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In this paper we will establish formulas for the correlations of the 
two-dimensional Ising model in the absence of a magnetic field and prove 
the convergence of the scaling limit from above and below the critical 
temperature. 

The theoretical developments which lead up to our results begin with 
Onsager’s calculation of the free energy for this model in a classic 1944 
paper [52). Statistical mechanics in the infinite-volume limit is expected to 
exhibit phase transitions through nonanalytic behavior in thermodynamic 
quantities; the Onsager formula for the free energy as a function of 
temperature was the first explicit example of such behavior. In a sequel to 
Onsager’s paper, Kaufman [34] simplified the analysis by emphasizing the 
role of the spin representations of the orthogonal group; Kaufman and 
Onsager [35] subsequently used this idea to study the short-range order. By 
1949 Onsager [53] knew the formula for the spontaneous magnetization, and 
Yang gave an independent derivation of this result in 1952 [74]. 

In [28] Kac and Ward and later in [32] Kasteleyn pioneered a combina- 
torial attack on the Ising model. Montroll, Potts, and Ward [49] used this 
method to give formulas for the correlations as Pfaffians. The size of the 
Pfaffians in these formulas grows with the separation of the sites in the 
correlations and the asymtotic behavior at large separation (clustering) is far 
from evident. To go beyond the spontaneous magnetization in the analysis 
of the clustering of correlations, corrections to the Szego formula were 
devised. This problem has a long history, and we mention in connection 
with the Ising model the fundamental papers by Wu [72] and by Kadanoff 
(291 in 1966, and by Cheng and Wu in 1967 [ 131, and refer the reader to the 
book by McCoy and Wu [40] for further details up to 1972. 

In Fisher [ 181 and Kadanoff [30] a notion of scaling for statistical systems 
near a critical point was proposed. To understand the scaling limit for the 
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Ising model it proved important to have formulas for the lattice correlations 
which manifested clustering explicitly. In 1973 the calculation of the two- 
point scaling function was announced in [ 11, 681 with details appearing in 
[73]. Somewhat later several groups announced series expansion formulas 
for the scaled n-point functions [4, 10, 43, 571. McCoy et al. [43] employed 
Pfaffian techniques which evolved from the combinatorial approach to the 
Ising model (see also [41]). The work of Sato et al. [57], of Abraham [2-51, 
and of Bariev [9, lo] is more directly descended from the original algebraic 
approach of Onsager and Kaufman; an approach which, incidently, re- 
ceived further stimulus in the papers of Schultz et al. [65] and Kadanoff [29]. 

In the passage to the scaling limit, the correlations become singular at 
points of coincidence. For example, the critical exponent specifying this 
singularity in the two-point function is “known” from the large-scale 
behavior at the critical temperature [40] (the two-point scaling function 
interpolates between the behavior at large separation at the critical tempera- 
ture and the behavior at large separation away from the critical tempera- 
ture). However, the precise asymptotics at short distance has never been 
directly computed from the known series expansions. This is not too 
surprising since these series were developed specifically to exhibit the 
behavior at large separation in the scaled distance. In [73] Wu, McCoy, 
Tracy, and Barouch found the precise short-distance asymptotics for the 
scaled two-point function by first showing that this function was expressible 
in terms of a Painled transcendent. Part of this analysis was put on a firmer 
footing in a later paper [42]. 

The deeper reason for the occurrence of the Painleve transcendent was 
first understood by Sato, Miwa, and Jimbo (S.M.J.) [58-631; They were 
aware that Painleve transcendents occur naturally in the integration of 
Schlesinger’s equations [64] for nionodromy-preserving deformations of 
linear differential equations (oddly, the extensive work of Garnier [19] on 
this connection is not mentioned in the principal English reference, Ince 
[25]). In a remarkable series of papers, they developed new techniques in the 
theory of Clifford algebras [59], generalized the monodromy idea to a 
partial differential equation (the Euclidean Dirac equation) [61], showed 
that the scaled n-point functions were the coefficients in the* local expansion 
of a basis of multivalued solutions to the Euclidean Dirac equation [62], and 
finally used this to demonstrate that the scaled n-point functions satisfy a 
nonlinear Pfaffian system of differential equations (every derivative is 
specified) [62, 631. In the case of the two point function, the Pfaffian system 
is integrable in terms of the particular Painleve transcendent appearing in 
[42, 731. A review of this work can be found in [26]. 

