

®
X Ez (J’%:-l -1) [(yl + g+t Yo

1 2v
- ;(3’1"‘3’2*'”'*'3’2».1)‘ (“‘T)] .

We now proceed to integrate by parts the 1/ terms in
(2.24), We first note the following identities:

2. 24)

+2v ~1\*
. Y214 ) d
(9254~ 1) (yzm +1 Y24t

1 ~1\*
= T 2 _1]
a [W (y2,_1+1) (9341=1)

(2. 25a)
and
Yo; = 2V y“-l)" d
(»,-1 (yu+1 Y2
1 Yas— 1) v]
=-d . (2. 25h)
[(3’31"1)”2 (J’21+1

We write the 1/¢ terms in the integrand of (2.24) as
1 1 1 1
—;(3’1‘*‘21’)—;(}’2-2”)—;(}’3‘*‘21')- —?(yz,m+2v).

(2.286)
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The 1/¢ part of (2.24) in view of (2, 26) is a sum of

2k +1 terms. Each term is a (2k+ 1)-dimensional in~-
tegral, We integrate by parts a single integral of each
of these multidimensional integrals. The term we
choose to integrate by parts is the term with the struc-
ture of (2.25), We integrate the factors according to

(2. 25) and differentiate the remaining multiplicative
factors. The differentiation creates terms of two
classes. One class of terms will not contain a 1/¢ factor
(these terms come from differentiating the exponential
factor which brings down a ¢ factor canceling the 1/¢
factor in front) and the other class will contain an over-
all 1/ factor. We denote by [L, g,,,4(£;»)); that part of
(2. 24) which upon integration by parts in the above de-
scribed manner containg no 1/f factors, and by

(L, g30ss(#;)]; the part that contains the 1/¢ factor. Thus
we have

L, oz v = [Lv B2req {t;v) ]1 + [L, St V)}z .

We have, carrying out this integration by parts (all
boundary terms vanish),

[Lv g2k+1 (ty V)]1

=(- l)kf dyx"’f AY2pu
1

1

2.27)

2ke] exp(_ ty ) Y, - 1\ ¥ 2k 4
Uy 4 (y—’——ﬁl) T (s + 35007913200 = 1)

X{(yy+3+  + ) - (3= 1) = (3}~ 1)~ + -+
= (P =D+ W=D+ (9] =1+ oo+ (¥h~-1) -1}
@.28)

The last factor in (2.28) can be combined to obtain

[Lv 2rei (t; V)]i

=2('1)k‘/‘ dy,'“f dYapn
1

1
- v 2k
(exz—(lfym (y +1) {I(yx*'i"m)"(yiyzm -1

xt-o [e (yu-zm"'yzk-zmq)(}'zm+yzm)

2k¢1

lti

(2.29)

Comparing (2.27) and (2. 29) with (2. 22) we see that to
prove this lemma we must establish

[Lugzm ;) =0. (2.30)
We have from the integration by parts
[Lu 4TI (t; v) ]2
1 - -
= ? (_ )ﬁ f dy1 sese [ dyZlHl
1
”" eXp(— ty,) )
e i s 2 (a1 g o
R
- -1
.E; dj! (yZJ 1)] [}I:I‘ (yj"'yjq)
L]
X Yars1¥1 ~ 1)}—12 (yﬁ,-t - 1)] . ( )
N 2,31
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Performing the indicated differentiations
(L, 2234 (t;»)); becomes

[Lv g2k~$(t; V) ]2

1 -
7(-”"/ dyx“'f dyea

i 1

Zhi

exp(- ty,) v
m( -1 (y +1) 4a1

I} (v, + Vet -

2oy
X J1'12 (934 = D(Popy 31~ 1) {Z—Z (93,4 1)

1 1 2954, ]
- - + -~y
[ Yozt Vg2 Yos ¥ ¥2ye Yz —1
1 Y
IO SIS D
(v [ Pty Vapa¥i -1 (Y- 1)

1 Y1 ; [ 2
x [- + =3 {2y, - (3, - 1)
[ Yt Yoot Va1 1] lz':‘ yas = (92

xf—L 4 1 )] :
Yogt T2y Yo T V2sm
(2.32)

We now claim that the term inside the curly brackets in
(2. 32) is zero. To see this we group the terms in (2.32)
with common denominators. Thus the sum of terms that
have the denominator (y; +y,) is

y:iyz [—(y¥—1)+<y§—1)] =3~ 94 (2.33a)
and similarly for the other denominator factors:
5,:11'3_,2:; [‘ (¥s3= 1) + 9, - 1] =325 = 24015
(2. 33b)
— [‘ (31— D +3352- 1] =Yag.2 ~ Yase1»
Y2se1F Y2y
(2.33c)
and
1 [— CC VD VR A 1] =Yor = Yarete
Yan + Varet

(2.33d)

As a result of this combination we see that the term in
curly brackets in (2. 32) becomes

kay
Vo=t 2y (9= 9p00) + Z) (92502 = Y250) + on = Yant

k-i
g (V5= 1) +94(94, - 1
+' *
+ZZ;J’2M—22372 [yk (-1 y(lyk )]:
Y1Y2re ~

a quantity which is identically zero. Hence (2. 30) fol-
lows and thus the lemma is proved.
D.Casesk=0,k=1,k=2

The problem is to show that (2. 8) holds for all £ For
k=0 (2. 8) reduces to showing

L, gy(;v) =0, (2.34)
where L, is given by (2. 23). That is we want to
demonstrate
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/’ dy exp(-ty) (i’_:_-_%)v[yz_%y_ (1+2tv)] 0.

(2.35)

This clearly follows by using (2. 252a) in the integration
by parts of the 1/t term. This result is well known.

For k=1 (2, 8) reduces to showing

L, gs(t;v) =2g4(gy - gf). (2. 36)
From Lemma 2.3 we see that
Lpga(t;v)=—2f d%[ dyz/ dys
1
) sty (-1 ]
x| 1 e -1),
[m (5] - 1172 (y 71) } (s
2.37)

Using the definition (1. 8a) of gy(¢;v) we see that the
right-hand side of (2.36) is precisely (2.37). Hence
(2.8) is true for B=1.

The case k=2 is somewhat more involved. This case
along with =3 must have separate proofs from the
case of arbitrary k (= 4) as for k<3 the structure of
{2.8) is lacking certain complexities that are present
in the general case. This will become apparent as we
proceed into the proof.

However certain general comments concerning (2. 8)
can be made at this point, To prove (2.8) we have found
it necessary to put the integrands of the integral repre-
sentations of the terms appearing in (2. 8) into such a
form that the integrands contain the same number of
denominator factors. By use of Lemma 2.3 we see that
L, g3:.4(f;v) has 2k — 2 denominator factors in the inte-
grand of its integral representation. This same nhumber
of denominator factors occurs in the term

e
2 gm-m-n-i[gzm Lamit — 8314 gzmd]

=0 msl

which appears in (2.8). However the term

xez.;; Relag
L m@q &r141 BomniLo £2 reme1yo
which also appears in {2.8) has only 2k - 4 denominator
factors in its integral representation (apply Lemma 2.3
t0 L, £3(kumog3g 04 use the definitions of gy;,q and gym.).
Thus instead of (2. 8) we will prove the equivalent
identity
kel Rejmq

ngde(t;V) -2 g mzo g2(k-m-t)-'l[g2 141 82m+1 — géld g{md]

Bei Relei
=E ZO g2101g2m+1Lug2(k-m-x)-‘l'

=0 M=

{2. 38}

The key to proving (2. 38) will be to write the left-hand
side of (2.38) in a form that contains only 2% - 4 denomi-
nator factors of the type (y,+%;,4). Once this is done
the two sides of (2.38) can be successfully compared,
The remainder of this section is the proof of (2.38) for
k=2,
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Using Lemma 2.2 0T 5,4, 8zmet &334t 200 ey,
Lemma 2.3 for L, gy.4, and the definition (1. 6) for

Satram-1~4 We can write the left-hand side of {2.38)
for k=2 as

1 1.
Lg -2 Z—E Z-)o gz(z.m-nq[gzm Lamel ~ 1144 gﬁ,,.,,]

zzf”dyi"'f dys 11 exp(=ty,) (2,__1)"
1

/ Y -1 y;+1

4
xlni (y, +yj+1).l 15(3/1, very 3’5),

(2.39)
where
Ls(gyevey¥5)
= (31 + 93+ y)(yyy5 ~ (¥~ 1) ~ (535~ 1)
X[py(ys + 95 +35) = 1]+ (35 + 99y +95)
*[(y495 - (35 = 1) = (ygyy = DU +3, +35) 35 - 11],
(2. 40)

where we used the labeling 1,2,...,2l +1 for g,,.4;
21+2, 21+3,...,2(k~m) for gy iom-y; and
2(k=m)+1,...,2k+1 for go,.q. We note that the [ =0,
m =0 term is zero, In this expression for /; we use
the identities

(9135 = (33 = 1) = (3393 = D{yg + 3, +y3) 95~ 1]
= (9195 = D sl (y; +35) = (35 +3))

= (y133 - D ys{ys +y3) (2. 41a)
and
(9995 = D3 = 1) = (ysy5 - DUy + 94 +5) vy~ 1]
= (9195 =~ D ysl(v3+ 35 ~ (3 +95)]
~ (335 ~ D yy(¥3+3,) (2. 41b)

to rewrite /4 so that (2.39) becomes [note that by (2.41)
we have factored out one denominator term]

1 4.
L,g5-2 g g, gz(z.m-n-t[gzmgzmq -gixdg§m.1]

1

{(3’1}’5'1) Yy Y3 Yy Y3
Yatys Ystyse ity Vet
_nlyws=1) (o=
Yyt Y5 Y1ty
(2.42)

In the last two terms we make the change of variables
9y ¥ and y; « y;5, respectively. Then (2.42) becomes

) BY 4
4 '
?Jo g2(2-m-l)-1[g21+1 Bame — 8214 g2m1]

dy,""/ d)’s"(x?.(;) )(y,+1)
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(5= [_ ysyin

® ° g ex (—t
1 1

S
y2+33

-1\"*
X (%:—;1) (9195~ 1).

(2.43)

A few words are in order to explain this last step.
Suppose we have

=[ndy1[mdyz y _Z—‘ﬁTexpﬁfy) (

) (%5)-

(2. 44)

1= (

Making the change of variables y; ¢ ¥, in (2. 44), adding
this to (2. 44) and dividing by two we find

[T " b expl=ty) ( )"
=3 d. —T——fﬁ
k 2.[ dy,[ yzm( -1) y;+1

The result (2.45) was used in the last step of (2. 43).
We now compare (2. 43) with the right~hand side of
(2. 38). We have [recall (2. 34)]

1 1l

lZ(>J Eo &2141 &amet Ly L32me21 =g% L, g;.
= msz!

(2. 45)

(2. 46)

Using (2. 37) for L, g; and (1, 6a) for g; we conclude that
(2. 46) is exactly (2.43). Thus (2. 8) is true for 2=2.

E. Integral representation of (2.38) for general &

Before we proceed to the case #=3, we derive an
integral representation for the left-hand side of (2. 38)
for general k. If we use Lemma 2.2 {or g7, Smi»
84144, and g4,.4, Lemma 2,3 for L, g5,,4, and definition
(1. 6b) for gy(,m.py-1 and use the labeling 1,2,...,2/+1
for gyya; 20+2,21+3,...,2(k - m) fOr gy(x1om-1» and
2(k-m)+1,...,2k+1 for g,.,, we find that the left-
hand side of (2. 38) can be written as

kel kepei
Ly Zrkey — 2 é% 2—:/0 82aemey-t] Gimet B2101 = Eme1 &h101]

*© b 2k¢1 exp(—
=2(- 1) f dyg+e f @Ygneg 11 P‘ f,

s (-1t
1 1

< Y, - 1\ ¥ ﬁ + )-l
—L“—yl 71 4 (y, Vit Lowa( P15« - ,J’zm)
(2.47)

with /g, given by
®

k=1
I
Lop= 2 (3 +92.)(Yapam +J’2k-2m~1) =2 (y%ni-i -1)
mai nqtkem+y

% {(yiyzm - D(¥3pam1— 1) = (Y2801 Yageamer — 1)

Zm kai
x (3’1 "2230 Varo1m, ™ 1)} + lzf (Y2101 + Y2302) (2n + Yopay)

k

X n;u#:: (y2n 4-1) {(3’13’2»1— 1)(37”.1- 1)
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2141
- (95— 1) (yzm Z y,,3—1)}
n3=1

hef kelef
+x§ 25 {200+ Y2102) (Fonezm + Voncames)

meq

kR
"1112 (y%n1-1 -1) {(J}ﬂ?zm -1D(3,,4-1)
niﬂd, Ram+i

X (¥eamt = D = (39211 = D PorarVaregazm = 1)
21+ 2m
X -
('%‘)1 yn3 n?ﬂ kati-nz 1)} .

As in the k=2 case, the =0, m =0 term canceled.

The first term in (2. 48) (the term involving the sum
*1) is the =0, m+0 terms of (2. 38); the second term

in (2.48) (the term involving the sum 3%}) is the [ #0,

m =0 terms of (2,38); and the third term which involves

the double sum is the #0, m #0 termsg of (2.38). We

write the first term in curly brackets in (2. 48) as

(2.48)

(912001 — 1)(3’%;,.2»;.1 = 1) = (92041 202me1 — 1)
m
X (yi 2 Youeteny — 1)
n2=0
= (9192001 = 1) Yonczme1 ( Vorazmat — Voet)

m
-N "Z/: y2k+1-n2(y2k-2m¢1y2kd -1
o=

Imaq

2m
= (yika-oi ~1) V2ru2meq ( Z y2k+1-n2 - E kao]mz)
ng=l ny=(

2m

- y1(y2k-2m1y2k+1 -1 '?:11 YVaorston,
o=

2m=1

== ka-2m+1(yly2k+1 - 1) E kaﬂ.nz
n2=0

2m

(1= Ymnama) T Sraetemy (2.49)
-

the second term in curly brackets as

219
(¥1¥2001 = D(¥5101 = 1) = (995304 = 1) (yzm E { Yng= 1)

214
=921 (Y1Vape1 = V(Y211 — ¥4) = Yaray ("32__2 yn3) (919254 -1)

21%

="y2h1(y1y2k+1—1) E yn3 y2k-1 y2l+1) "3222 yn3;

(2.50)
and the third term in curly brackets as
(J’ﬂ’qu - 1)(}’%14 - 1)(y%k-2m+i -1 = (39954 -1)
21+ m
X Yare1Yorstam = 1) ":L;li Vng "2230 Yanetony = 1)
== (9192001 = V92101 (Pnczmes = (95 = ¥239)
+ Voneamet (Y3101 = 1) (Vorat = Vorezmer)
+ Y211 Y202met( 94 = J’zm)(:\’zm - kao2mo1)]
McCoy, Tracy, and Wu 1065
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= (919210 = D YorsrYanaamey = 1)
214

2m
X [yi Z y?k*i-nz+y2k+1 E yn3
n2=1 n3=2
214 2m
+ E yn3 Z: y2lz+1-n2] »
n3=2 n2=1
so that /,,,, becomes
L‘lkd
k=1 k
=’§1 (31 + 920 Vap2m + Voneamey) "22 (J’%nt.i— 1)
ng#e=m+i

x [— Yoramat(¥1Y2m1— 1)

Zmat 2m
x "Eo Yoreteny T (¥4~ Vanamet) "z-)i V2retang
-

P "
+ z.:/ (V2101 + Y2102) (Y2n + Vareg) ngz <y%nl-1 -1)
n.‘ﬂd

2 25
x [- Y2ra(1¥ant = 1) T Iy + (Gawer = y2set) 2 y,3]
n3= 4=

k=1 Relai
- (92109 + 92102) (Vopzm + Vonaamet)
1= m=1
k
X "{12 (y%ni-i -1) {(3’13’21“1 -1

ny #them+l, 141

X [th*i(y%k-zmq ~ D91 = ¥2501) + Yorami (¥ - 1)
X (Yanat = Vonazmet) T V2101 V2002mei ( V5 ~ Y211

X (Yopay ~ yznq.zm)] +(¥1¥Y2101 1)(y2k+1y2k-2m*1 ~-1)

> 5
x +
[yi noh kad-nZ YVareg H3Z=:2 yn3

2144 m
+ E yn3 Z kad-nz]} .

n3=2 n2=1
(2.51)

Frequently when working with the quantity /,,,, we
will perform operations upon /,,; (for instance, sym-
metrizing the integration variable labels) that leave the
value of the right-hand side of (2. 47) unchanged. Under
these circumstances we will use the symbol “=” to
mean that /5, as given above and the right-hand side
of the equation have identical values when substifuted
into (2. 47). From the context of the equation it will be
clear when we are using this meaning of “=".