In the work we have described on the Ising model the level of mathemati- 
cal rigor fluctuates considerably. In much of the work on the correlations, 
the subtleties of the boundary conditions for the infinite volume limit are 
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side stepped. In all the work we are aware of there are “holes” of positive 
measure in the known regions of convergence for the series representations 
of the scaled n-point functions. In particular the important S.M.J. [62] 
analysis of the scaled correlations introduces (multivalued) continuum 
order-disorder correlations through complicated infinite series expansions 
whose known region of convergence has large gaps. The coefficients in the 
local expansions of these order-disorder correlations are identified as 
n-point functions again only at the level of the series expansions. One of the 
principal motivations for our paper is to lay the foundation for a treatment 
of the S.M.J. analysis in which the multivalued order-disorder correlations 
and the n-point functions appear as well-controlled limits of simply defined 
lattice analogs, and in which the local expansions are computed rigorously. 
We shall present this analysis in a forthcoming paper. Another important 
consideration for our work was to establish some of the expected probabilis- 
tic and field theoretic properties for the scaled n-point functions. Our 
contribution to these matters is presented in the final section of this paper. 

In the first three sections of this paper, we will prove (regularized) 
determinant formulas for the infinite-volume correlations (Theorems 2.1 
and 3.2). The transfer matrix formalism in Section 1 permits us to express 
the correlations (with “plus” boundary conditions) for a semi-infinite box as 
the Fock expectation of a product in a finite-dimensional Clifford algebra. 
We apply results from [56] to give determinant formulas in this finite- 
dimensional situation and then prove the convergence of these determinants 
to their infinite-volume counterparts directly. Our proof is valid only below 
the critical temperature. Above the critical temperature we use a variant of 
Kramers-Wannier duality to relate the correlations with “open” boundary 
conditions to correlations of disorder variables (see Kadanoff and Ceva 
[31]) with “plus” boundary conditions below the critical temperature. This 
effectively reduces the convergence proof to the previous case and incidently 
identifies a natural disorder variable on the lattice. Once the determinant 
formulas are established, the infinite-dimensional results in [56] then give 
simple “abstract” characterizations of the infinite-volume correlations as 
Fock expectations (Theorems 2.2 and 3.3). 

The use of “plus” boundary conditions permits us to use convergence 
results [39] which show that the correlations obtained in the two step 
infinite-volume limit natural for the transfer matrix approach are the same 
as the correlations which result from letting the sides of a square box tend 
simultaneously to infinity. This coincidence of limits establishes dihedral 
group invariance and that the correlations are the expectations of products 
of random fields [ 14, 151, neither of which properties are manifest in our 
explicit formulas. 

In the fourth section we prove convergence of the scaling limit from 
above and below the critical temperature. Our formulas are not valid 
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everywhere but the exceptional sets are measure zero. The resulting n-point 
scaling functions (below r,) are given by formulas det 2( 1 + G), where G is 
a Schmidt class operator. 

In Section 5 we use Gaussian domination [51] and some integrability 
estimates for the two point function to conclude that the correlations are 
locally integrable functions. We then use the Bochner-Minlos theorem to 
demonstrate that we have computed the n-point functions of a generalized 
random field [ 16, 201. The Osterwalder-Schrader axioms [54] are all direct 
consequences of the convergence of the scaling limit with the exception of 
rotational invariance. We do not prove rotational invariance; however, we 
note that McCoy and Wu have an unpublished demonstration of this 
property. Of particular interest in this last section are new formulas for the 
lattice two-point functions which we use to establish dominated conver- 
gence. 

We conclude this introduction by mentioning some work of McCoy and 
Wu [44-461 in which they analyze the decay properties of the n-point 
functions and relate the non-tree-like decay below T, to analytic properties 
of the two-point function in the complex H plane (H is the magnetic field). 
We believe our formulas are well suited to such analysis. 

1.0. Let A,,, = {i E Z*: ]i,I 5. M,]i,I I N} and write a(i) for the 
spin at site i E A,, N. A configuration of A, N is an assignment of a value 
(either + 1 or - 1) for the spin a(i) at each site i E A, N. Let Ct denote 
the set of configurations such that a(m, n) = 1 if either Irn 1 = A4 or 
In I = N. The partition function with + boundary conditions is 

where K( i, j) = J/kT if i and j are nearest neighbors and is zero otherwise, 
T is temperature, and k is the Boltzmann constant. The transfer matrix used 
by Onsager and Kaufman is for periodic boundary conditions. Abraham 
and Martin-Liif [6] were the first to adapt this method to plus boundary 
conditions. To establish notation and for the reader’s convenience, we 
summarize the results we need from [6]. 

Let A denote a subset of A,, N and define uA = lli,,u( i). The correlation 
hxt, N is defined by 

WG, N 

The transfer matrix formalism splits the sum over all configurations into 
a multiple sum over the configurations of the rows. Let X denote the set of 
maps from {-M,..., M} into { - 1, l}. Then X is naturally identified with 
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the configurations of a row. We will write + for the element in X whose 
values are all + 1. 

SupposebERandar, eX(n= -N,...,N).Wedefine 

mTl+l~ a,) = e-” m=fi_MeXPX(“)“.,,(‘).no, 

M-l 

V,bJ = m=~MexpKa,(m + lb,(m), (14 

where 

K(m) = b, (ml = M, 
= K, Irnl #hf. 

Let A, denote the intersection of A with the nth row of A,, ,,, and write 
uA, for the product of the spin values in A, (with uD = 1). We define 

N-l 

‘M,Ntb)= x x v,(+~aN-,)1/2(aN-,1) 
n=-N+l a,sX 

X . . ’ V,(a-N+,)V,(a-,+,~ +>* (1.4 
Then 

N-l 

+?4%, N = ~~z~,N(b)-’ x 2 ‘I(+, aN-,)V,(aN-hN-, 
n=-N+l a,EX 

X . . ‘U ~-~+,~d~-N+b +b (1.3) 

To see this, observe first that the terms in (1.2) and (1.3) which involve b 
may be rewritten expb(a,+,(-M)cu,(-M) - l)expb(cu,+,(M)a,(M) - 
1). In the limit b + cc only the configurations for which 
a,+,(-w%(-w = a,+1 (M)a,(M) = 1 will survive. Since aeN = 
aN(k)= 1 (k= -M,..., M) it follows that only configurations in C + 
survive the limit b + cc (this construction is used by Abraham and Martin- 
L6f [6]). 

It is natural to regard V,(a,) and &(a,+ ,, (Y,) as matrices of operators 
on C x. We identify C x with II,“= -# Ci (Ci - C2) by the map which 
takes S(q .) (the function on X which is 1 on a and 0 for the other 
configurations) to 

a,(M) 8 a,( M - 1) * * * &I,( -M), where 2a,(m) = 
1+ a(m) [ 1 1 -a(m) . 
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In this representation, the products in (1.1) are tensor products of matrices. 
In particular lim,, Q) expb(a,+,(*M)cu,(kM) - 1), is the matrix of the 

identity on C CM and exp KLY,+ I(m)a,( m) is the matrix 
[ I 
ee-KK eLKK on C$ 

We write [ ee:K earn] = (2sh2K)‘/*exp K* [y A], where K* is defined by 

sh2Ksh2K* = 1 and introduce the notation 

aA”= II uj, 
(i. n)EA, 

M-l 

V,= expK* x C,, 
m=--M+1 

M-l 

V,= expK z a,,,~,. 
m=-M 

If we let VL = v~/‘v,&‘/” and + = [A] 8 . . . @ [A] then upon canceling 

common factors such as (2sh2K) M+‘/2 from both the numerator and 
denominator of (1.3) it follows that 

(‘A)& = 
((V~)""" + ,+> ' 

04 

where the inner product on II,“= --M 69 Ck is the one derived from (x, y ) = 
x,jJ + x27* on C*. 

We wish to fix A and let N + cc in (1.4). Further information about VJ 
is useful and following Onsager and Kaufman we introduce a Clifford 
algebra which facilitates the analysis of I$,,. It is natural (for reasons that 
will appear later) to index the vector space of the Clifford algebra on the 
half-integer lattice (see Kadanoff and Ceva [31]). Let IM = {-M, . . . , M} 
and define WA = l*(ZM - l/2, C) @ r*(1,,, + l/2, C). Then an orthonor- 
mal basis for Wh is given by e,(k) = 6(k;) @ 0, k E I,+, - l/2 and e,(k) 
= 0 CB Qk;), k E IM + l/2. 

on hnEIM Ci the Brauer-Weyl [ 121 representation of the Clifford rela- 
tions is 

k EI,- l/2, 
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k EI,+ l/2. 

The map e,(k) + pk/Q, e,(k) --f &/@ extends to a representation of 
the Clifford algebra, e(IVh, P), on n~=-,C~. The conjugation P on Wh 
is the standard one associated with the real subspace r2( 1, - l/2, R) G3 
12(lM + 1/2Tw) Of wh. If wh 3 w = ZkElM-l/2Wlkel(k) + ZkEI,+1/2. 

W2ke2@) then we w&e d%w) = zkEI,,-1/2wlkPk + zkEIM+l/2w2kqk. 

If g is an operator on lI,“=-, @ Ci such that gF(w)g-’ = F(T(g)w) for 
some linear operator T(g) on I+$ then we shall say g is an element of the 
Clifford group. Since F(w,)F(w,) + F(w2)F(wI) = (wl, Pw2) it is easy to 
see that 7’(g) must preserve the complex bilinear form (. , P.), i.e., T(g) is 
P-orthogonal. Furthermore since F(w), w E WA, generates an irreducible 
algebra on II m E I ,C i [ 121 it follows that g is determined up to multiplication 
by a constant by T(g). The introduction of the Clifford algebra in the 
analysis of the Ising model proves useful precisely because both the spin 
operators a, and the transfer matrix V, are elements of the Clifford group. 
A considerable simplification is achieved by working with T( a,) and T( Vh) 
rather than with a, and I$,, directly. We refer the reader to [12] for the 
results we require concerning Clifford algebras. 