F. Graphs and L

It is convenient to develop a graphical representation
of the various terms that occur in /,,,4. The basic
factor appearing in (2. 47) is the quantity

2k + 1

22
Lown(31s -+ o s Yopa) LI‘ (, +ym)". (2.52)

We can represent all such terms by the following rules:

(1) 1% (y, +9,.1)"! is represented by a straight line
with 2k +1 points [see Fig. 2(a)].
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(2) (9, +9;4) M55, (9, + 9,40 is represented by a
straight line with 22+ 1 points and one additional line
connecting the points j and j+1 [see Fig. 2(b)).

2
(3) (y2-1) H,:, (¥, +9,.0) is represented by a
straight line with 2k + 1 points and a circle centered
about the jth point [see Fig. 2(c)].

4) y, e (y, +y,4)7! is represented by a straight
line with 2k + 1 points and a “X” through the jth point
[see Fig, 2(d)].

(5) Suppose we have a term /’ which is a part of
Lopsy. The order of [’ is 2k +1 and by the graph of [’
we mean the graph of the integrand

2%
L’El (35 %950

as constructed in accordance with rules (1)—(4).

Sometimes we wish to multiply some integrand factor
[’ by the factor /”. If [/ is a single graph, the product
will be in general many graphs. To illustrate this multi-
plication of the graph /’ by some other factor /” we
draw the graph of // and merely place /* to the extreme
left, Of course, we may also explicitly draw all the
graphs corresponding to /’/” in accordance with rules
(1)—@).

G.Case k=3

For k=3 we write
(2.53)

where from (2.51) it follows that
£4(0,0)=0,
L1400, 1) = (g + 9 )(ys +35)(¥3 - 1)
X[~ 95 (3497 = (36 + 97} + (91~ 95) (95 +95)],
L400,2) = (3; + 903, + ¥3) (32 = D= p5( 3,97~ 1)
X(¥7+ 6+ 5+ 39 + (31— 93) (¥ + 35+ 34 +35)],
L1(1,0) = (33 +y)(yg + ) (¥t - 1)
X[~ 933997 = D(3g +532) + (97~ y:)(9; +33)],
L1(2,0)=(y5 +36)(36 + y)(3} - DI=35(py3;~ 1)
Xy + 92 + 93+ 30) + (31 = 5) (92 + 33+ 34 + 35,

2 .
-_— I (y"* yi..,l)

{a)

[ 2 3 4 5 62k 2k 2k+) Joi
- N o — " 4y s 1))
Y TR e 2 ke (ylﬂ“lﬂ’gf.”n"’#"
13
—— s - — — 2. Ay )]
©  TETE AT Tk 2k O ”,-ﬁ.";*'n*l’

2
e e e e e T (yebyie )
@ IR T R e YTk 0y
FIG, 2. (a) Graphical representation of [1%%(y; +y5.4)"L.
(b) Graphical representation of (y 4+ L) 3 NIRRT R
(c) Graphical representation of (y5—1 [y, +y3,9). (d) Graph-
ical representation of y JB(y; +y;, 0,
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-( yly7-|) Q_Q_Q_—Q

Lo 24 56 7
YT e 5 7

o N R e
Yr¥ 3 4 6 7

L1, == (93 + )35 + s H(y397 - V(38 - 1)
X (91 = y3) +35(35 = Dy = 35) + y595(y1 = )
X (37 = 95)]+ (3193 = V(3795 = Dl 94(y5 +5)
+ 33y +95) + (v + )y + 35) I}

) FIG. 3, (2) Graph of £4(0,1)

as defined by (2.54). (b} Graph
of / 4(1,0) as defined by
(2.54).

{2.54)

The graphs of /;(0,1) and /(1, 0) are given in Fig.

3(a) and Fig. 3(b), respectively. From the graphs it

is clear that /,(0,1) and / (1, 0) are equal [in the sense
of “=" following (2.51)].

[ (0, 1) consists of two terms as illustrated in Fig.
3(a), If we let 1 + 5 in the second term, the integrand
is antisymmetric and thus when integrated gives zero,
Hence

L0, 1) == (31 + 32X, + ¥:) (33 = D5 (9197 = Vg +37)
(2.55)

and similarly (1 < 3)

L7(1,0) == (95 + y)(ys + 3033 = 1) 35(y37 = Dy +3,).
(2.56)

Both (2.55) and (2. 56) can be reduced further. This
reduction is essentially the same as that of (2. 44) and
(2. 45) [in (2.55) symmetrize 5 < 6 and in (2.56) sym-
metrize 2 ¢ 3]. Thus /,(0,1) and /{1, 0) become

[(0,1) =~ %(yﬂ"{ ~ (g + 92 (g + y5)(y5 + v5)

X(yg+y)(y3-1) (2.57)
and
L1(1,0)= - 3{y3y; = V{31 +32) (32 + y:H{v3 +34)
X (g +y)(yE - 1), (2.58)

respectively. The graph of /,(0,1) is displayed in
Fig. 4.

We now examine the term /;(0,2). There are four

basic terms in /;(0,2) and these are displayed in Fig. 5.

The second graph has the reduction
= (397 = (34 + 32032 +93) 9394 +95) (95 - 1)
= = ${yyr— Wy + 3032 + 933 + 33, + 95 (35 - 1)
(2.59)

which is obtained by symmetrizing the y; variable

(3 <+ 4). This reduction always occurs when the graph
is of the type Fig. 5(b). The general structure required
for this reduction is shown in Fig. 6. The third graph
of /,(0,2) [Fig. 5(c)] gives zero weight to the integral

]

Ly e

T T s e 7 FIG. 4, Quantity (2. 57).
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Al R
RIS S
A I IR S
R s S

FIG. 5. Graph of /[ 4(0,2) as
defined by (2, 54),

(2. 47) since the integrand is antisymmetric under the
interchange 1 <3, Thus / (0, 2) becomes
L400,2) == (3397 = D(y1 +9)(y2 +33) y3(} = V(95 +97)
= 2(ywr= D9+ 9032 +33) (33 + 34)
X (94 +3:) (93 = D+ (31 - 9:)ys +3,)

X (y2 +93)(¥E = 1)( 5 + 9g)- (2. 60)

This reduced form for /,{0,2) is shown in Fig. 7. The
second term in (2. 60) [Fig. 7(b)] has the correct num-
ber of factored denominators (in a graph this always
corresponds to four loops).

A similar reduction for /;(2, 0) gives

L1442, 0) = (95 + 36) (35 + ) (9] = D= p5(v49: ~ 1y + )
= 33197 = D3y +95) (93 +34) + (37~ 95) (¥ + y3)).
(2.61)

The graph of {2, 61) is shown in Fig. 8 and should be
compared with Fig. 7.

From {2.54) we can write [,(1,1) as
L1, 1) == (y3+ 9 )pq + ysH(yy: ~ DI V395(3y ~ ¥3)(y7 = ¥5)
+ (98 = D393+ 92) + (55 - 1) p5( 97 + )]
+ (3 + ¥l yi(y195 - D(psy - 1)
= y3(yy7 = D(9E = DI+ (35 + 9g)
X[ 91(v19s = V3597 = 1) = y5( 3397 - D53~ 1]
+(99¥3 = (537 = Dz +93) (95 + 30}

(2. 62)
We now use the identities
yam(}‘ﬂ’zm - 1)(y2k-2mdy2k+1 -1)
- y‘llq(ygk-bnd SR EARESY
= (Yiretzm = D(F2101 = Vane1) + Vone1V2neamey
X (192100 = (Y2501 = Vap2mat)
(2.63)

and
Y1{31Y214 = D(Maamu¥arg - 1)
- y2k-2moi(y%ld - (91904 - 1)

- O\ = X

FIG. 6, General reduction formula. See discussjon following
(2.59).
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@ -~y N Y e LD
b - gy, IQQQQ___.

(© (y - Qﬁl_._gl__
¢ VT3 S e

FIG. 7. Quantity (2, 60),

= (y%m = D(Yapamet ~ ¥1)
+ 35320491 ~ Vor ) (V2naamaVarag — 1)

for k=3, I=1, and m =1 in (2. 62). The second and
third terms multiplying the factor (yyy, - 1) can be
further reduced (these terms are of the general struc-
ture of Fig. 6). Carrying this out we can write /,(1,1)
as

L1(1,1) == (y3+ 33 + 9:) (997 = Dl vgps(v; = 3) (97 = v5)
+3(yg + 320 (92 + 93035 = V) + 5095+ ye) (g +37)
X (9§ = DI+ (3 + 3 (vE = Dyy - 97)
+ 9597913 = D7 = y5)]+ (35 +3¢)
) {98 = D5 ~ v} + 9193034 = y3) (3537 - 1)]
+(yyy3 = D(ysr = D3, +35) (35 +99)]

(2. 64)
We now examine the term
Y1Vl ¥3 + 90 (va + 95) ¥avs(v1 = 3} (7 = v5)
= (93 + 94 +95) 9193959, L (31 +32)
= (3, + 331+ 96) — (5 + ¥5)] (2. 65)

occurring in /;(1,1). We draw the graph of (2. 65) in
Fig. 9. The first term cancels the second and third
term, the fourth (let 5—7 and 7—5 in the first and

third graphs).

We now combine the terms /;(0,2), /,(2,0), and
£4(1,1). One way to create denominator factors from a
term like (y, - y,) is to write this as (v, +¥,,)
= (¥ T ¥50) + 2o *— (¥pg + ¥,). This identity has been
extensively used already. However there are terms
where this is of no use. For instance in (2. 60) for
£7(0,2) there occurs the term (y; —y;). If we were to
rewrite this as (yy +3,) — (¥, + ;) we would introduce
the factors (y; +¥,)* and (¥, +y;)*. We do not want terms
of this form. Such a problem term occurs in (2. 61) for
£1(2,0) [the (y; - ys) term] and two such terms in (2. 64).
We combine these terms:

Jr= (1= 93 (¥4 + 903y + 93095 +ye) (35 = 1)
+ (7= 95) (93 + v3)(v5 + ) (g +y7)(y§ -1)
= (93= 932 + 92093 + 93y + 95 (9% = 1)

= (5 = v ) (v3+ 3 (v +95) (35 + ve)(¥E - 1). (2.66)

~lyy2-1) Q_e.____)m

FIG. 8. Quantity (2,61),

'Jf(y"f')l 2 3 45 6 7
WY T i s 6 7
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YN O
2 34 56 7

£ LN
1 2 34 5 6 7
DO L FIG. 9. Quantity (2, 65),
I 2 3 4 56 7

12 3 456 7

The graph of J; is shown in Fig. 10. The first term
cancels the third term and the second term is canceled
by the fourth term. This can be seen by the change of
variables 1~3, 2—+4, 37, 4—~6, 5—5, 6—2, and
T ~-1 (this relabeling is seen most easily by comparing
the first graph with the third graph of Fig. 10},

Thus we have

1103+ 3,001 35) (91 + 220+ 99 (35 +39) (53 - 1]

(y3— yT)(yzL" 1
(3’7 +yg)(ye +y5)(y1 +y2)

I =yE-1)
(v3 + 30 (yg +95) (v + y7)

:}i (95 + ;) (93~ 37)
X (95~ 132 +9)(y3+ ¥4) (94 +35)]
which is the third graph. Hence we have demonstrated
Jy=0 (2.67)
where we use the sense of “=" as discussed after (2.51).
We now examine the term
= (w3 + 9)(9g + ¥5) ¥193(91 ~ 93} (3537 = (5 + 36)
{2.68)

in /,(1,1) [see (2. 64)]. This clearly gives zero contri-
bution since the above integrand [multiplied as always
by 115.4(¥; +,.4)7!] is antisymmetric under the inter-
change 1+ 3. The same is true for the term

(93 + 3y + ¥5) (35 +3e) y5y0 (31y5 ~ Dyy - y5) (2. 69}
occurring in /,(1,1). Collecting these results we have
[4(0,2) + [,(2,0) + [4(1, 1)
== (3197 = V(33 + 909 + 93)(93 = Dl ys(yg +37)
+3(y3+ 30 (95 + ¥5)] = (9397 = V{5 +96) (96 + y7)
X (9% - Dl ys(ys +32) + 33y +35)y3 + 3,)]
= (yyy7 = D3+ 9 (95 +95)5 (3, +92) (31 +9,)
X (32— 1) + 25+ y) (36 + 955~ 1))
+ (3 + 934 + 95) 9395 ( 91 = ¥3) (97 ~ ¥5)
= (93 + ¥ (94 + ¥5) (9193 = D(y597 = Dy, +33) (35 + ).
(2.170)

Though the last term in (2. 70) contains four denomina-

by D €N

| 2 34 5 6 7
by — O
YW T2 % 4 5 6 7

lyy) Y FIG. 10. Quantity (2. 66).
W2 3 4 § 6 7

-(_————-m———-
W TS s 6 7
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.l OO

FIG. 11. Quantity y5(y3+3d (s +95) (01 =9 (y7 =),

tor type factors, the presence of the two terms
(v4y3 = D(y59;~1) is not desired. Thus we expect
further reductions of this term along with the other
terms in (2. 70) that do not have four denominator
factors.

We examine the combination

(33 + 9.y + ¥ ¥395(91 = ¥3) (37 - ¥5)

= (3193 = D(ysy7 = D32 +33) (35 + 96)]. (2.71)
Now
¥395 (91 = v3) (37 = 95)
=y395( 31+ 92036 + ¥0) = y595( 31 + ¥2) (5 + ve)
= 93532 + ¥3) (36 +37) + ¥395( 32 + ¥3)( 5 + ¥6)
(2.72)

so that the term ygys( 95+, (34 +35)(91 = y3) (7 = y5)

can be viewed as a sum of four terms. These terms are
displayed in Fig. 11. In the first graph we let 1o 3

and 5 < 7, in the second graph 1+ 3, and 5 < 7 in the
third graph to obtain

ya¥5{ ¥~ 730 (97 = 95) = (31 = 95} (97 = ) 2 + 93) (35 + 35).
(2.73)
Using (2. 73) the expression (2. 71) becomes
(93 + 9 (94 + 95)(9; + ¥3) (95 + 3¢)
X[(91 = 93)(37= y5) = (3393~ D y5; = 1)]
== (32 +33)(¥3 + 9 (¥4 + ¥5) (5 +¥¢)
X [(v97 = D(y3y5 = 1) + 945 = 3) + y2( 93 - 95)].
(2.74)

By letting 5 ¢ 3 in the second and third terms in (2. 74)
we see that the integrand obtained from (2. 74) [that is,
multiply (2. 74) by IT5_(y, +yM)"] is antisymmetric.
Hence (2. 74) is equivalent to

= (3 +9)(¥3 + 3 )y +¥5)(5 + 95)(y4¥7 = D(v3p5 - 1).
(2.175)

Multiplying (2. 75) by %4 (v, +v,,)* we have
_ (= D(ygys =~ 1)
(91 + )36 +37)
which will be integrated over in (2.47). We relabel the

variables by 1—3, 3—~7, 5—1, and 7—~5 (keeping the
even labels fixed) so that (2.76) is equivalent to

(2.176)

_ gy =15 - 1)
(3, +y3) (5 +yg)

(2.77)

1069 J. Math. Phys., Vol. 18, No. 5, May 1977

which implies (2. 75) is equivalent to
= (91 +92)(35 + y)(¥3+ 3)(9s +5) (9197 = D(y3y5 - 1).
(2.78)
Using these results (2, 70) becomes
[400,2)+ [ 4(2,0)+ [ ,(1,1)
== (3197 = D{(y1+9) (3, + 95) (38 = 1) 9335 +37)

+ 393+ ) (94 + 95)] + (95 + 96) (36 + y2) (95 - 1)

X[ ys(yy +92) + 3y +y) (9, + v5)]

+ (93 + 3031 + ) (3, + 93) (2~ 1)

+3(y5 + ye) (36 + ¥4 - 1)

+ (335 = Dy +3) (95 +y)]h (2.79)
Making use of the identity
y3(¥E = 1) =(y3+ ) (¥ = 1) = (p, + ys) (3,95~ 1)
+ (95 = V(95 +35) - ye( 9§ - 1) (2. 80)

we see that by a relabeling of the integration variable
labels the quantity

}’3(252—1)
(93 + 30 (s +35) (35 + 3¢)

can be replaced by

(94 +95) (3495 =1)
(33 + 30 (34 +95) (35 + )

(3 +0(33~1) -
(93 + )4 +95) (y5 + 35)

1
2

in (2.79). A similar transformation on the term
¥5(yq + ) in (2. 79) results in the equivalent expression
for (2.79),
L4(0,2) + [4(2,0) + /4(1,1)
== (31 = (31 + 32Xy, +33) (32 = D35+ (35 +37)
+ 3(¥3+ )90+ 95)]+ (95 +36) (3 + 3095 - 1)
X[(34+95) (1 +32) + 3 (93 +92)(9s +35)]
+ (33 + 990 + )33 +9) (32 +93) (5% = 1)
+2(35 + 96) (9 + ) (¥ = D] = 33, + y5) (3435 - 1)
X (y4 + 3y +y3Hye +37) = 23 + ¥ {3y = 1)
X (¥4 +92)(95 + y6) (96 + 30) + (31 + 320 (93 +3)
X (94 +95) (6 + ye)(ya95 — (2.81)

The last three terms of (2. 81) cancel. To see this we
multiply these terms by the factor IS, (y, +v,,1)™ to
obtain

Y (e =Doys =1 1 (v - Diygyy - 1)
2 (y3+3)(s+3) 2 (3, +93) (3, +5)

+ 1= D(959:-1)
(y2 +93)(ys +3g) °

(2.82)

Letting 3 -2, 4 —3 in the first term and 4 -5, 5—~6
in the second term we see that (2. 82) is zero. Hence
using this in (2. 81) and adding the result to /,(0, 1)
+£,(1,0) [see (2.57) and (2. 58)] we find that (2.47) for
the case =3 becomes
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2(_1)3'/-”@’... [ndyu?‘(Vx%—T)fh ( )V

1

3
Xjn: (3’1 +yj+1)-1 Ly

=2[”d3’1""/; dyr =1%79£:1_§¥h (yﬁl)"

_ (%=1 3 (yi-1)

(g1 1)(2 (9, +}’3)(3’3+1V4)+ 2 (yy+95)(y5 +v)
($2-1) + (¥4-1) )

(y5+y ) ys +31) (v +3)(y, +33)/ °

(2.83)
We now compare the result (2. 83) with the right-hand
side of (2.38). From (2. 38) and (2. 34)

2 2.1
20 2 Za1a&imet Ly 823emeny -t

1=0 m=0

=g{L, g +2& &L, & (2. 84)

Using the definition of the function gy and g; and Lemma
2.3 for L, g; and L, g; we can write (2.84) as

~

2 2-1
2

1=0 m=0

=2f.;y,'“[ud3’7,=1(ix’g—(:l—’?% (3’:+1)

((y125 -1)(y}~1)

&21182met Ly 2(3em-1

+ 9= D0GA-1)

(3, +93)(p3+3) (33 +2) (¥4 +5)
L= DOA=1) ) (949 - D(GE=1) 5
(3’1"‘3’2)(3’2 +y3) 2 (y4+ys)(y5+ys)> (2.83)

By relabeling the integration variable subscripts we see
that (2. 85) and (2. 83) are identical. Hence we have
proved identity (2. 8) for k=3,

H.Cases k =>4

We have proved (2.38) for k=1, 2, and 3. To prove
Theorem 1 we must prove (2.38) [and hence (2. 8)] for
k= 4. In the preceding section the £=3 case of (2. 38)
was presented. Rather than give the most direct proof
possible for £ =3, we presented a proof that paraliels
as much as possible the general proof of this section.
Even so the general proof is involved and at places
special cases are presented to help see the cancellation
that is taking place.

1. Alternative form for L a4 11

We start with /,,,4 as given by (2.51) and write

k-l B-l-1

L?kd = :L:/ MEBO L‘Zk#l(l) m) (2- 86)

with /4,,4(0,0) =0, Equation (2.51) can be rewritten (by
adding and subtracting terms) as
%=1
Lo = E (91 +32)(Y2n2m + Y2namst) ,,{[2 (3’21-,-1 1
nqtkem+i

1070 J. Math. Phys., Vol. 18, No. 5, May 1977

2mel
X (- Y2rezmet (¥1¥2rey — 1) "Eo P2re1ny
o=

m

k=
+ (- y?k-ZmH)nE_‘ yzkd-n2> + :L-/: (¥2101 + Y21.2)
o= =

k
X{¥ax + Yarst) "gz (¥4~ 1) (— Y21a(¥1V2rg = 1)

nlﬂd

214
X Eg Yng T (V2ret = Ya141) E y,,)

kel Rei-d
=20 20 (Mpg +212)(Vakazm + Vareamar)
1= m=1
k 9
X ngz (y2n1—1 -1) (92 = 1)

ny#kamsl, 141

X Y e1V2razmet (V1 = Y2001 (V2ret = Yonazmet)
+ (yly'lld - 1)(y2k41y2k-2m41 - 1)

21+ im
X E Vn E_ V2rsiang + (yiy%ﬂ - 1)(3’31"1 - 1)y2k-2m~1
ng=2 3 ny=1

2mei
x Z_: Varstony T (9192001 = D(9heamet = 1) 92101

X E yn + E Vokagen [yl(yiy‘lld—l)
ng=1 ny= 2

X (y2k+1y2k-2m+l -1)- y2k-2md(y%t+1 = (91 Y900 — 0l
21+

+NZ_;2 yn3[y2kd(y1y2hi = D(¥2.2met Yorer — 1)
=

- y2l+l(y%k-2m+l - 1)(3’13’2}“1 - 1)]) .
(2.87)

We first examine the I =0, m =1 term of (2.87), i.e

ket
L (0, 1) = HEZ (y%w = 19y + ) (Yapa + Yoroy)

X [= Yaret (¥1V200g = V(¥2n + Yarar)
+ {34 = Yapat) (Vanq + v, ],
(2.88)

The term contammg (3, - yzm) in (2. 88) gives zero
contribution to l’I, k(9 +y,,,) L32s4(0,1) (et 1 2k~ 1),
Hence we have

ket
Laxag(0,1) =~ nnz (y%n1-1 = V(51 +92)(Yapez + Yaret) Yara
.=

X (91 Yame1 — I yop + Vapat )
(2.89)

Furthermore, symmetrizing the v,, 4 variable (recall
argument associated with Fig. 6) we have

et
Logn(0,1)==~3 "1;}2 (¥8ng-t = D1+ 92) Yoz + Yoret)

X (Yapat + Vo) (Y22 + Yara) (Y1201 = 1. (2.90)
Similar transformations result in
McCoy, Tracy, and Wu 1070
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®
Lanufl, 0)=~ %"ES U’%n,-t = D(yy +3.)(9 +33)

X (33 + 0 (¥or + Y2ret) (932001 — 1. (2.91)

Both /5,,1(0,1) and /4,,4(1, 0) have the required four
denominator type factors and a single (¥4¥y,.4 — 1) factor.
We now analyze

k-1 k=i
Z>2 Lqu(O, m) and 122 Lz;,q(l, 0).
M =,

From {(2.87) we have

L4
"Q szﬂ (0, m)

rg ®
=24 (91 +92) (Vapezm + Yopazmeg) 1

2 -
nrﬂ (yz"1'1 1)

2mo3 ny#k-mai
x [- Yoramet (Y1Y2p = 1) "§° Y2rstang = Var-2met

X (912801 = D Vap2mez + Yoneames) T (¥4 = Vapeamet)

2ma2
X (Y22met + Varamaa) + (91 = Vonamet) n21 ka-ri-nz] .
2=

(2.92)
Symmetrizing the yy,,,,,4 variable in the second term in
square brackets in (2.92) (5 « Yoro2me) and observ-
ing that the term (yzp.om + Yor-amet) (1= Vonezmer)

(Yare2met T Vonamea) (91 +73,) is equivalent to zero (1« 2k
— 2m + 1) the quantity (2. 92) becomes

p 551
Z) L2k+1(01 m)
m=2
k=1 & 9
-—"-"Q (Jh + yz)(yzx-zm +y2k-2mq) "Ez (J’Zn,-l -1)
nq#k-m+i

x[- Vopaamat ( P1V2res — 1)
2ma3

x Z}o Yarotom, = 2(Vaezmnt + Yonzme) (Vonzmer
"2 2me2
+ Y1nazmed) (¥132pe1 = 1) + (95 = V30 amag) HZ% J’zm-nz]-
o=

{2.93)

Similarly for 35 £yp.4(1, 0) we have

k-1
g LZko—j(z’ 0)
k=1 * 9
= Q (9200 + Y2102) (920 + Yanar) nnz (¥2ngas = 1)
) n‘l;lﬂ

212
X [— Y2144 (¥1¥2pe1 = 1) n:LZ Yng — 292101 + 920

21-1
X (921 + Y21) (192001 = 1) + (2001 = Y2101) yns] :

n3
(2.94)
We now claim
kel kelaq &
= m=1 nysl (y22n1-l = D331 + 2102
nigxd,k—mi
X (ka-'hu +y2k-2md) Y1Y21:e1Y20-2m41 Y2041
X (91 = ¥214) (Y2001 = Vopoamet) =0 (2.95)
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which is the generalization of (2. 65). To demonstrate
this we write

¥1= 2= (3 +y) = (m +y3)+ =2+

+ (¥a0a1 +921) = (¥2r +32000) (2.96)
Yaret = Yanazmet = (2ot T Yor) = (V2r + Yaeot)

+2 0 = (Voream T Vanamer)-

Then for a fixed [ and m each term in (2, 95) can be
written as a sum of 4l(m + 1) terms. A typical term is
of the form

k
(_ l)ha g
n1='2

nq#l+1, kemel

(ygnl-l - 1)(3’2!4 + ¥, 1&2)(y2k-2m +y2k-2m¢1)

X 91Y2141Y2ramet Yaret (¥p +J’M)(y., + Yert)s
(2.97)
where p=1,2,..., 2l and ¢=2k+1, 2&,...,2k-2m,.

Keeping g fixed we examine the term with p replaced
by2l+1-p. Itis

k
(_ 1) e g
nq=2
nq ¥+l hem+]

(yi..,.i = (200 + 20.2) Yanaam + Voneamet)

XP1V2101Y20e2met Yore1 (V21010p + V210200 (Vo + Vaut)-
(2.98)

These two terms [(2.97) and (2.98)] are equivalent as
can be seen from their graphs (see Fig. 12). They dif-
fer by an overall minus sign and thus add to give zero.
Since this is true for fixed I, m, and ¢, we have pair-
wise cancellation as the index p runs through 1,2,...,2].
Hence it follows that (2. 95) is true.

The term

(Y2101 + Y2102 (V2pe2m + Vopamet) (V1201 — 1)
2may

X{(9}1.1 = 1) Yanamag "7—_1/0 Y2ast-n, (2.99)
o

occurring in (2. 87) is equivalent to
(Y2141 + Y2102) Vapeam + Vonamet) (V1¥ane1 = 1)(3’%;.1 -1)

X 5 Yon-2mes + Varzmez) Vereamez + Vorames)

+ (V3101 + Y2102) (Vanzm + Voraamer) (P1V2peg = 1)

m~d
(2. 100)

X Yanamet 2t Yoretan,
ny=0 2

as can be seen by symmetrizing y;,.m. When it multiplies

i S N W i SO

+ * o3 %
' () 20H 2442 2k-2m 2k-2m+!
-] i
p-lunits 2¢-p units
S x S N N S
24+ 2042 2k-2m 2x-2mrH
24~p units

p-l units

FIG, 12, Quantities (2, 97) and (2, 98), The loops that are
moved are with wavy lines.
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(a)

{b) XYY

£ o VNN

FIG. 13. (a) I +m=1 terms for k=3, (b) I +m =2 terms for
k=3,

the last two terms of the sum Jim¢ 1.0 - Likewise we
can symmetrize the variable y,,,4 occurring in (2. 87)
when it multiplies the last two terms of the sum

21
2% Yn-

n3=1 3

Collecting all these results and using the identities
given by (2.63) we find that /,,,4 as given by (2.87) can
be written in the equivalent form

L 2k+1

k1
=- %nQZ (y§n1-1 = 1wy + 90y, +93)(y3 + 3 (V2n + Yapet)
e

Rl
X (¥yYops = 1 — 3 "22 (3’%,.1-1 = 19y + 90 (¥ope2 + Yopat)

%

IR
X (Yanet + You) (Yor + Varet) + mzjz n{l? (y%ni-i -1
ntﬁk-md

Xy + 9 ) Venom + Voreamn) [“ 3 VyVareg = 1)

X (Y2peamet T Vorcame2) (Vonezmez T Voneames)
2mal
+(¥1 = Yonamet) "Ei Yareteny = Yoramot ( ¥1Y2001 = 1)
==

2m.3

R
x 25 y2k+1-n2] + Z§ (V2201 + Vare2) (Dor + Voreg)
n2=0 1=2
® 2 .
X "1—12 (3’2;.1-1 1) = 2(y132ra = (32104 + 321)
-
nlﬂd
21-1
X (yar+ Y2100) + (D2ret = Y2101) "3E=2 Yny = V2144

272 kel kal-i 1 \
X(91¥2pe1 ~ 1) nz=;1 J’na] - 12-1; o~ "EIZ (¥ong1 = D
3 ny ﬂ-‘mﬂ.l +1

X {92101+ Vo 12) (V2na2m + V2pzmet) {%( V120 — 1)

X (V3101 = D(Vapamet T Verzmez) (V2p2mez + Yorames)
+3(91V200 = D(V3rczmes = D(32s + 92040 (921 + Y2109)

= Yy YVaramat (V1 = Y20 (2001 = Voneamet)
2ma3

+ (yty'lkd - 1)(3}%101 - 1) Yora2mst "ZEEO

212
+ (91201 = D Whamat = 1) 9210 "21 Yng
=

Y2retang
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im
+ "Z_t Vamiong [(y%m = 1(¥ame — Y1) + VY210
x
211
X9y = Y21a) (Vapcamat Yanes = 1)] + "22 Yn,
3:

X [(y%h?mﬂ =~ (50— Yarst) + Varet Yaneamer (V192201 = 1)
X (Yaret = Yaramet) |+ (94¥a101 — 1)]

2143 im
x(ka-Zma»ikaﬂ"l) Z; yn3 2:‘ y’lk*l-nz} .

n3=2 flg=

(2.101)

The advantage of the representation (2, 101) for /,,,
as opposed to the previous representations [as for ex-
ample (2.51)] is, for one, the separation of the “end
effects” and the “bulk effects” of the integrand. Also
the splitting (2. 63) has been introduced into (2.101).

2. Summing Lag + 1{, m) form+/=k-1

For the case k=3 the graphs that appear in /(0,1)
and / (1, 0) when all reductions have been completed
[see Fig. 13(a)] can be obtained from the set of graphs
for /(2,00 + £,(0,2) + [4(1,1) [see Fig. 13(b)]. We
claim that this is a general result. That is to say, if
we sum all [g,,((, m) such that I +m =k -1, then from
the final reduced form for this sum there is a simple
prescription to obtain the remaining terms. Therefore,
we examine the sum

R=1 kelal

SZk+‘1 = IZ(:;, Z)or L?kﬂ(l’ m)

1+makel

(2.102)

and proceed to reduce this to the desired form [four
loops in all graphs and a single (94yy, — 1) factor].

From (2.101) and the definition of S,,,; we have
SZk+1

R
=(31+3:) (3, +3) ks (93,1 1) {— 2(¥1¥2r0 = D33 +34)

2kay
X3+ 95) + (1= L Yonutony = s(¥¥ma = D
=

2k=5
X "EO yz;m.nz} +{(V2ps + y2: (¥ + Yaneg)
2

-1
x “Ilz(y%,.r, - 1){" ‘21.?(3’13’2»1 = 1){( Y382 + Yanat)
=

2ka3
X (ka_:; +y2k_2) + (3’2»1 - y‘Zk-i) "32___2 yn3
2pa4 kal
— Yort (VYo = 1) 20 y,.S} =27 (Yaraq + Va12)
ng=4 1=1

X (Y2142 + Va143) (y%..,a -1) {%(Mzm -1)

]
I
nq=2
nﬁni.ld

X (93141 = (Y3103 + Y210) (Vag0a + Y2105)
+ 3992000 = V(33003 = V(a1 + Ya10) (Va1 +21)

= Yare1Y21e(¥1 = V2ra0) (Vareg = ¥2103) + (P3¥201 = 1)

2p=2 a5

X (Y314 = 1) Y2103 . Yeretn, T (y1¥orss— 1)
-
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FIG. 14. Some typical terms contributing to Jyp f0§)k =5,
(a) Typical graph from J{P’. (b) Two graphs from AP,

212 2k=112
X (13143 = 1) Y2149 Z>1 Y, + 'E‘% YVorstony

n3=
X [(93105 = D(395,5 = ¥1) + 919210495 — Y219)
21+
X (a9t = DI + %:_2 }’,.3[(3’%1.3 = 193501 = Y2net)

+ Yonet V21030 V1Y2101 = D (V2001 = Y200 + (919221 = 1)

214 2ka21a2
X (y21¢3y2k»1 - 1) %}l yn3 "ZZ';‘ kad-nz} .