It is a straightforward consequence of the definitions of am and Pk and qk 
that 

%I P k”m -’ = sgn(m - k)p,, 

%~k% -’ = sgn(m - k)q,, 

k E I, - l/2, m E IM, 
0.5) 

k E IM + l/2, m E Z,. 

For reasons that will be apparent momentarily, we let H, = 
l/2,..., M - l/2} and define W, = 12( HM, C 2). The vectois-r T I- 
e,(-M - l/2) and e2 = e,(M + l/2) will play a special role and to 
distinguish them we write Wh = C 2 @ W, with 4: 2 spanned by (e,, e2). 
Next we define a family of real orthogonal maps s(m) on W, by 

s(m)e,(k) = sgn(m - k)e,(k), k E H,, m E IM, 

s(m)e,(k) = sgn(m - k)e,(k), k E H,, m E I,. (1.6) 

Consulting (1.5) one sees that ~(a,) = [A -:I @s(m) for m E I,. The 

operators urn are determined by (1.5) and the additional requirement IJ~ = I 
up to a sign. For plus boundary conditions below T, we will resolve this 
ambiguity by insisting that (u,)’ > 0. Above T, the sign ambiguity will be 
of no consequence since the odd correlations vanish. 
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The P-orthogonal T”zf T( Vh) is more complicated. It may be computed 
by first calculating T( Vi/‘) and T( V,) and then multiplying the results to 
get Th = T(Vi12)T( V,)T(Vi12). An easy way to see what T(Vi12) and 
T( V, ) are is to observe 

M-l M-3/2 

VI = expK* 2 cm = exp iK* 2 pkqk+,, 
m=-M+I k= -M+ l/2 

M-l M-l/2 

V2= expK z u,+,u,= exp-iK x Pkqk* (1.7) 
m=-hi k= -M+ l/2 

Performing the indicated calculations one finds that Th = ’ ’ @ TM, [ 1 0 I 
where TM is the P-orthogonal on W, defined by 

TMe,(k) = - (1/2)e,(k - 1) + c,c2e,(k) - (1/2)e,(k + 1) 

- (i/2)(c, - s,)e,(k - 1) + ic,e,(k) 

- W)(c, + slk2(k + 1) k E HM-, 

T,e,(-M + l/2) = (1/2)((c, + l)c, + (c2 - l))e,(-M + l/2) 

- (1/2)e,(-M + 3/2) + (i/2)(c, + s2) x 

e,(-M + l/2) - (i/2)(c, + s,)e,(-M + 3/2) 

T’,e,(M - l/2) = (1/2)((c, + 1) + (c2 - l)c,)e,(M - l/2) 

- (1/2)e,(M - 3/2) + (i/2)(c2 + s2)e2(M - l/2) 

- G/Nc, - sl)e2Vf - 3/2) (1.8) 

T,e,(k) = - (1/2)e,(k - 1) + c,c,e,(k) - (1/2)e,(k + 1) 

+ (i/2)(c, + s,)e,(k - 1) - ic,e,(k) 

+ WNc, - sI kdk + 1) k E &,-,, 

T,e,(-M + l/2) = (1/2)((c, + 1) + (c2 - l)c,)e,(-M + l/2) 

- (1/2)e,(-M + 3/2) - (i/2)(c2 + s,)X 

e,(-M + l/2) + (i/2)(c, - s,)e,(-M + 3/2) 

T,e,(M - l/2) = (1/2)((c, + l)c, + ( c2 - l))e2( M - l/2) 

- (1/2)e,(M - 3/2) - (i/2)(c, + s2)e,(M - l/2) 

+ (i/2)(c, + sI k,(M - 3/2), 

where c, = &2K*, c2 = chZK, s, = sh2K*, and s2 = sh2K and we used 
sh2Ksh2K* = 1. 
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Our first result is the identification of the N + co limit in (1.4) with a 
Fock expectation. Suppose W is a complex Hilbert space (even or infinite 
dimensional) with a distinguished conjugation P. The Fock representations 
of e( IV, P) are parametrized by self-adjoint idempotents Q on W such that 
QP+PQ=O.LetQ,=$(l*Q),Pw=@,andW,=Q,W.Wewrite 
A( W+ ) for the complex alternating tensor algebra C @ W+ @( W+ 8 W+ ) 
+ 0.0. On A( W+ ) there exist annihilation and creation operators a(w), 
a*(u) for w, 2, E W+ which anticommute among themselves, satisfy 
a*(u)a(w) + a(w = ( u, w)l and such that u(u)1 = 0, where 1 = 1 
cBO@O*** is the vacuum vector. The Q-Fock representation of e( W, P) is 
generated by P(w) = u*(Q+ w) + u(Q- w), w E W. The Q-Fock state on 
C?(W, P) is given by C?(W, P) 3 g -+ (P(g)l, 1). We would like to identify 
the eigenvector for Vh which has the largest eigenvalue with the vacuum 
vector for a Fock representation. Modulo a degeneracy in the spectrum of 
Vh this proves possible. 