(2.103)
3. ok 41=0

Recalling the discussion that resulted in the definition
of the quantity J; [just before (2. 66)], we see that an
analogous argument for the terms appearing in (2.103)
leads to the definition

Jant =J3h1 + Tiha + Jian + iRk (2.104)
with
i = (91 +92)(32 + ¥3) (91 = 93)
1] 2k-4
xug?’ (y%'lj-i - 1) "22:{1 y2b»1-n2! (2. 1053)
J3e0 = (V2re1 + You) (D2r + Yoo V2not = Yorey)
k-1 223
X T (g =1 30y, (2.105b)
uixz n3=2 3
; 22 .
Jin =- 12,2 (92101 + Y2502) (Y2202 + Y2 1u3) "11_1'2 (y%n1-1 -1)
ny#tel, 192
2154 \
X "22 ynz(yZHS - 1)(}’2“1 = yzkd)’
r
(2.105c)

and
Bl

S =— IZ_; (%210 + V202 (Y212 + Y2r03)

2k

.3
X I ($hg=1) 2= D=
nge2 Ying-1 mpitied yn,(yzz 1 (92103 = 31)

ny #1414, 142
(2. 105d)

where we changed the labeling in the last sums appear-
ing in (2.105c) and (2. 105d). Furthermore the result
J7 =0 of the previous section leads us to conjecture that

(2.106)

where “=" is interpreted in the generalized sense.

Sorey =0

We now prove that (2.106) is true. From an examina-
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tion of the graphs associated with J{,}’,‘,’,, a¢=1,2,3, and
4, it is clear that

Ty =dik and JiRi=Jil
A typical graph coming from the set of graphs associ-
ated with J{}’ is shown in Fig. 14(a) and two types of
graphs appearing in Jij’ are displayed in Fig. 14(b).
The important point to emphasize is that all graphs
associated with J{}}, are such that the three loops ap-
pearing in the graph divide the line connecting “1” to
“2k+1” into two disjoint lines [in Fig. 14(a) the disjoint
lines are from 3 to 5 and from 6 to 11]. The graphs
associated with Ji3); are of two basic types. There are
the graphs that divide the line “1” to “2k+1” into two
disjoint lines [the first graph in Fig, 14(b} is of this
type] and there are the graphs that divide the line into
three disjoint lines [the second graph of Fig. 14(b) is
this f]ype and the disjoint lines are 1 to 2, 3 to 5, and 7
to 11].

(2.107)

We now claim that the subset of graphs of J{3), with

two disjoint lines exactly cancels all the graphs of

Jii),. The remaining graphs of J§3), that are of the
three-line type cancel amongst themselves to give zero.
Once these two statements are demonstrated we will
have proved (2. 106).

We first count the number of two-line graphs in
Jib4 and J{3),. In Jii), there are clearly 2(k - 2) terms
[factor “2” comes from (94— y»)]. The two-line graPhs
of J33), come from the last two terms of the sum 22,, :12
Y, in (2,105¢). Thus for fixed I there are two two-line
graphs and hence 2(2 - 2) graphs in all. The three-
line graphs of Jiji; result from the 33~ y, terms. Fix
the integer I (<k-2) and let ¢ be one of the values
1,2,...,I -1, Then one term in (2. 105c) can be written
as

= (%2101 + Y202 (Y2102 + V2103)
]

X i1

n,s?

rl.lﬂd, 142

(y%n,-t = D320 + Y2aut) (3123 = D3048 = Yanus)-

(2. 108)

The graphs corresponding to (2.108) are shown in Fig.
15, To these two graphs we consider the complement
graphs as shown in Fig. 16 [these are obtained from
(2.108) by letting ¢ ~¢ andl —~k-1-1+¢4]. From Figs.
15 and 16 it is clear that the sum of the diagram and

its complement gives zero (the first three-line graph in
Fig. 15 is canceled by the second three-line graph in
Fig. 16), Hence the sum of all three-line graphs in
Ji3) gives zero,

The two-line graphs of Ji3), are of the form

4 —L % . VL4 N PN °
I 3 2q1 2qM  2q¥32-1 20+l 20+3 24523 2kd 2kt
J | S —
length 1 length T
+) oL o [ S S
} 3 2q 2gH 24+ 2142 2443
> J
length I length I

FIG. 15. Three-line graphs of J§3), for ¢ and I fixed,
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length T

length T

Y o WD < WU

length T

length I

FIG, 16, Complement graph of Fig, 15, The second graph
cancels the first graph of Fig, 15.

&2
- IZ-; (yz, +y2,.1)(yzm +y21+2)(3’21+2 "‘3’21»3)

)
x HHZ (y%ni-i = 1)( Y2141 — Y2neg) (2.109)

niitl-‘l
and are shown in Fig, 17. In Fig. 18 we draw a two-
line graph associated with J{3},. If we choose the lengths
as shown (which is always possible), then we conclude
from a comparison of Figs. 17 and 18 that the two-line
graphs of J§i, and J4f), cancel to give zero. Thus we
have established (2. 106).

4. Further cancellation in (2.103)

We examine the terms
k=2 "
A1:§ (92101 + Y212 M P2202 + Y2100) JL (3ngt = 1)
nléllﬂ, 142
2%

X n Zz;x ; Yn, Y121 ¥s — J’zm)(yz 143V 261 — 1)
2: »,

(2.110)

and

x=2 z
Ay= zEx (Y2201 + Y2102) (¥2102 + V2103) H2 (y%ni-t -1)

£

nltlﬂ, 142
2243
X "2222 Yny Yarst 3’2“3(3’2»: - y‘zm)(ytyzm ~-1) (2.111)

that appear in (2, 103) (note that 3 *:21-2 Y2reteny

=E:2=2,,3 Yn,). We now demonstrate that when A and A,
are used in (2. 47) (4; and A, are parts of /,,,) and the
integration is performed the result is zero. That is to

say, we show

A =A,=0, 2.112)

where “=" is used in the generalized sense.

For fixed I we examine one term in (2.110). If we re-
label the integration variables 1—+27+1, ‘
2—-2l,...,21—2, and 2l +1 —1 while the remaining
labels are fixed, then the integrand is antisymmetric in
y; and y,,,4 [recall that we are always implicitly multi-
plying the factors A, and A, by [1%(y, + ¥,.4)"*] and hence
zero. For the term A, we relabel the variables y,;.;
= Vanat> Yared " Vams s Vo " Varets ANA Yopey ™ Y2143 and
note that each term in A; is antisymmetric in yy,,, and
Y9143. Hence (2.112) is proved.

5. Final form for So + 1

Summarizing the results so far we have demonstrated
that Sy of (2.103) can be written as [this is the gen-
eralization of (2.70)]
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] e 50 o
i 3 S 2 20 UM 2043 e 2l
feagth A {engin B
B I . - e - m D
| 3 5 2 2 28M 23 2k 2+

FIG. 17. Two-line graphs of 45);.

k
Sopat = (¥4 +32)(3y +33) nﬂ.’i (y%nl—‘[ -1 (— H Yy = 1
2k+q
X (y3+ 9 ¥y +95) = v3(91V2eg = 1)"2226 ynz)

k-1
+ (2nag + Y20 (22 + Yorer) "H2 (y%m‘d ~1)
.=

X (— 3(P1Y2001 = D{(Yanz + Vora) (Vapas + Yarea)
24 R

= Yorag{ Y1Panes = 1) P yn2)- ) (3214 + Y2542)
"2“ 1=1

.3
X(y21¢2+y21o3) 11
n1=2
niaﬂd. 1+2

(ygnfd -1

X (%(3’13’2».1 = D510 = D(D2pas + Y20, (V2100 + V2105)
+ 5y 1¥amt = D310~ Do + Y250 D20 + 925
= Vo Yare3{ 31 ‘3’2:»1)(3’21»1 = Y2143

+ (¥ - 1) (J’%;q - 1)¥55.3
Tkeg

X 2

yn2 + (yikad - 1)(y%l¢3 - 1) Yare1
"2=2!46

212
x nz;l Yy T (91¥210g = (V21089200 — 1)
=

x .
% g n,=2143 y,.z)

)
(2.113)
The generalization of the term in (2. 71) is
k=2
2 (P21t + Va1 D210z + P2105) IL (ygu‘d -1
I=1 ny=
n;#!‘i,l’Z
x [yzmyzz«s(yt = Y2y (Vares = Y2143)
2ge1 2%
= (3192001 = V(323092001 = 1) g.%z Yy ";L;/M yn3] .
(2.114)
x::!ﬁ::l______4§::ln"..__45335__4;__.__49____.".___(,_ﬂ.._<§::L__.
! | 3 5 6 2k-3 2kl 2k 2kH
length B length A
o XY Fany &n o o — &
i 3 5 6 2 2 21
length B length A

FIG., 18, Two-line graphs of J52,. Moving loop (denoted by
wavy line) starts at 5 and goes to 2k — 1 (shown in dotted lines).
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As was done in going from (2. 72) to (2.74), we want to
write the first term in square brackets in (2.114) in a
form so that the two sum-terms appearing in the second
term in (2.114) become a common factor. To do this
we write

(yl - yzm)(S’zmi —y2h3)

21 214 2ol %
= (’lgz-;l }’nz —n.lz-:Z ynz\) (nagzﬂ Yng = nqsZ1+3 y"3)

(2.115)
and examine the graphs of
Var1V2103( Y2201 + V20.2) (V2102 + 2143)
R
x n2 (y‘%ni-i"1)(3’1-3’2!01)(3’2”1—yZHS)' (2' 116)
"1'

ny#i+d, 142

It is clear that we can relabel the integration variable
subscripts so that the following is true [when used in
(2.116), which in turn will be used in (2.47)]:

V21a32243(31 = V2104 Vnet = Y2103)

21+ 2%
= (91 = Y2ret) (V2net = Yaaua) 25 Yny Z Ynge
nz.z "3.2g,3
(2.117)
Using (2.117) in (2.114) we obtain
k-2 I ) 21+
g (Y2101 + ¥20.2) (V2102 + V2103) n (J’zni-t -1 % Yn
= ﬂ‘-2 fyn 2
ny#ied, 142
20
x 2 J’ns["(yﬂ’zn.i = (149205~ 1)
nge2143
= 21{ %2043 = Varet) = Yorut (yzm - yzns)]:
(2.118)

where we used the algebraic identity
= (31~ Y21.0) (V2ra1 = Y2000) + (9192001 = D(32105Y2004 = 1)
= (9192001 = V(0192008 = 1 + 312103 = Y2100
+ Yount (Y21 = Yaras) {2.119)

It is clear that the last two terms in (2. 118) give zero
as the second and third terms will lead to an integrand
that is antisymmetric in y,,,; and y,,,;. Also by relabei-
ing we can let

2144 2% 2 2k+]
E Yn, E ya3 - E y”z Z) yn3'
ny=d nge2 143 ny=1 n3ali+d

Hence S,,,4 of (2.113) becomes

R
Sapet = = (¥1V20e1 = D3y +32) (3, +33) JL ($ng1 = 1)
1‘

2k
x [%(ys+y4)(y4 ECASCID) y,.z] - (919 - 1
"2-

-1
X (Y221 + Vo) (V2 + Yara) kl'lz (y%,,,., -1)
n‘-
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2xed
X [%(3’2»-3 + ¥25.2) (Yanaz + Youet) + V2uey E‘ yn,]
"2!

=2
= (»y2un -1 YZ:I (Y2104 +Y202) (V2102 + Y2203)

k
X
nrz2
nq#i+l, 142

(gt =1 [ 4058 = D321+ 010

X Yara0 +Y2005) + 3 V5103 = V(92000 + 9200 (32; + ¥2101)

2R+

+ (y%xd “Uyys 2

yn.z + (y§l+3 - 1)y21~1
n2-2146

212 21 241 ]

x 2 ynz +(y2loly2lo3" 1) E y"Z E yn3
nosl nayal nz=2lvd

(2. 120)

This can be written more compactly by combining the
first two terms in (2.120) intothe I=0andI=k-1
terms of the third term. Doing this (2.120) becomes

k=1
Soret == (¥1¥2004 = 1) Z()) (9200 + Y200) (V212 + ¥2143)

k
X Il
nqs2
ny #1492

(y%n1-1 =) 392103 + Y210 (Va10a + Va105)

R
+ nH! (y%n‘-i"1)%(y21-1+y‘ll)(y2l+y2h1)

ny#t+
l}_zl ) 2% 4 3 )

+ a-1 + II -1
nge2 (J’zn1 1= 1) 3213 n2§‘6 Yn, nge2 (J'zn,-x )
"‘ﬂ’z nﬁhi

212 13 )
X Y214 21 Yn, * ":zz (J’zn,-r”(yzuﬂ’uoa‘l)
Nae
2 ny#iel, 142
22 24+t

X2 Yy T Ing|

"2’1 n3=21"4

(2.121)

where we must have the convention that any product
term

L]
1T (y%"‘-’— 1)

’l112
ny#A

is zero for [ =0,

3

1 2 -
nge? (yZn,-l 1)
ﬁiﬁbi’

is zero for =k ~1, and

]
"EZ (y%n1-1 - 1)

nyq #1041, 142

is zero for either I=0ori=k-1,

Consider the term
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FIG. 19, Graph of (2,122) for a particular value of . The
range over which ¢ varies is indicated by dotted loops.

(92001 + V2122) (Y2102 + Y2108) (y2n1-1 1) y2143

n1 2
4 #142

x Z (y'la + qu#i)

q=l+

(2. 122)

which is the third term in (2. 121). For a particular ¢
the graph of (2.122) is shown in Fig. 19. From the fig-
ure it is clear that the integrand is divided into three
parts, We examine the integrand associated with the
graph between the double loop and the single loop. It is

q 2¢-1
[yzus I (ygn-t' 1)] i1 (y,+ym)"‘. (2. 123)
nel+d J=2143

We claim that this integrand factor can be replaced by

n (yzn-i -1)

nelad+p

e=3i=2
[E (Y214302p + V210020) 1'[ (3%,-1)

q=1-3

q
I (y%n-l - 1)
n=1+3
n#l+34p

,Z.% (V2104020 + Y2r14502)

2¢-1
X (Va143Y 2145420 — 1)] I (y +3,407, (2.124)

§=21+3
where the product symbol is to be interpreted as unity
if the upper index is less than the lower index. To
prove {2, 124) we start with the algebraic identity

Q
Yoz T (93q~1)
n=l+3

d=le2 1+14p

q
= Z) (y2l-r3+2p +y2h4+’2p) I (ygn - 1) I (ygn-i - 1)
b=0 n=1+2 n=l+3+p
q=1=3
- PZ‘% (y2h4+2p +3’21¢5+Zp)(y21+4429 Yarese2p — 1)
1+14p q 2 L] 5
x Il (y%n"'l) ! (yZn-l—l)—yh I (y2n'"1)
n=l42 nejep+d nad+2

(2.125)

and note that when used as an integrand [mulnphed by
T2 a( 9, + ¥pq)1] the last term in (2.125) is equivalent
to the term on the left-hand side of (2.125). Hence

(2.123) is equivalent to

qal=2 1+isp q )
[Z (3’21+3+3p+3’2u4+zp) I"[ (yzn—l) 1 (3’2"-1"1)

n=l+3 4

g=i=3
- 230 (¥21002p yzzﬁ+2p)(yzz~4+zy Vo528 = 1)

I+i+p a 2q=1 1
X I (3,-1) 1T (3deq- 1)] O (yy+y,u)
nel+2 nel+ped #2143

(2. 126)

By the change of variables 2I +4+2p —2[+3, 2I1+3+2p
~2l+4,,..,20+4—~214+3+2p, and 21 +3 ~2 +4+2p

1076 J. Math. Phys., Vol. 18, No. 5, May 19877

in the last term in (2. 126) and remembering that the

quantity 554.3(9, +9,04)" (921,20 + Y2145.25) TEMAINS in-
variant under this change of labels we obtain the equiva-
lent expression (2. 124).