To deal with this degeneracy, it is convenient to think of (1.4) in 
representation dependent terms. For finite-dimensional W, all Fock repre- 
sentations are unitarily equivalent [ 121. Using (1.8) and (1.6) to characterize 
I$,, and a,, we may work in a representation which simplifies Vh. Of 
course, (1.8) only determines I$, up to multiplication by a constant. 
However, since the factor Vh occurs the same number of times in the 
numerator and the denominator of (1.4) this ambiguity will not affect the 
correlations. If T is a P-orthogonal on W we will write T(T) for an element 
of the Clifford group such that I’(T)F(w)lY( T)-’ = F(Tw). 

We next describe the representation (i.e., the choice of Q) in which the 
action of Vh is simple. Since T$ = T(V:/*)T(V,)T( Vi/“) with T( V,) a 
positive self-adjoint operator and T(Vi/*) self-adjoint it follows that Th is 
also a positive self-adjoint operator. It is a result of Abraham and Martin-Liif 
[6] that TM (on W,) does not have 1 as an eigenvalue. Hence log TM is 
invertible and we define QM to be the unitary part of the polar decomposi- 
tion of - log TM. Since log TM is self-adjoint it follows that QM is a 
self-adjoint idempotent. Furthermore, since TM is P-orthogonal we have 
F,PT, = P or using p, = TM it follows that PT = T -‘P. Thus Plog TM 
= -(log T,)P and from this one may deduce that PQ,,,, + QMP = 0 (see, 
for example, p. 334 of Kato [33]). Note that Q,& = i(l + QM) is the 
orthogonal projection on the eigenvectors for TM with eigenvalues less than 
1 andifwelet TL = Q~T,thenI’(T,)=ZCBT,+CB(T$@TT,+)@.-. 
represents TM in the Q,-Fock representation of C?(W,, P) on A(WL ). 
Since T$ has eigenvalues strictly less than 1 the vacuum vector is clearly the 
unique eigenvector associated with the largest eigenvalue for r(T,) in this 
representation. If we define Qh = 0 -’ @QM it is clear that PQL + 

[ I QLP = 0 and that QL is a self-adjomt i&mpotent. 
Because the operators P, Th, sh, and Qb all respect the orthogonal 
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decomposition 6: 2 ~3 W, it is convenient to realize the Qh-Fock representa- 
tion on the tensor product A(C) 8 A( WG ) in the following manner: 

with vacuum vector A @ IeM. [I 
Evidently In? = 18 I?(T,) and I($&) = I[: -:I mys,). Since 

VI [ 1 -y commutes with [ 1 y A and anticommutes with 9 -i we may [ I 
take I’[: -y] = [y i]. We then write I(&) = [y A] C3i(srn) with the 

further normalization I(s,)2 = I understood, 
The vector + is characterized as a unique common eigenvector for 

u,(m = -M,..., M) with eigenvalue 1. In the representation we are con- 

sidering, this means + = [ 1 ‘Ifi @ (+) where (+) o 
vfi 

n right side is the 

unique common eigenvector for I?(#,) with eigenvalue 1. 
If we substitute these results in (1.4) then this equation remains valid with 

I$, replaced by r(T’), a,,, replaced by T(s,) and + replaced by the 
common eigenvector for r(s,) on A( W$ ) with eigenvalue 1. The degener- 
acy in the spectrum of the transfer matrix has been removed and a standard 
spectral theory argument gives the N -+ cc limit in (1.4) as a Fock expecta- 
tion provided we know that the Q,-Fock vacuum is not orthogonal to (+). 
This is, however, a consequence of the lower bound in Appendix A of 
Abraham and Martin-Lof [a]. To simplify notation, we will write IJT,) = 
V,, and am = I($,) henceforth. We have sketched the proof of: 

THEOREM 1.0. Let (aA>&,, = limhr,m(u,)$,N. Then 

~%zf,co = @4,&?4.-, - . * G4%,lQM~ 4&L 0.9) 

where A C [-M, M] X [-n, n], leM E A( W,‘) is the Q,-Fock vacuum, 
v-,=1@ T,+@(T,@ T,+)@ ... on A( WL ) and a,,, = I?($,) with the 
further normalizations ui = I and (u,,,)L, m > 0 determining a,,, uniquely. 