Similarly we have that the quantity

21
[y‘ltq I (J’zni‘l)] rzl (3’1‘"3’14)'1
Je2a

LETTY S

(2.127)

occurring in (2. 121) can be replaced by

i-q 1
%[230 (y2q42p +y2qo2pﬂ) n (yz,, - 1) n (yz;, o g 1)

n=p4q¢ neq+l
leg~l
- 920 (Y2as142 + V2os2020) (V2041420 V22s — 1)

1 2
x 1 (93pa ~ 1)] I (y;+ ;)0 (2.128)
=a+l J=2q

n#p+q+i

Using these results Sy,q of (2.121) becomes (see
Fig. 20)

k-1
Sopet == (¥4¥2pn — 1) lz\a (Y2541 + Y2202) (Va2 + ¥2043)

%
x { REZ (ygn,-t ~ 1) 292103+ ¥2100) (Y2104 + V2105)
nq#led

]
+ "EZ (y'gn‘-i = 1)z (3954 +92) (Y2 +¥214)
n1¢1--1

1+1 k
+ H (¥3pg ~1) E (yzq*'hm)%

0-1-2
[E (y2h3¢29+y2l+4¢29) (yZn— 1)

Qel=d

nnlel

X H (Mnet = U= 23 (eretaas * Yaresaap)
neledep p=0
kR
X T (¥ = D(¥21a3Vares02p — 1)]
ne1+3
ntl+3+p

+ ﬂ (9%pq—1) E(yza-i +9) 2

n=i+2

1-q
[E (920025 + Vagsapet) H (Y4na- 1)
tuq=t

X H (yi,.—l)— D7 (Vogutszp T Yogszazs)

nepg+l p=0

i
X (y2q+1+29y2141 = 1) nI;[‘Z (y%n-i - 1)]

n#pag+i
k 21 2641
+ "r12 (y%n-i— D{v214Y2103= 1) 27 Ya 20 Yn( -
= n=1 n=2+4
nElel, 142
(2. 129)

We now consider the term

2t 14
Dt = 2 (Y1 + Y2100 (92102 + V2108) {- 3 "HZ (Y3t - 1)
1=0 =

-~ N,

) 263 24-2 244

3 5 2q-1 2q 2q+1 203 21 2kl

FIG. 20, Graph of one term of (2,129). Dotted loops indicate

range of the wavy loop.
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Y "0 VI W

S i\-l_x,2 QQ FIG. 21. Graphs associated
with I3, The first eight graphs

ﬂ—ﬁ“—"»—e———m are multiplied by — 3 and the

&_9____{'_"5__,@ last four graphs by +1.

N . S i WV 40

&.—M__—

k q=1-3
X 20 (¥2g+ ¥201) 27 (Daressnp T Varasezp)
q=1+3 p=0
Y 2 1k 2
X nI;I-vB (yzn-l_ 1)(}’2;,3}’21.5,29"1)— 2 II (erl-l" 1)
= n=1+2
nt+l+p
1-1 l=q~1
qui (qu-1+y2q) EO (y2q¢102p+y20+2+2l’)
= p=

7 ®
x I (y%n-i - 1)(yza+1c2py21+1 -1) + ,,1;12 (J’gn-i -1

n=2
np+q+l

21 2041
X{(YypaYares = 1) 25 9y ; yn}
n=1 nelled

n#re, 1e2

(2. 130)
which is part of S,,,4. We claim that

Ly =0, (2.131)

where equality is in the generalized sense. We first
examine a special case. Consider 2=4, then there are
twelve terms in (2, 130) and the graphs of these terms
are shown in Fig. 21,

Concerning the terms with the structure (y,y,-1)
we indicate by “X” the presence of the y, and y, terms,
From an examination of Fig. 21 it is clear that graphs
5—8 are just a reversed labeling of the first four
graphs. Hence we need only consider the first four
graphs with weight — 1 and the last four graphs. How-
ever, it is clear from Fig. 21 that the last four graphs
have the same structure as do the first four graphs.
Hence they add to give zero, i.e., Iy=0.

The general case proceeds along similar lines. Some
typical graphs are shown in Fig. 22, As in the 2=4
case, the terms arising from the second term in
(2.130) can be combined with the first term as they are

Y, Pt W i
jo—B— |—C |-D-=

jo—A—wf

e Ve VY i,

j—A—w —B—sf j—C-ol =Dl

FIG. 22, Typical graphs of I5,,;. The first graph comes from
the first set of terms and the second graph from the third set
of terms.
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Wy L NNy 0
T 2m 2443 245

odd ..odd
24-1 244 2443

090 NN g N Ny oW

& O-—o—F—X——0"—6 & —e
il 2RI 2ES 5120 20aezp 2a 2a
odd odd even odd
24+ 243

2q-1 2q 2a+2p Eq.gpq

FIG. 23. Graphs of terms appearing in Sy, as defined by
(2.132). The labels “odd” and “even” refer to whether (y% —1)
ocecurs at an odd site or an even site, respectively.

of the same structure. Furthermore, if the distances
A,B,C, and D as depicted in Fig., 22 are made equal,
then the two graphs cancel. One need only check that
the (y% — 1) type terms are in the correct place. An
examination of (2, 130) convinces oneself that they are
in the correct places for cancellation. Hence (2.131)
follows, and incorporating this result into (2. 129) re-
sults in our final form for S,,.q,

k=1
Symt == %(J’ﬂ’zm -1 IEO (3211 F Y2102) (Pa202 + ¥2143)

L]
x{ I (93t = V(32103 + 92100) (D210s + Y2105
n#l+d

k
+ I (Whes = D021t + 920921 + 32109)
n¥1+1

1+ 9 L q=1-2
+ (95,4 -1) _2 (D20t 2001) 25 (V2143020 + Voraaurs)
7n=2 e=1+3 #=0

1+14p ( 9 1) k 2 k 9

X - - -
n=I;I¢2 Vin n=11:13¢ (y2n-1 1) + n:I;Ioz (y2n-1 1)
1= 1~q

X E (y2q-1 + y2a) (y2q+2ﬁ + y?d*hZP)
e=1 =0
b o ! P

XTI (y2"_1—1) I1 (y2n'1) .
n=? n=p+gai

(2.132)

In Fig. 23 we display a graph of a typical term from
each of the four basic terms in (2. 132). In the last two
graphs the “even” and “odd” structure of (y% - 1) should
be noted.

6. Final form for Lok + 4

Equation (2.132) is the result of summing /,,,4(, )
subject to the restriction I +m =k - 1. We now claim
that /,,, [(defined by (2.86)] is in fact

ket k=iwl
Low1 == 3V 1oy = 1) IZ_(;)(yﬂd +¥11a) ”{V_J‘o (¥214200m™ Vareasam)

2
-2 (y2n-1 - 1) (yz 14392m
N#142, 000y 4m42

T+m+1 9 3
x n=I;I+2 (yZn-l - 1) { nI:I

k

+ Y9 1uts2m) V2 radszm T V21s502m) + "I:I2

nEl+i 142000y 1Ml

I+
(inat = D (gpeg + 321 (327 + Yap0g) + ﬂz (Y3na—1)
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244 2% 2442+2m 24+5+42m

2dd odd odd
24 200 2492 24+3+2m

odd odd
244 242 2432m

odd odd even
2q-! 2q

eyen odd odd
2q 2q+t

!
24+3+2m+2p

odd odd

201 2442

20420 5o o0 2432m

FIG. 24. Graphs of terms appearing in /[ 5.4 as given by
(2,133).

k q=1<2
X q§3 (924 + V3en1) Z:/, (Y210302me2 + Varets2mazy)
1smlap ) 2 2 & .
X I (9,-1) 1O (33eq=-D+ 0O (¥34-1)
34p nsj+2em

n=l+m+2 n=leme,

5 3 )51 (shg =1
x + Yaqes: -
¢Z=2 (yzq..1 +3’gq) ’1?6 <y2q*2p Yaq+ta2p "1;12 Yang

1
X I (y'zln - l)} .

neprast (2.133)
A graph of a typical term from each of the four basic
terms of (2.133) is shown in Fig. 24. Figure 24 should
be compared with Fig. 23, the m =0 case of Fig. 24.

To demonstrate (2, 133) one can proceed in two ways.
The first method is to repeat the analysis starting at
(2.101) leading to (2.132) where now [ +m is fixed to be
less than k- 1. This will result in (2, 133). Alternative-
ly one can study special cases and note that the general
case (2.133) is obtained from the specific case (2.132)
by letting I I +m in certain terms containing the index
1. These special cases indicate the transition from Fig.
23 to Fig. 24.

7. Proof of (2.38)

Using (2. 133) in (2. 47) we obtain an integral repre-
sentation of the left-hand side of (2.38). We now com-
pare this with the integral representation of the right-
hand side of (2. 38) and demonstrate that the two repre-
sentations are identical. This will establish (2. 38) as
an identity which in view of Lemma 2.1 proves
Theorem 1.

Consider the right-hand side of (2.38). A graph of a
typical term is shown in Fig. 25 (the labeling is first
821415 then 8am+1s and finally ng‘l(k-m-l)-l where we use
Lemma 2. 3 for this last term). This graph can be made
equivalent to the last graph of Fig. 24 by rearranging
the graph in the order 1—2—3~4—5 as indicated in the
figure. The factor “2” on the right-hand side comes
about since there are two graphs in Fig. 24 to each
graph in Fig. 25, The first two graphs are a degenerate
form of Fig. 25 graphs.

Thus Theorem 1 is proved.

tH. THEOREM 2 AND THE FUNCTION ¥t »A)
A. Differential equation and the functions V2, + 1 (& V)

We define $(¢;v, 1) by Eq. (1.7). In terms of the func-
tion G(t;», X) the definition of ¥(t;v, A) is

G(t;v, A) = tanh{$9(¢; v, V)]. 3.1)

1078 J. Math. Phys., Vol. 18, No. 5, May 1977

From either (1.7) or (3.1) and either (1.3) or (2.7)
it follows that ¢(f;v, A) satisfies the differential equation

Y+ —tl-zp' =1 sinh(29) + %E sinh(y) (3.2)
with
Bt v, M)~ 2 ()2 (3.3)

as t approaches infinity along the positive ¢ axis.

The X expansion of the function G(t;v,)) [see Eq.
(1.5)] induces a corresponding A expansion for the func-
tion P(¢;v, 1),

Vv, N =2y Ay (85 0). (3.4)
n=
The defining relation (3.1) in conjunction with (1.5)
requires that
gi(t;v) = 3y (8), (3.5a)
23(;v) = 13 (85v) - 539 (5P, (3.5b)

g5(tv) = 35 (t;0) + [0y () PUsts (s 0)] + (30 (5500 P,
(3. 5¢)
etc,

The content of Theorem 2 is the assertion that the
functions ¥y,,{t;¥) as defined by (3.1)—(3.5) possess
the representation (1.9). To prove Theorem 2 we define
P(t;v, ) by (1.8) and (1.9) and demonstrate that either
(3.1) or (3.2) is true, We choose to demonstrate (3. 1).

If (3.1) is true, then it certainly follows that

G

ay
1 271 kel
sy =2 sech’(3y] =

= 41 - tanb?(39)] ¢

“ii-e, ) 2. (3.6)
oA
With the boundary condition
Glt;v,00=1 (3.7

and the assumption that (3. 6) is true, it follows that
(3.1) is true. Equation (3.6) can be written in the
equivalent form

2(2F + 1) Yy (1)

-l
= @+ 1) gy (t50) + '}:0 Y20k = m) = W gpomys89)

m
X 120 &21:4(t;V) G2 (mey s G ¥).

(3.8)

. even odd odd odd odd

Zl!l Zoz 20234 2k 2kl

[——
| 2

FI1G, 25, Graph of a typical term from the right-hand side of
(2.38), The numbers beneath the graph represent the ordering
to be followed to show equivalence with the graphs of Fig. 24
(in this case the last graph).
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FIG. 26, Quantity (3,11),

4 B
3 2n
2

I 2n+i

B. Graphs and a lemma

The defining equation (1.9b) can be written in a
slightly different form

2 - -
Donet V) = il _[ dyy - f 25 P

chi

B G ()

%+ﬁq
ne
x| +1)+ n —1]. . 9)
[J=1 (yj i (J’; ) A
To prove (3. 8) it will be useful to rewrite the term

Zrhﬂ 2r1|_-i1

I (v +D+ IT(y,-1 (3.10)
appearing in (3. 9) in a different form. To help visualize
the structure of these terms a graphical representation
will now be introduced.

Since the factor (;,,; +¥;) appears in the denominator
of the integrand of (3.9), the linear graphs introduced
in Sec. II are not the most convenient. We use circular
graphs to emphasize the cyclic nature of the integrand
in (3.9). Thus the factor

2n+i

};[1 (95 +y,)7° (3.11)

is represented by a circular graph of 2 + 1 points (see
Fig. 26). We adopt the same rules as in Sec. II concern-
ing “loops” and “circles.”

Thus the integrand factor

5
(93 = D0E = D23 +30) L (3, +3,,9)7 (3.12)

has the graph shown in Fig. 27. As in Sec. II we omit
the term I, (y, +y,,,) that multiplies the various
factors in (3.9). Thus, for example, when we speak of
the graph of the factor

(93 - 1)(92 = 1)(y;+3,) (3.13)

that appears in an integrand with five variables we al-
ways mean (3.12),

Furthermore for the graphs considered in this section
we make the additional restrictions:

(i) A1l graphs have an odd number of points.
(ii) All graphs have an odd number of loops.

(iii) Following any loop there immediately follows

FIG. 27. Quantity (3,12),

1079 J. Math. Phys., Vol. 18, No. 5, May 1977

3, N\a 3@4 = 3 3 3 o
( ( I ‘ 9 5 5
2 2

i e~ 2= 1 ]
FIG. 28. Quantity G4(3).

another loop or a circle. If a circle follows, then either
a loop or a point must follow this circle. If a point fol-
lows, then a circle must follow this point.

(iv) The sign of a graph is defined to be (- 1)"¢ where
N, is the number of circles appearing in the graph. The
integrand associated with the graph carries this sign.
As a result of the above rule, N,=%{K~ L) where K is
the total number of points of the graph and L is the
number of loops in the graph.

With these restrictions in mind we make the follow-
ing definition:

Gg(L) =the sum of all labeled graphs of K points with
L loops.

(3.14)

As an example the set of graphs G;(3) is shown in
Fig. 28,

We use the word graph and the integrand associated
with such a graph interchangeably, With this under-
standing we now prove

Lemma 3.1:

2&01 k &

ot (J’1+1)+ 1 (3,~- 11 ?:6 Gyp(2j+1). (3.15)
Proof: At any site in 2 yraph of 2k +1 points there

are five different configurations at this site (see Fig.

29). We represent each possible configuration at a site

by a vector:

,LL>= ’ ;LR>": ) le>:

OO C O
OO0 OO

0
0
14,
0
0

" (3.16)

((" 4
[Py=t 2 ¢, |oy=
1:

_HOOoO0OC

0

Now consider the points j and j+1 in a graph. We as-
sume j has the configuration la) and j+ 1 has the con-

LN oop in-loop out (LL)
A - loop in (L,)
L loop out {Lgi
et point (P}

— circle (C)

FIG. 29. Five distinet configurations at a slte.
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O Ly,

i+
% = Yj+¥j+
S ~ -y,
._ﬁil—‘ - Y*tYj+

.__m — yj+yi+|

—_—— - I-yjz_H

FIG. 30. All possible configurations at sites j and j+ 1 with
their respective weights, From this Fig. (3, 18) follows.

figuration (8) (a,B=LL, Ly, L,;, C, or P). To this
part of the graph we assign in accordance with the above
rules an integrand factor. We denote this factor by

(alM(G,j+1)]|8). 3.17)
Using the graphical rules we have (see Fig. 30)
r-yi +y5q4 O Vit 9. O 0 7
Yit¥ 0 y, 49, 0 0
M(G,j+1) = 0 0 0o 0 1-y,] (.18)
0 0 ¢ 1-5
0 1 i 1 0
e d

To avoid double counting the circles we assign the
weight one when they occur at site j and the weight
1-y%,, when they occur at site j+1. Then we have

5 . el
7 G2+ =Tr {11 M({§,i+1)5, (3.19)
§=0 1=1
where Vou. =94, ’
If we make the similarity transfc: :-t1on
M(j,j+1)=UM(j,j+1) U, (3. 20)
where
11 0 0 0
00 1 1 0
U= 1~10 0 0}, (3.21)
0 0 1~-10
0 0 0 0 1
then
r-y_f-{-yjq Yty 00 6 7
0 0 0 0 2(1-3iy)
M(j,j+1) = 0 0 0 0 0 .
0 0 0 0 0
1 1
|z 3 0 0 0 J o2

Thus (3. 19) can be written as

1080 J. Math. Phys., Vol. 18, No. 5, May 1977

> G2k+1(2j+1)=T1‘{2l§1 vtj,j-n)} (3.23)
with
VitV ¥t 0
V(j,j+1)= 0 0 201~y ].
H 3 Y
(3.24)
We write (3.23) as
Tr {zjfj: V(j,j+ 1)}
=Tr{(B(1) ¥(1,2) B*2)][B(2) V(2,3) B(3)] -+~
x[B(2Ek +1) V(2k +1,1) B},
{3.25)
where we define
7 3 -yt
B(jl={z -3 -y, | (3.26)
: 3 - y;-1
From (3.24) and (3. 26) it follows that
B(j) V(j,j + 1) B1(j+1)
Yy +1 0 0
= yz,;q + %}’jq ~3 0 - y%q + ';%q +3]. (3.27)

0 0 Vg~ 1

Since the second column of the matrix in (3. 27) con-
sists of all zeros, the matrix elements (yﬁ,, + %ym -~3)
and (- 34,4 + 3¥,.4 + 3) do not affect the value of (3.25).
Hence these terms can be set equal to zero when eval-
uating the trace in (3.25). Doing this we see that (3.27),
(3.25), and (3.23) imply that (3. 15) is true.