2.0. It is rather easy to guess the M --) cc limit in (1.9). Let W = 
12@ ,,2, C 2), where Z ,,2 = Z + l/2 and write T = lim,,,+mTM(informally). 
Then supposing that the boundary behavior does not play a role in the 
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infinite-volume limit for TM one has 

T,e,(k) = - (1/2)e,(k - 1) + c,cze,(k) - (1/2)e,(k + 1) 

- (i/2)(c, - s,)e,(k - 1) + &e,(k) k E z1,2, 

- WNc, + h2@ + 1) 

(2.0) 
T,e,( k) = - (1/2)e,( k - 1) + c,c2e2( k) - (1/2)e,( k + 1) 

+ (i/2)(c, + sl)e,(k - 1) - &e,(k) k E z,,*, 

+ wm, - s,)e,(k + 1). 

In order to diagonalize T we introduce the Fourier transform f(0) = 

z ktz,,pikef(k)(e E (- 1~, m]) for functions f(k) = A’:: [ 1 in l*(Z,,,, C*). 

In the Fourier transform variables T is the matrix-valued multiplication 
operator 

T&j) = “c2 - 
1 

cosf3,s,sin0 - i(c, - c,cOse) 

s,sinB+i(c, -C,~0~e),C,C2 -COST 1 fw 
= T(e)?(e). (2.0 

We will take (2.1) for the definition of T and to simplify the description 
of the associated Q we follow Onsager [52] and introduce functions y( t9) > 0 
and a(e) (called S*(w) by Onsager) defined by 

dy(e) = c,~2 - c0s e 

shy(8)ei@) = ( c2 - C, c0s e) + is, sin 8. (2.2) 

The identity c/z* y - sh2y = 1, which must be true for this definition to 
make sense is easily checked. Substituting (2.2) in (2.1) one finds 

T(e) = exp y(e) $?!CBj -iza’e) 
1 [ 11 . 

Thus Q is multiplication by Q(0) = [ +~,~Cbl let:“] in the Fourier 

transform variables. Let Qt = (l/2)(1 k Q), T, = Qk T, and W, = Qk 
W. Then r(T) = I CB T+ @(7’+ 8 T+ ) 63 . . . is a contraction on A( W+ ). 

We define orthogonal maps s, on W by 

s,ej(k) = sgn(m - k)ej(k) (k E Z,,,, m E Z, j = 1,2). (2.3) 
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We would like to define a,,, = r(s,,,) in the Q-Fock representation. Maps 
T(s) implementing arbitrary P-orthogonals s do not exist in infinite- 
dimensional Fock representations. However, since each s, is a real orthogo- 
nal map which commutes with P the necessary and sufficient condition for 
the existence of T(s,) is that the commutator (sm, Q] must be a Schmidt 
class operator on W [55,66]. Since [s,,,, Q] is an integral operator in the 
Fourier transform variables with a bounded kernel this criterion is satisfied. 
Since s(m)* = 1 we may further normalize a,,, so that ui = I. The represen- 
tation for the infinite-volume correlations which suggests itself is 

(2.4) 

The rest of this section is devoted to a proof that this is correct for T < T, 
with the sign ambiguity resolved so that (u,,,lQ, lo)> 0. 

For technical reasons our proof does not work for plus boundary condi- 
tions above T,. This is probably a consequence of the fact that above T, plus 
boundary conditions are not especially natural; the finite-volume disposi- 
tion of spins to point up is “washed out” in the infinite-volume limit. In any 
case we use a variant of Kramers- Wannier duality to relate open boundary 
condition correlations above T, to correlations for disorder variables with 
plus boundary conditions below T,. The details of this analysis will be given 
in Section 3. 

We now make preparations to state the results from [56] which we shall 
use. Suppose W is a Hilbert space with distinguished conjugation P and let 
Q be a self-adjoint idempotent on W which anticommutes with P. The real 

subspace of W relative to P is %Ei P, W, where P, = (l/2)(1 2 P). The 
complex structure i maps P- W onto P, W and preserves the real orthogo- 
nal structure. If we identify W with YV @ ‘X via the map I @ (-i): P, W @ 

P- W + !X CB Y,, then in this representation P becomes 

complex structure i on W becomes 

with both P and i it follows that iQ has the matrix representation 
% @ %. Since iQ is a complex structure it follows that A must be 
structure on %. The matrix representation of Q is thus - i( iQ) = 

Now consider the real orthogonal map D = (l/a) [: 

izes Q. We will refer to (!X @ ‘X, A @ (-A)) as the Q representation of W 
since Q is diagonal in this representation. 
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One may verify without difficulty that ri: c: is the matrix of a 
[ 1 