C. Proof of {3.8)

If we use Lemma 3.1 and let n =%~ m~1in (3.9)
we have

¥ (remyes (£37)

____~2____ e ° 2ke2mel exp(._ ty

1 1

(;’I;;')v(yj +yjol)"] [’ZZ% G2k+1(2j+1)]-

(3.28)

Each term in Gy,,,(2j+ 1) contains at least one loop.
Since the first term in square brackets in (3. 28) is in-
variant under cyclic permutations of the integration
variable labels, each term in G,,,4(2j+1) may be cycli-
cally permuted {by cyclically permuting the labels on
the graph) so that one of the loops occurring in

Gyp,y (2j +1) connects the points “1” and “2k - 2m — 1.”
We denote this permuted version of (3.28) by placing

a prime on Gy, (2j + 1).

Now consider the right-hand side of (3.8). If we use
the definition of the functions gy;44 and gy sy (se€
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A VWUV a PUSVa W

[ 2K+ |
2k-2m

FIG. 31. Typical graph occurring in argument following
(3.32).

Theorem 1), the permuted version of (3, 28) just de-
scribed, and the identity

kel Relem k=i Relef

= 2, (3.29)

m=0 J=0 J=0 m=0

we have upon letting § —=~j+1 in the first sum of the
right-hand side of (3. 29)

ket m
2(k~-m)—-1
g}o Q 3 Neem-18214 82mnr et

“ = %4 axp(—ty,)
=f dyf"f dyzm[“ &y p_l)y
i

( +1>
1 Ys

"(3’1*”3’:.1)']2;{2 (=1)™ lzg Glagm1i-1)

mz0 Y2ra2m-1 +J’1

X (Papes + ) (V2p2met + Vonazm) (P2nazmez + Vanaamezsor)

(¥~ 1)} .

Remel=]

R
x I (y%hi -1) I
S=hem

J=kamal 4

(3.30)

The primed graphs in Gf,_;,,.4(2f ~ 1) all contain a
factor (¥y4.9m.g +1) Which is canceled in (3. 30) by the
same term that appears in the denominator, Hence to
give a graphical representation of the term [valid when
used in (3. 30)]

Glyamey (25 —1)
Yar-2mat T V1
we imagine starting with the sum of graphs of 22~ 2m -1
points and 2j - 1 loops. Each graph’s labels are cycli-
cally permuted so that a term (y; +¥5,.3,.1) appears
(that is, a loop from “1” to “2k —2m - 1”’), When this
loop is removed from each graph the result is (3. 31).

(3.31)

We now claim that

Gy (2i +1)
k=4 m G! (2] - 1)
=2 o 5 (Gl Ly
mz=>0 ¢ Izng Yaraam-g T 51 ket T V1

X (Yonazmet + Vanezm) (V2r-zmezs + Vor-zmezsot)

< Oha=D A (-1
Jukam 1+ Jukam+]el Y ?

(3.32)

where equality in (3. 32) is used in the sense that the
left-hand side and the right-hand side lead to identical
results when used in (3. 30).

Consider the set of graphs Gy,,;(27+1). We cyclically
permute the labels of the graphs such that a loop con-
nects the points “1” and “2k+1.” Imagine proceeding
from 2k +1 until two loops are encountered. This sec-
ond loop must start at an even label which we denote by

1081 J. Math. Phys., Vol. 18, No. 5, May 1977

2k - 2m (see Fig. 31). Clearly the smallest m can be
is zero which corresponds to the three loops together
(see Fig. 32). The largest m can be is k —j since the
graph must contain 2j+ 1 loops in all. Thus the set of
permuted graphs with the points 2k - 2m +1 to 2k omit-
ted with just one loop between these points and 2j+1
loops in all is

G; 2i-1)
2k=2maq\e) = 2/ ( wt )( s + . ).
Yaoreama + V1 Yart T I\ Von2m-t T V2r-2m

The remaining terms in (3.32), i.e,,

(3.33)

m Remelel 2
g j=I;I-m (y2101-1)(y2k-2mo21
k 2
+ Vopamezret) I (33,-1)
Fzkems]+l

are just all ways of putting in the final loop. The factor
(- 1)™ gives the correct sign for the m inserted circles
between 2k - 2m and 2k + 1. Summing this from m =0
to k —j gives all possible (permuted) graphs in

Gy.4(27 +1). Hence (3. 32) is true.

Using (3. 32) in (3. 30) we have that (3. 8) can be writ-
ten as

k1 2(k - m)

-1 "
Qe+ 1) g+ T V2temit 2o 82141 82 (mair ot
m=0 1=0

1 1

X (L:—l)v (y;+y, 1)"] i
y3+1 I * §=0

GZk+1 (2-7 + 1),

(3.34)

where we identified (2% + 1) g5,,4 a8 Gy, 4(1). Using
Lemma 3.1 we see that (3. 34) is just 3{2k+1) ¢y,,;.
Thus we have proved (3. 8) and hence Theorem 2,

From Theorem 2 we can prove that underlying the
nonlinear differential equation (3.2} and hence the
Painlevé equation (1. 1) with the restriction (1.2) there
is an associated linear integral equation.

Consider the integral operator X defined on
L*(1,%,do,) by

(KA = [ do,(y) expl- 6(x +y)}(x +y) (),

(3. 35a)
where the measure do, is
y -1\ ¥41/2
do, =da(y) = (y_ﬁ) dy. (3. 35b)
The scalar product is
(g = [ do(y)g(y) £(p). (3. 36)

The operator K is Hilbert—Schmidt for all real 8 > 0,
As § —~ 0 the Hilbert—Schmidt norm of X approaches
infinity (the approach is ~1n6-!). We denote by \3(6, v)

. V040, W
Zh-l 2k 2+ |

FIG. 32. Case m=0 in argument following (3. 32).
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the eigenvalues and by ¢3}(x;0, v) the orthonormal eigen-
functions of K. For brevity we sometimes write A} for
A3(6, v). Thus we have

(Ko (x) =25(6, v) 3(x;6, v),

where + (-} refers to the measure do, (do).

(3.37)

We now prove

Corollary: The Painlevé transcendents 1(8;v, 1) of
Theorem 1 possess the representation

n(o;2, V=i (—i—:;i%) }i (}—;—;%) 4, (3.38)
where
ay=aj(6,v) =) 7 dt| [7 do(y)
X exp(~ £y) d3(y;0, V) |, (3. 39)

Proof: Using
(Vanag +99)1 = fon dt expl~ £(9; + yanu)]

in the representation (1. 9b) of the functions yi,,(;¥)
we see we can write {y,,4(f;v) as

Poneg (V) = 22+1 f dat [(e, K¥e), + (e,K ") ],  (3.40)

where
e{y) =expl-(t +6)y)]. (3.41)
Using Mercer’s theorem we can write (3. 40) as
¢’zn.1(f;v)-“-2—n%_—1 / dt {2 N2 (e, 7). 12
+:§ 502 (e, ¢;)_|2} . (3.42)

Recalling the elementary relation (valid for Ix!<1)

1+x
ne _.
Zi 2n+1x2 (1 x)’

we can conclude from (3. 42) and (1. 8) that for x|
< min[(A}), (A3)1] (where A{>23>+++and A;= 232+ +)
P(t;v, A) has the representation

win = [ i 5 00,6, n (53)
0 5} -

ad 1+ A5
R - 12
+:§ 51| e, ¢3).] m(—__"_l-x;x)} . (3.43)
Defining aj by (3.39) and recalling (1.7) we conclude

that the Painlevé transcendent n(0;v, 1) is given by
(3. 38).

From (3. 38) we see that the closest singularity in the
complex A plane occurs at min[(A})-, (\7)!]. This gives
the radius of convergence of (1.7) in the complex A
plane. The restriction IA!< min[(3{)"1, (A{)"!] can be
lifted in (3.38). From the theory of analytic continua-
tion we know that, for fixed 6 and v,7(6;v, 1) is given by
the right-hand side of (3. 38) whenever the infinite
products converge. A necessary condition that (3. 38)
converge in the complex X plane is A #x (A})~! and
A#+£(2;) for all j. We conjecture this is also sufficient.
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It is an open problem to compute the quantities A}
and a} appearing in (3. 38).

IV. THEOREM 3 AND COROLLARIES

A. Formal small-t expansion

A formal small-¢ expansion of the differential equa~
tion (3.2) is

o §+1
P(£) ~ = olnt = InB + 75 75 a; !0V, (4.1)

isl k=l

The coefficients a; , are determined from (3. 2) by
equating like powers of / and are unique functions of ¢
and B (and v). The requirement that (4. 1) be asymptotic
as -0 requires that

-1<Reoc<1, (4.2)

but otherwise the coefficients o and B are arbitrary.
I we define

w(t) = expl~ ¥(1)], (4.3)
then
w(t) ~ Bt° {1 +Z)Z) b, t"””‘z'””} (4.4)
i=1k=1

is a formal small-f expansion of (1.3) where we again
assume (4.2). The coefficients b, , can be determined
from either (4.1) and (4. 3) (assuming a; , are known)
or directly from the differential equation (1.3). The
first few coefficients are

b1 A== VB-l(l - 0')-2',

by ,=Br(1+0)?

by =5V2B¥1-0)* - g B2(1 - 0)°?

bz’z: - Vz(l + 0')-1(1 - 0.)-2

by3 =15 BX(1 +0)% + 32 B¥1 + o)™,

(4.5)

etc.

Computation of the coefficients of the terms £3-3° and
t4-47 (by ; and by ;, respectively) in the expansion (4.4)
shows that these terms are zero. This is a general
result, i.e.,

(4.8)

bo1=0, n=3,4,5"".

To prove (4. 6) we can proceed by induction. Since the
argument is straightforward we omit the proof. Thus
for n> 3 there are no terms of the form ™" in (4.4).

When 0=0 (4. 4) becomes a formal power series ex-
pansion in the variable ¢ about the point #=0. This
formal power series can be shown to converge. The
result that there exists a one-parameter family of solu-
tions to (1. 3) such that the point #=0 is an analytic
point is known.!*?"®* Furthermore when ¢ =0 (6=0) is an
analytic point, the solution to (1.3) is known to be a
meromorphic function,!+?%
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B. Y2, + 1{t;v) and Y(t;v,\) ast >0
We define for n= 2
:2’/' dyx"‘fd HSEML
nJy 1 ja ¥itYa
val/2 vel/2
x [r"l (L = 1) + n(y—L—’ 1) ] @
i\ +1 sa\yy +1

with v,,; =¥, (this merely defines ¢, for even integers
and coincides with Theorem 2 for odd integers).

Palt; V)

Lemma 4.1: As ¢t~ 0 along the positive real axis
1
an(ty V):(T,, In ({) +Bn+0(1) (4' 8)
where

f dx, - / dx, ﬂ(x,-i—x,,l) ’6(-Z";x,>, (4.9
11

X1 =%, and

B,=B%" £ v (4.10)
with
e 4 1 1 n 1
B :_/ dxy - - [ doe, T (x5 4 254)"
n Jo 0 i=1
n
Xlnx15 (1__Ex!) (4.11)
PE
and
B hm { dyy - - A dy,, 1'1 exp(— ty )3 + 95,07

n vel /2 n v-l/2
*L”(Ll) +1 (G ‘1) ]
a\y; +1 a\y;+1
-2 / dyy * - f dy, I exp(~ty )(y; +y;4)7"
0 0

%[1 - exp(~ 3’1)]};

n=]

(4.12)

with 6(x) denoting the Dirac delta function.

Proof: Let F(y) be such that F(y)/y is bounded for all
vy >0 and F(y) ~ . Define

O=0(Y1, Vay v oy Vn fiIG(y,-l (4.13)
where
o= X0 (4.14)
0 if x<Q.
We write

2 s -3 L n
lﬂn:;/‘: dyy -+ / dy, I'llexp(— )5 +y.0)7

x e(y I _.I___l usl /2
[ 1 e Vn (y,+1)

vel/2
Lo, . .. ,yn)H(—fT;) —2F(y1)] +I, (4.15)
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where

4 « o n
== f dy, - - f Ay F () T exp(=ty,)(y; +9;.) "
0 ) =1

(4. 16)

The limit ¢ — 0 exists for the first term in (4. 15) (that
is for the quantity ¢, ~1,).

We choose
F(y)=1-exp(-v) (4.17)

which clearly satisfies the above two requirements of
F(y). Thus B{"" is just the ¢~ 0 limit of ¥, - I, with the
choice (4. 17) for F(v).

We make the change of variables

p:Z;lx,, x;=py, j=1,2,...,n (4.18)
i=
in (4. 16) with the choice (4.17).
Then
wdp 1 1 n
I= f — exp(~ tp) f dxy - - [ dx,d (1 —Ex,)
¢ P 0 g =t
X[1~ exp(= pxy)] T1 (x; + 5;,4)2. (4.19)
=1
If we make use of the identity
In (;C—)) = / %g-[exp(- £y) - exp(~ &x)), (4.20)
0

then I, becomes

1
I,,:f dxl-ufdxb(l Z}x,)
0 e

n
XTI (x;+%;,) "  In <t—4;x—1)
ist

1 n n
=In (1) f dxy - / dx,b (1 ") x,) I (x; +x,,)"
t FEERY ¥

+o(1 (as t~0 (4.21)
This proves the Lemma.
From (4. 8) and the fact that
W v, N = Z)AZ"" Poan (5 0), (4.22)
we conclude for fxl<1/7
t; v, ¥y =+clnt™ = InB +0(1) {4.23)
as t — 0" where
g :Z; /\z’"‘ 0’2'"1 (4. 24)
n=0
and
-InB=}; g, .. (4. 25)

n=0
where o0y, and B,,,, are given by Lemma 4.1. For the
steps (4. 23)—(4. 25) to be completely rigorous we must
ensure that the error estimate in (4. 8) remains o(1)
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when summed over # in (4.22). We do not present a
rigorous proof of this point. Heuristically, if one sums
the leading term in the o(1) term in (4. 8), then the re-
sult is still o(1). Also the function B{s, v =0) was com-
puted numerically by a procedure independent of the
steps (4.23)—(4.25) and to within numerical accuracy
{five to six decimal places) the result agrees with that
given by (1.12).

C. Computation of ¢,

Lemma 4. 2: If we denote by o, the quantity defined
in {4.9) then

= (2/n) ™2B(3, n/2), (4.26)
where B(x, v) =I'(x)P{3)/T(x +») is the beta function.

Proof: Consider the integral

n-1
J,= fo “dxy - fo dx, T (g + 2,7 exp(— %, — x,).
j=1
(4. 27)
Let
A:ZYJ" QJ:X—}.! .):1;29 ,71-1, (4-28)
=l A
then the Jacobian is
a(xhXZ) "-yxn) __yn-l
B(QI: gy vovy g, X)— X (4. 29)

Since there are (n—~ 1) factors in the denominator of J,,,

we get

Jn: fvl doq _fol-aldaz' . fol-le-...-a,‘_z dOl"_l fom I

nal
X exp [_ AGy - A (1 -5 a,)]
=l
n-2 n=1 -1
x { I (o; + a;,) [Otn_l + (1 -2 aj)]
i=1 3=1

1 2 i .
= {0 day foldaz- .. jﬂl de, & (I—L, ozj) T {a, + a7,
isl

i
(4.30)

where a,,; = ¢,. Hence in view of (4. 9) we have shown

that
g, =(4/n),.