P-orthogonal in the Q-representation of W if and only if 

Let w + F(w) denote the Q-Fock representation of e( W, P) and define 
G( W, Q) to be the collection of bounded operators on A( W+) such that 
gF( w) = F(T( g)w)g for some bounded invertible P-orthogonal T(g) on W. 
We will say g E G( W, Q) is factorable if the matrix element Tz2( g) of T(g) 
in the Q-representation of W is invertible. If g E G( W, Q) is factorable we 
write 

AR(g) = ,-,; (g) 1 
TIZT22YR) 

22 21 1 0 . 
(2.6) 

Now suppose g, is a factorable element of G( W, Q) for i = 1,. . . , r. 
Define AR to be the r X r block diagonal matrix with entries (AR);, = 
GjjAR(g,) and define L to be the r X r block matrix with entries 

L,j=- Q+L(g;+l)***L(gj-l), j>i+ 1, 

= - Q+, j=i+ 1, 

= 0, j = i, 

I= Q-3 j=i- 1, 

=Q-L-‘(g,-,) ***L-‘(gj+,), jCi- 1. (2.7) 

Writing (gl,, lcr) = (g)Q the theorem from [56] we wish to use is: 

THEOREM (2.0). Suppose g, is a factorable element of G( W, Q) for i = 
1 7--., r. Then if (g, . . .g,)Q # 0 we have 

The regularized determinant, det 2, is defined in [67] and we refer the 
reader to this paper for the properties of det, we wilI use. 
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A second result we require is 

THEOREM (2.1). Suppose g is a factorable element of G( W, Q). Then 
IWe12 = IIgll12Wet(~ + IT,2(g)T221(g)12)1-11/2. 

This result is proved in Lemma 3.0 of [56]. 
We will apply these formulas to the semi-infinite correlations and then 

prove the convergence of the determinants explicitly. We begin, however, by 
identifying the various operators which appear in the final (infinite-volume) 
result. The reason for starting with these calculations is that the spin 
operators ui are factorable elements of G( W, Q) only for T < T,; this is 
apparent when one attempts to compute TX;‘(q) in the infinite-volume 
limit. 

If (mi, ni) are points in Z2 (i = 1,. . . , r) with n, I n2 * * * I nr then the 
putative infinite-volume correlation (u(m,, n,) . . .u(mr, n,)), is 

(u,,v”*-“‘u m2 
. . . y”,-“r-lum,),* 

Let nr+ 1 be an integer such that n, I n,, , and define gi = um,VCn+-“l), i 
= 1 , . . . , r. Then since Vlo = 1, it follows that: 

(u(m,, nJ . . 4mr9 nJ>+ = (8, * * *g,>p 

The P-real subspace of 12(E ,,2, C2) is % = 12(H1,2, R2) and it is clear 
that the Q representation of T(V) is multiplication by [e-l’) ezo,] in the 
Fourier transform variables. The action of s(m) = T( a,) on W is given by 
(2.3). Since s(m) commutes with i it follows that the Q representation of 

;r;;)( i; ;y p~,~;[~‘~’ r:,]~* = [ iiri ~~$jy where A(m) = 
is the A-linear part of s(m) and B(m) = 

(l/2)(:(:) + &E)il) is the A-skew linear part of s(m). Evidently s(m) 
= A(m) + B(m). The Q-representation of T(g,) = T(u,~)T”~+‘-“~ is thus 

0 1 e(~n+l-~,)7 . 

If we suppose further that A(m) is invertible then using A(m,)* = A(mi) 
one finds 

A(m,)-’ 0 e -(n,+1 -“,)Y 0 
L(gi) = o I A@,) II 0 1 e(“,+l -n,)v ’ 

AR(&) =[ :, ew(.“-.,,I[ Av,;(m,) “-;-r’][ e-y’7 y]. 
(2.8) 
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When T < T, it is true that A(m) is invertible and we proceed next with 
the calculation of A-‘(m). First observe that A(m) = eimeAe -ime, where A 
is written for A(0). Next factor A = -(Ak2)(sA + As), where s = s(0). To 
avoid introducing new notation we shall also use s to denote the map 
sf(k) = -sgn(k)f(k)for real-valuedfin12(Z,,2,R).Lets,=(1/2)(1 ?s), 
recall A = [ ,o,a -i”], and observe that 

2 (-s+e-‘%+“+s~e-~~s-) 
[ 

( s+e’*s+ -s-e% ) ZZ 
0 1, 

Thus to invert A(m) we need only invert s+ e ?r+ and s- e *las- . Since 
s + (s _ ) is the projection on the space of functions on the unit circle all of 
whose negative (positive) half-integer Fourier coefficients vanish, we may 
use the standard Wiener- Hopf techniques to invert s + e’*s + (s - eius _ ) 
when the index of eia(@ is zero [37]. 