To evaluate (4.27) we use the method of Mellin trans-
forms. If we define

(4. 31)

= fgm x7° flx) dx

then for f and g L? we have the Mellin convolution

formula
w0 1/2+1%
[t dx = f FOe-9dt.  (4.33)
Q 1/2«i=
Now the Mellin transform of (x +v)-!
e L T v, (4. 34)
0 X+y sinw¢

where 0 <Ret <1 while that of exp(~ x) is of course
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(4.32)

.fow x% exp(- ¥) dx =T(1 - §). (4.35)
Therefore,
1 1/2+4i - et
" am ,/:/z.in a <sinn§) r1-9r(@)
1/2+f = n
:_1._/ de .‘n )
27 Jirzie sinm¢
=3 ) ___1__L n-2p (Ll
- [—o dg(coshﬂg)"”zﬂ B(z,n/2), (4. 36)

Therefore, (4.31) and (4. 38) prove the Lemma.

The result {1.11} of Theorem 3 now follows from
Lemma 4.2. We note that for » odd, (4.26) can be

written as
1 7% @2r-11!
O T g (4.37)
D. Relating B,, to integral equations
From (4.11) it follows that
B&Y = / d?xf dx, - f dx, b (1 -2 x,)
$=1
nel
X1nxy I (x; + 55,07 expl= My +x)]. (4.38)

P
Reversing the steps that went from {4.27) to (4. 30) we
see that (4. 38) can be written as

Y Y ATy e
nJy 0 0

nal

X In{y, xHo {y; + 3’101)-1 exp{~ Vo= V)
iat

4 - Y1
== f ay,--- [ dy,in(—22—
nj: & /o y"n(y+ +yn)

=1

XTI (3 +950)

j=1

! exp(=y1 = ¥a). (4.39)
Using identity (4.20) for the logarithm term in (4. 39)
we conclude

, d§
B _ ;zf dyy / d)’nf
0

x {exp|- &(y; +
n-l
X T (y; +3500) " expl=v; - v,).

i=1

“r 4+ 9,)] - exp(= &y}

(4. 40)

We now wish to split the above integral into two parts.
However as it stands, the integrals taken separately
are divergent, Thus we write

B =1im[BM(e) + B®(0)), (4.41)
£-{
where
1/¢€
B¥(¢)= f at / dyy - / Ay,
n=1 .
X exp[- (1 + £q] Fll 0y +95:) " exp(=y,)
j=
(4. 42)
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and

B —Z g Ay, >+ d
n (6) n .[ i [ Y1 ﬁ Vn

n-1
X exp(- y1) ﬂl exp(~ &v,) (v, +v;.4)"
j=

X expl~y,(1 + H]. (4.43)

We let x; = £y, in this last expression {(and then followed
by £=1/£) to obtain

4 1 /¢ 23 ©
B;“(e):—/ dg/ dxl.../ dx,,
nJy

X exp(~- £x,) T | expl-x;) exp[— (1+ w1
i=l j +X 3+1

(4. 44)

Since we are interested only in the ¢/~ 0 limit of the
integrals occuring in (4.12), we may write B»" as

B(l)n hm{/ d\y ..-f dyn
1

n n y--l vel /2
xexp[—t(y, + ¥ )1 vy +3,,)7 | D=
i saa\Ys +1

+ 1 21-‘—1>M/2] Z/mdv- /md
a yj+1 0 31 0 yn

Xexp[-— H{vy +3’n)]ﬁ1 (v, +3’j¢1)-1[1 - exp(- 3&”} .

(4. 45)

That is, we do not change the value of (4.12) if we set

t =0 in exp{-tv,), ..., exp(~ tv,_1) and leave only the
factor exp[~ (3, +y,)]. As we did for B{’, we break
B®)” into a sum of terms. As (4. 45) stands, the indivi-
dual integrals are divergent. First we use

expl- t(yy +y,)] _

e [ dtexp[- &y, +v,)] (4. 46)
in (4.45) and then write (also let ¢t — ¢€)
B =1im B + B® () + BSXe)], (4.47)

€~0

where

B®(¢) = -~/ dg/ dv-"/ dy,[1-exp(=yy)]

X expl~ &(y +y.,)]jl.}1 0 +v50)t

4 e‘}'dg d o
;l_/; ‘z‘[ dx,---ldx

x {exp(- x;) - exp[~ (1 + £)x; ]}

n-1

X (xf +xi¢1)-1 exp(— xn)y (4. 48)
i<l

y e e .
s=2 [Car [T [Ca,
nJe 1 1

n=l n Y- 1 vel/2
X exp[- £y +y ) 11T G, +5,.4)MT ( . ) s
j=t m\Y; +1

(4. 49)
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and B*(e€) is just B¥(¢) with v-3 replaced by v + % in
(4. 49).

Comparing (4.42) and (4 48) we see that

AL e [

n-k

X exp(- x;) IT (; +x,4)" exp(- x,).
i

B(“(G) +B(3’(€

(4.50)

The £ integration is now decoupled from the x; variables
so that (4.50) is simply

B e) + B (€) = - 20, In(1/9), (4.51)

where we used the results of Lemmas 4.1 and 4. 2.

The quantities B{#(¢), B#Y(¢), and B{*(¢) remain to
be computed. Equations (4. 44) and (4.49) are in the
form of an iterated kernel. Therefore, we now examine
the integral equations associated with these kernels.

E. integral equations

Lemma 4. 3:

y=1\"9,,0) _
/: dy(v - 1) iy Ay By, (x) (4.52)
with
N, =msechmp, Q<p<eo, (4.53)
Gp () =C, JF(z +ip, 5~ ip; 1 +v; 3 - 3x), (4.54)

where F(a, b; ¢; x) is the hypergeometric function and

Cpp=[TT72(v + 1)p sinhmpT (3 +v +ip)T (3 +v - ip) /2.
(4.55)
Furthermore the ¢, ,(x) are orthogonal, i.e.,
© V= ,
[ a(35) oozt @so

where 0(x) is the Dirac delta function.

The functions ¢, ,(x) can alternatively be expressed
in terms of Legendre functions®

1 v/iz
() =C, ,L(1+) (%) P00, (0), (4.57)

Lemma 4.3 is a special case of the inversion formulas
for the generalized Mehler—Fock transform.”®

To compute B'?’(¢) we need

Lewmma 4.4:

j; e—;‘g(—y——x,,(y dy = XA x(5), (4.58)
where
Xp(0) =(23,)1 2 [“atexpl- (£- 1)x/2]p, (8  (4.59)

and ¢, (£ is the v =0 case of (4.54) and A, is given by
(4.53).
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Proof: Consider the integral eguation

/”Mg(v) dv = Ag(w). (4. 60)
0 u+v
We can write this as

Ag(w) = fowdvg(v) f:d&’exp[- £u+0)]. (4.61)

If we multiply both sides of this equation by exp(~ &),
and if we integrate the result over u from zero to in-
finity, then (4.61) becomes

AG(E) = [ dat’ g E'G(E (4.62)
where G(£) is the Laplace transform of g{u), i.e.,

G(&) = fow exp(~ &) g(u) du (4.83)
From Lemma 4.3,

G(&) =, (8
and

A=, =Tsechmp, (4.64)
From (4.61) and (4. 63),

M) = [ dE exp(- Eu)G(E)

= flmdé’exp(-— Eug, o ). (4. 65)

Letting f(x) = exp{x/2)g(u), x=2u we see that f(x) sat-
isfies (4.58). The overall constant in (4.59) has been
chosen so that

1,7 expl= 0x,()xpe (¥) dx = 8(p = ). (4. 66)

From Lemma 4.4 and (4. 4) it follows that

e-1 ©
Bf,Z)(() :% f dg f dp X;-l l (exp(-— gx)) XP(x)) \ zy
h] 0

(4.67)
where
(exp(= &%), x,(x)) = [ " expl= (¢ +1)x] X, (%) dx
@it [Tate, (o
X ﬁmdxexp[— (C+E/2+ $)x)
=(2>\,,)'”2¢/1'md5ﬁ2-———“5/°(2'511
= (20,20, (22 +1). (4.68)
Thus
B®(0 =1 / @ [ (sm) 1 enat2E+ DI
(4.89)

Using (4.57) for v =0 we have
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B®(¢) = 8[ d:f (coshnp)n

Xp tanhp [Py /5.1,(1 +22) 12 (4.70)
From Lemma 4.3 and (4. 49) it follows that
n-1
B%)(e) == / d¢ f (coshﬁﬁ)
x| (exp(= £%), ¢, 0 /2(xN) | (4.71)
and
Giey _ 2 f / -
B “n as (coshnp
X [(exp(= £%), ¢y pu1 120N 2 (4.72)

where the scalar product in (4.71) and (4.72) is

(exp(- &), ¢, , () = /1wdx(§11> exp(- &)@, , (x).
(4.73)

Thus to prove Theorem 3 we need to compute the in-
tegrals (4.70)—(4.172).

F. 8, (e)
In (4.70) we do the ¢ integration first. Now

foe-l[ Pyoip(1 420 dE= f (4.79)

..1/z~u:(z) Z;

where z=1+2¢ and A =1 +2¢!, We are interested in
computing (4.74) in the limit A -,

For any two Legendre functions w, and w, on the cut,
we have’®

[ w,(2w,(2) dz =[(v - D + o + D]
x [(1 - Z% (wva%wﬂ— w,,%w,)]i .

(4.75)
Letting v== 3 +ip, 0 =-3% +ip’, then we have in

particular
flA dz Py 1301p(2)P 1 2415 (2)
=p*-p

- P-l /2+ip'(A)P.,1 /2&»(‘\)]-

2y A2 D[Py /20ip BP0 (M)
{4.78)

Writing

Py 13uipr ()P =) =[Py fp0ipe(2) - P a2 = p")

+P 4 i) - ')

in (4. 76) we obtain

A
_/1‘ dzp-l/ZHp(Z)P-IIZvip'(z)

:Az—-l{ (A) a P.l/zvig'(A)— -IL_iJ_(_A_)
PEp’ Paarais p-p'
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- aP-l/z»ip(A) [P-l/zvlz'(A) = P.1/ge1p(0) ] . (4.77)

oA p=-p’
We now let p’—p in (4.77),

A A1 (ap (A) 3P (A)
2 __ <1 /2+ip =1 /2+ip
/; 4z [Pt jan@F =55 ETN R

az
=Py jpuip{V) WP-I /zm(A)) .

(4.78)

We need to compute the right-hand side of (4.78) to
order o(1) as A —~=, Using Eq. (3.2.9) of Ref. 6, one
can show for A -« (along the positive real axis)

29T(ip) 1/ 1
P-l/zoip(A)2(2/77)1/2Re(r—(_21_—f:%—)—/\ 1/2 “’)+O(K) .

(4.79)
We have also
Py saeiph) _ 2/BUDGP) a4 s szis
TG Tp) " mztip)A
+ complex conj. +O{A3), (4. 80)

3Py /z0p(A) o ) _ 15102 +i9(p) - i +ip) +1nA]

-1 /2vipp(;
x2 r(;;(g; A"M/2+ 4 complex conj.

+0(A™Y), (4.81)
and

azp—l [24{)(1\)
apoA

=1/2+ip ;.
=i il I (;Jr(’ii)) [(n2 + ¥(ip) = ¥(z +ip)

+1nA)(= 3 +ip) + 1]A-3/2¢p

+ complex conj. + G(A-%), (4.82)
where ¥{x) = (d/dx) InT'(x) is the psi function.

Substituting (4.79)~(4.82) into (4. 78) and using the
relations [(ip)['(- ip) = mp~t sinh~{(mp) and (% +ip)
XT'(3 - ip) = Tsech(mp) the result

A
'[ dz [P-l /z;ip(z)]z
= (mp tanh7mp)[In2 + InA + Rep(ip) - Red(: +ip)]

1 ( r(ip)

+—Im m(ZA)“")Jro(l) (4.83)

follows.

Using (4. 83) and (4.74) in (4.70) we obtain

P =om( ) [ o ()
B{¥(€) =0,Iln (( +1m A dp coshmp

X [In4 + Rey(ip) — Red(L +ip)] ~ % ”

(4. 84)
where we used the result

lim dp (
0

A=

) " tanhmp Im (le_“f_(ﬁL) (ZA)"")

T
coshmp (z+ip

1.ml
2.

(4. 85)
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G. B8 (e), B'5)(¢), and B,

The matrix element needed in (4. 71) and (4. 72) is
[recall (4.57) and (4. 73)]

(exp(- £x), ¢, ,(x))

= (x-1\"/? -
=CMI‘(1 +”)/1 dx(x +1) exp(- Ex)P-ilzup(x)-

(4. 86)
The integral (4.86) is known™!® and the result is
(eXP(— Ex), 4’), v(x)) =Cp,vr(1 + V)g-lW-v,u(zg), (4- 87)

where W, ,(x) is a Whittaker function.!! Using (4.87) in
(4.71) and (4. 72) we have

BY(e) +B,7¢)

2 (" ° T 1 p sinhmp
_n[ dE[ dp(cosh‘irp) T

XEUDW +1 +p)T(w + 1= ip)(Wey 5y, 1,(28))

+ TV +ip)T(v = ip)(Wy /5.,,1,(28)]. (4.88)
We first examine the ¢ integration. Define
Fy©)= [ at£W, )y, ,20F (4.89)
and
Fp@)= [ de £ W, 130, 1,201 (4.90)

Let Iv:m(Z) be the respective Mellin transforms, i.e,,

Fy.2)= f0° ¢?"1F, ,()de, ReZ >0, (4.91)

Using (4. 89} and (4.90) in (4.91) and interchanging the

orders of integration so that the e integration can be
trivially performed, we obtain

F(z)=2z" foua dE E2 Wy g, 1,201

=272 [ 7 dg £2HW, 00, ) (OF (4.92)

and
Fy2) =222 [ 7 g £54W_ g, p(DF. (4.93)

The integrals appearing in (4.92) and (4. 93) are
known'? and we have for ReZ >0

fon E2Wy sy, (8P dE

_TZ +2ip)T(Z)T(~ 2ip)
TT(w-ip)TWw+ip+2)

3F (2ip+Z,Z,v +ip;

T'(Z - 2ip)T(Z)T(2ip)
T(w+ip)T(v—ip +2)

1+2ip, v+ip+Z;1) +

XoFy(Z,Z ~2ip,v=ip;1=2ip,v=-ip+2Z;1), (4.94)

where 3Fy(ay, ay, a5; by, by; Z) is a generalized hypergeo-
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FIG, 33. Contour C used in (4, 95h).

metric function.’® From (4.92)—(4.94) we see that
Fy,4{Z} has poles on the line ReZ =0 at Z =+2ip and Z
=0. To compute the small-¢ behavior of Fi,g(e) to order
o(1) it is sufficient to study the behavior of F, »(Z) on
the line ReZ =0 since

1 c+f o -
Fi'z(e):i-ﬂ—_ . G-ZF1’2(Z)dZ (4. 953.)
cai®
1 -z
-—21n CE Fi'z(Z)dZ, (4. 95b)

where (4. 95a) is the Mellin inversion formula and the
countour C in (4.95b) is shown in Fig. 33. The integral
along the straight line lying in the ReZ <0 plane is

o(1) ase—~0.

We now examine FAM(Z) at Z =+2ip and Z =0, We
first expand (4.94) about Z =0. For p>0

T(Z +2ip)T(Z)T (= 2ip)
Tw-p)Twv+ip+2Z) —

1 _LQRip)T(= 2ip)
T(v+ip)T{v - ip)

{1t +Z[w(2ip)

~y= (v +ip)] +0(ZYH}, (4.96)
where ¥y=0.5772+++ in Euler’s constant. By definition

Fo2ip +Z,Z v +ip; 1 +2ip,v+ip+2Z;1)

E (2ip +2Z),(Z) (v +ip),
oo (1 +2ip) (v +ip +Z)m!”’

where (a),= I'(a +7)/T{a). Expanding {4.97) about Z =0
we have for p>0

(4.97)

oF2(2ip +Z,Z v +ip; 1 +2ip,v+ip+2Z;1)

=1 +ZE +0(2?)

(2 p +n)
=1-+Z[pQ +2ip) +y] +0(Z?). (4.98)

Thus we have shown that for Z —~0

jo-u Ez-2[W1 /2=vy “,(E)]zd

-1 (= 2ip)T(2ip) _
=2 11"(V ipIT (v +ip) {1 +Z[Rey(2ip)

- Rep(v +ip) + Reyp(1 +2ip)] +0(Z22)}, (4.99)
and hence for Z—0
FZ)=foZ 2+ 27 +0(1), (4.100a)

where
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foy =1L (@ +ip)T{v - ip)p coshimp) sinh(wp)]™!
(4.100b)

and
o1 =f-2[2 Red(2ip) ~ In2 - Redp(v +ip)].

To obtain the Laurent expansion of FA‘2(Z )} about Z =0,
one replaces v by v+1 in (4.100).

From (4.92), (4.94), and (4.97) we have for Z — z 2ip

1 2;2.,.1[1"(121'1:)]’ 1
2ip T(vtip)|] Z+2ip

(4.100c)

Fz)=2 +0(1). (4.101)

Using {4.100) and (4.101) in (4.95b) and recalling
(4. 88)—(4.90) we have for e—~ 0"

BiY(e) + B (e)

=0, ln(l) 0,1n2 +—[ ( >n
coshmp

x[2 Re(2ip) ~ & Rep(v +ip) - & Red(v +1 +ip)]

4 o T nei
+lim— —_— i ~24p
:’rzm wr J, dp (coshﬂi)) sinhmp {Im [2

i 2
x <_—r€${f€;)) exp(- 2ip lne)] v +ip) (v = ip)

- r@p) \?
+Im[2 Z”(I‘(V +1 +ip))

X exp(— 2ip lne)]F(u +1+ip)T(v+1- ip)}. (4.102)

In deriving (4.102) we made the identification [see (4.31)
and (4.36)]

4 [~ LAY
On=m o dp(coshwp) :

The only nonzerc contribution in the limit e~ 0 to the
last integral in (4.102) is in the region p~0. A compu-
tation shows this integral is — (1/n)7"

(4.103)

We now use {4,10), (4.41), (4.51), (4.84), and (4.102)
to obtain [note that the In(1/e) terms cancel]

B,=31n20, -——17 +—-/ (coshwp)

X[2 Rep(ip) - 3 Rey(v +ip) - 3 Redp(v +1 +ip)], (4.104)

where we used the functional equationtt

P(2YP) =3d(x) + $0(x +3) +1n2,

H. Blg, v)

To complete the proof of Theorem 3 we must compute
the sum {4.25) where we have shown that the coefficients
are given by (4,104), Rather than regard B as a function
of A and v, it will prove more natural to think of B as a
function of ¢ and v where ¢ =0(\) =27"! arcsin(m).

McCoy, Tracy, and Wu 1088

Downloaded 10 Oct 2005 to 169.237.30.70. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



Then for 0<1 (A <1/7) it follows from (4.104) that

~InB =27 Bypy A"

n=(

=30In2- 1n(1 + sinmo/ 2) +1 I+ 1y, (4.105a)

1- sinno/2

where

;=1 ﬁ " ap m(‘w—f—s?“—’”fi) Rey(ip),  (4.1050)

coshmp ~ sinmo/2

A coshmp + simro/z) ,
I =~ - j{; dpIn (coshﬂp e Reyp(v +ip), (4.105¢)

and

_ v [ cosh'rrp+sin1ra/2) 24 a2vat
13__“/0’ dpln(coshﬂp_simo]z (W +pY,  (4.105d)

From (4.105b)

coshmp

il S
=4 coswo/Z[ dp costinp — sintro)2 Red(ip)
© coshmp ,
=2 cosvro/Z/_L dp oSt — sintro/2 Rey(—ip),
(4.106)

where the second equality follows from the fact that
Rey(ip) is an even function of p with no singularities

on the real p axis. ImP{-14p) is an odd function of p with
a pole with residue -1 at p=0. Hence

cashmp
9 )
oS, Z_A dp cosh’mp — sin’no/2

= 2mi cosma/2(1 - sin®ra/2),

Imy(- ip)

(4.107)

where the contour of the integration £ is the real p axis
from - = to ~¢, a semicircle lying in the upper half-
plane centered at the origin with radius ¢, and the real
axis from +¢ to + =, The limit ¢~ 0" is then understood.
Multiplying (4.107) by +¢ and adding the result to (4.106)
we have

coshmp

ndp Y= ip) Coshzﬂp - sintno/2

L 2£_ (l+sinﬂ0 2)

2 cosno/2

T oo do 1 ~sinno/2/° (4.108)

The integral

coshmp
cosh’mp — sin®na/2’

{4.109)

can be evaluated by applying Cauchy’s theorem to

2 cosmo/2 / dz P(— iz)
Cr

Jy=2 cosna/zf dp (= ip)
Q

coshnz
cosh?nz — sin’no/2’

(4.110)

where the contour Cg is shown in Fig. 34. Letting R
— % jn (4.110) resuits in

Jy = zp(l——'-g—g) + w(_l;_o_) - mcosno/2(1 - sin’n0/2).
4.111)
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Hence from (4.108), (4.109), and (4.111)

1+0 1-0\ 4, [1+sin’0, z)
_L__zp( ) z})(——z-—) +d?1 (W . {¢.112}

Since I, (t=0) =0 it follows from (4.112) that

1+0 1- o) 1 +simra/2)
I;=21n F( 5 ) 21n1"( 5 +1n(1—simr0/2 . (4.113)

The evaluation of I, is similar., We have for v>0

ol - . coshmp
it A -
0 = 00516/2]; dp Y - ip) cosh®mp — sin’no/2’

(4.114)
since Imy(v - ip) is an odd function of p with no singulari-
ties on the real axis. We again use the contour of Fig.

34 (the semicircles are no longer necessary) with the
result

,aa_ll — zzp(l to +v) -%zp(v+1———é—g)+% cosmo/2

% © dp coshmp
.o V+ip cosh’mp - sin‘mo/2"

The integral appearing in (4.115) is unchanged if we re-
place (v +ip)! by (v-ip)'. Hence

ol 1+0 1~
222 - z
e Zz;)( +V> zzp(v+ 5 )+2coszo

(4.115)

x « 9 2xa1 coshﬂp

.[- dp W* +p°) coshimp — sin‘ra/2" (4.116)

Integrating (4.116) [I,(c =0) =0] we have
IZ:—ln(lzo+v)+1nl"(1;°+v)-13. (4.117)

It follows from (4, 105a), (4.113), and (4. 117) that
B(o,v) is given by (1.12), The small-f behavior (1.17)
of the functions gy, {f; ¥) now follows from Theorem 3
and Eq. (3.5).

1. Small-t behavior of n{t/2; v,\) for A = r™!

As ¢—1 (A —7!) we have from (1.12)

B(o,v)=b_y(1-0)2+b_4(1 =0)" +b,+0(1 - 0)

(4.118a)
with
bo=3%v, (4. 118b)
by=3vIm2-3vplv+1)=yv+ 1, {4,118¢)
-R+i — R+i
4
-R R
FIG. 34, Contour Cp used in (4.110) and (4.114),
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and
=$(In2)%v - 3v In2[P(v) + Plv + 1) + 4y]
+1pv {o) +pw + P + 3’0 +1) = ')}
-2y + (v +1) +9%v, (4.1184)

We now use (4,118) in (4.4) [also use (4.5)] and re-
call that there are no terms of the form "™ for n = 3.
The limit 0~ 1 exists with the result that for £—~ 0 (along
positive real axis)

n(t/2; v, 71~ 5t {v In’* - C(v) Int +1/(4v)[C*) - 1]},
(4.119)
where
Cwy=1+2v[31n2 - 2y - (v +1)].
We note that lim,. ,(4v)"[C*(v) - 1] =3 In2- 9.

The correction terms to (4. 119) are most easily de-
termined by using the differential equation (1.3). For
example, for the special case v =0 we find*¢

(4.120)

n(e;o,r‘)=_esz- (8523 802 +4Q - 1) + 0(8%9%),

128
(4.121)

where 2=1n(6/4) +7v.

The case A>1/7 can be similarly examined. We write
for real positive p

A =(1/7) cosh({my), (4.122)
so that [see (1.10)]
o=1+2ipn. (4.123)

We examine here the case v=0. Then using (4.123) in
{1.11) for v=0 we see that (4.4) becomes for p >0, ¢
—~0*

n(t/2;0,2) ~Tlar't sinh(rp) Im{T2(~in) exp[2iu In(t/8)]}.

(4.124)
iIf we write
T(iy) = |T(iy)| explio®)]
. 1/2
=[m] explio(»)], (4.125)
then (4.124) becomes ({—~0, p >0)
n{t/2;0,2)~ - —-tsxn[zu In(t/8) +2¢(u)]. (4.126)

Thus for A> 7! there are an infinite number of zeros of
the function n{t/2;0,) lying on the positive ¢ axis with ¢
=0 being a limit point of these zeros. The asymptotic
spacing of these zeros follows from (4.126). The correc-~
tion terms to (4.124) [or (4.126)] can be found from the
differential equation,

The case A <0 can also be studied. From (1.4) and
(1, 5) it follows that

1

n(t/Z;V,-h)zm.

(4.127)
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Hence we see that for A <-—7~1, 7(¢/2; v, ) has an in-
finite number of poles clustering to zero on the positive
t axis.

V. THEOREM 4

We commence the proof of Theorem 4 by using (1. 4a)
to rewrite the left-hand side of (1.14a) in terms of G as

) RS O (e g T ki )
[1_Gz(t)]”2eXPj; dt {t -G

2v

+1—_—62'(—t,—) B (5.1)

where G’(t) = (d/dt) G(t). The first factor may be written

in the form
4 26¢06°¢ ))

[1-Gc*H] ”:exp(—é ['I——GT(t—)T

and therefore Theorem 4 is established if we can
demonstrate

- 50 Ny 50 = f dt'{ tlG @) - G o))
n=i

(5.2)

G{)G'(t)

“T1-6%¢")]

(5.3)

T =G

t1Z G’(t')} .

Furthermore, because fy,(f;v) and G*(f) vanish exponen-
tially rapidly as £ —« (5.3) will be demonstrated if we
can show

H{GX(t)~ G'Ht)] G@G'() 2v

2 ngr ooy __

LA = T ~ [ cm) * 1= G0
(5.4)

or, using the differential equation for G(t) (2.7

(1 -G E A (8 y) =GH(1 - G?) - GG"(1 ~G?).  (5.5)

Here, all factors of t have been removed by use of the
differential equation.

To demonstrate (5. 5) we first define in analogy to
L (1.6b)
ket

- ex’g - ‘
hZhol — (_ l)kﬂ/ dyl .e -/ dkaOl 11 _( 1)
1 1 st O

1 v 2k 1 kel
< (21;_) N ———— T (p}, = 1).

y,+1) = Y3V (5.6)
Then it is seen from the definition (1.13) that
f2”n=§g2(n-l)+l YR (5.7
Thus, if we define
H(t;w,\) = 231 A R, (5.8)
(5. 5) reduces to
(1-GHH=6(1-~G"-G"(1-G?) (5.9)

and therefore our theorem will be proven if we can
demonstrate that

~(G=G")=G¥" -GG +2G*H ~ G*H. (5.10)
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The coefficient of A*™! of the left-hand side of (5.10)
is

h2ml = (an-rl ‘gélml)

e o 2nel xp{— ¢
=(-1) 1[ dyl...—[ @ygn T ?yf’(_l)y)

2n
y, =1\ 1
X l'I a-1)
(y,+1) 121 Y5 tVim (y” !

:1

n 2ned
+“(y§:-1)[ (2 ;v,«) ] . (5.11)
J=t 1=1
Rewrite the term involving (y,)?, using
2 n
2 (2.1 ’H’zj)«): (Y2r + Y2001}
J=1 k=]
1 (zig )2 2, ,
== + Z - P
2 { = Y -1 Yar pt Yara (5.12)

to obtain for the term

n+l n %1 2
T (93— 1) + 11 (yg,_l)[1-< y,) ]
i1 7=t i=1

in brackets

n+l
=T -0+ 1 (3’21-1)[21)(3’21"1}

1 n n
- (31— 1) - 2?}“’21-1 +yu)§ (yan "“yzm)]-

(5.13)
Then use the identity
2+
Xy Xgeor Xopy + X X, o0e in[E Xor~ Z) XZl-l]
n n
== 20 Kyjuy = Xpp) 20 (Xpp= Xppay)
j=1 Py
A k-t
XTI Xpy T Xogpu n X1, (5.14)
1t 1,24 1yekel
with
X, =y3-1 (5.15)
to obtain

)n#l

hZMI - (anoi -gzliul,) = (_ dyl i dy2n+1

2ne1 v
-ty,) [v,~1 2n 1
x I [—,——,-;rexp( ( ) )] ol
= lyi=1) y;+1 =1 Y5V
n

n
X + + -2 1 (y2,—
Q (9254 yzy)g (Y23 + Yarey) { }31 (y3:—-1)
= (Y2501 = V2, (V2= Yaret)

=1
><H(
1,=

=1 n D=1 1 (3} -1)}
171 1gahel (5.18)

The first term in brackets in (5.16) gives the term
2G’H in (5.10) and we note that after we expand the
product

(9251 = Y2 1925 = Y2me1)

=251V 2n = Yare1) = V25V 20 +¥25Y 2001 (5.17)
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that the first term on the right-hand side vanishes when
used in the double sum over j and % in (5. 16), Moreover
we may rewrite ¥y,;¥,, using

2R 2
5]
=24
h=1 ]

=Y2:¥2 Ty 2 (Y21 +Y211) +¥2x 20 (Y21oy +321)
1= 1=741
n R
+2 (¥2r, +221001) Z (Y211 +321,)
11:J 12=1101

n i
+ 5 (o, #9000 20 Gaugm +921) (5.18)
lls! 1 lzsl

and obtain
Ropey - (mel _gznml) =(- 1)”’1[ dyqeee Y41

2ne ] ex (—ty ) (y _1>" 2n 1
Il H B4 A Il
X !=1[(yj' 1) y;+1 j=t V5 tVin

n n n
xzz (9241 +yz;)kzj (¥2p +Y2p01) {— 21131 (% -1)

+ ﬂ (yzz -1) U (yzxz+1~1) H (yzz -1)
1=t 1y=1 13=2+1

Bal

28 2
Xl:"yuyz»ow(?%!yz) Y] 123 (921 +¥2141) = Var

1] n I3
XE (3’21-1 +y21) - E (321 * Yargu) Zl; 1(3’212-1‘*'3’212)
2= 1'

- E (21, +y2,1,1) E (J’zxz-t +y2,2)]}' (5.19)
=

We note that the terms mvolvmg Yoy 2,:,( Y21+ ¥y5,4) and
yzkzj,,(yz, 1 +¥4;) are equal and we eliminate ¥y; and
Yauey USING

2k &
Yos= EJ’z— 2 (Y2101 +¥21). (5. 20a)
1=24 1=
and
2nel n
Yoret = i} Yi- 2 (Y21 +¥2101) (5. 20b)

1=2ke1 Iz=hel

Therefore, upon combining terms we find that

thd - (anol -gznml) —_—f dy s dy?.mi

2rel v
exp(=ty,) [y, -1V & 1
x Il —z—r'}z Il
71 [(y,- 1) Y+l ] a9+

n n
szg (= 17325 +925) 22 (= 1) (935 +V3001)
E ki

n F-1 =1
X{Z(— 1)1 1] (3’%;— 1)+ 0 (3’%1 -1 1 (3’%1 1= 1)
1=1 1yst 1 1yay 2

n
X T (33,-1) [(— 1)""(2%) ~1)¥ 2 Y,
qskel 1=24 14=27
X Z; Vi, - E (- 1)'1'1(3221 +3’211.1)
1ys2ks1 144
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2 1p, Painlevé, Acta Math. 25, 1 (1902)

9=l -l . » . . .

x ?J— 121y, 5 +y51,) (= 1)*02 ]} > (5.21) ’B, Gambier, Acta Math. 33, 1 (1910),
2t 3T, T. Wu, B.M. McCoy, C.A. Tracy, and E. Barouch, Phys.

from which (5. 10) follows. Hence, Theorem 4 is Rev. B 13, 316 (1976),

established. 13. Myers, Ph.D. thesis Harvard University, 1962
(unpublished),
N, P. Erugin, Differ. Urav. 3, 1821 (1967) [Differ, Eq.

8See, for example, A Erdelyi, Higher Transcendental
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