The following representation of eiol(‘) is well known [40]: 

eia(e) - - I (1 - cll,e”)(l - a2e-je) 1’2 

(1 - a,eMiO )(l - a2eie) 
I 

’ 

where a, = thKthK* = e -2KthK and a2 = thK*/thK = e -2KcthK and the 
branch of the square root is chosen so that eiu(“) > 0. The condition T = T, 
is characterized by a2 = 1, T < T, is characterized by 0 < (Y, < a2 < 1, and 
T > T, is characterized by 0 < (Y, < 1 < (Ye. For T < T, the index of eia@) is 
zero and one has the factorization 

e’“(‘)= a+(eie)a-(eie), 

where 

l-qz ‘I2 
u+(z) = j-q-J [ 1 and u-(z) = 

2 

The function a +(I) is analytic in the interior of the unit disk and u-(z) 
is analytic in the exterior of the unit disk. 

For the convenience of the reader we present a simple argument to deal 
with half-integer Fourier transforms. Consider first s +e “‘5 + . The map u + 
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u+f(f?) = 2 f(k)eick-‘/*)’ 
k-,/2 

is an ‘sometry from f2(Z,,2, W) into L*([ -rr, m], C). Evidently s+ projects 
u +f onto the component which has an analytic extension into the interior of 
the unit disk. Furthermore eio’ is multiplication by eiu@‘) on u +f( 0) since u + 
is just the half-integer Fourier transform multiplied by e -ie/2. The standard 
Wiener-Hopf method [37] applies and one finds 

[ s+e’“s,l = [s+u+u~s+]-’ = aT’s+aI’, 

[ s+e-‘5, I-’ =[S+u;‘uI’s+]-’ = a+s+a~, 

on s+ ~2(&,2, W. 
To deal withs- e?- define uPf(8) = ~k~Z,,lf(k)ei(k+‘/2)e and apply 

the Wiener-Hopf technique. The result is 

[see’“s-I-’ = [s~u+u-s-l-’ = uI’s_u~‘, 

[see-‘“s-1-l =[s~u;‘u~‘s~]~’ = u-s-u,, 

on s-1*(2,,,, R). 
Turning to the calculation of A - ’ and A -‘II one finds 

0 
A-’ = 1 (-u+s+u;‘+ unz~‘) 0 (-ups+u++ur's-a-) 1 1 (u+su~‘+umP) = I 0 z 0 I (upsu++uZ’su-) ’ (2.9) 

A-‘B = 
A-13 

- 1 = - 1 I ( u+suy’- 2 0 uuc’) (u&z+Yzk) 1 * 

These representations will be of further use when we consider the scaling 
limit. For present purposes we require only the result that A is invertible for 
T C T, and that B is a Schmidt class operator. 

We will write PM for the orthogonal projection on the real linear span of 
{ej(k): Ikl < A4 andj = 1,2}. T o avoid cumbersome notation we shall also 
write PM for P,,, @ PM on % @ 96. The following lemma will play an 
important role in the proof of the principal theorem of this section. 
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LEMMA 2.0. Suppose A,, is a sequence of bounded operators on a Hilbert 
space which converges strongly to A. Suppose B,, is a sequence of Schmidt class 
operators which converges in Schmidt norm to B. Then A, B,, converges in 
Schmidt norm to AB. 

Proof. Let {ek} denote an orthonormal basis for the Hilbert space. Then 
IIAB - A,B,II~ = 2,II(AB - A,B,)e,ll* 5 28,II(A - A,)Be,ll* + 
22, II A,( B - B,)e, II *, where we have written II. II 2 for the Schmidt norm. 

Since A,, converges strongly the operators norms II A,/[ are uniformly 
bounded by some constant C. Thus Il( A - A,)Be, II * I 4C2 II Be, (I * and it 
follows from dominated convergence that limn+Jk ll(A - A,)Be,ll* = 0. 
Since Z,IIA,(B - B,)e,ll*l C*llB - B,,II: we also have lim,,,2,IIA,(B 
- B,)e, II * = 0. 0 

In the following two lemmas we shall implicitly suppose that operators 
X, on P,%(or P,+,W) are extended to act as X,@ 0 on PM% @ (1 - PM)%, 
(or P,W @ (1 - PM)W)). 

LEMMA 2.1. The operators TG ’ converge strongly to T * ’ on W as 
M + 00. The operator QM converges strongly to Q on W as M -+ 00. 

Proof. It is obvious from (1.8) that if v is a finite linear combination of 
the basis vectors {e,(k)1 (Y = 1,2, k E Z ,,*} then T,v = TV for all suffi- 
ciently large M. Since TM is uniformly bounded in operator norm, strong 
convergence on the dense set of finite linear combinations of the vectors 
e,(k) implies strong convergence on W. Observe that P,T -‘PM converges 
strongly to T - ’ as it4 --* 00. However, P,T-‘PM- Ti’= PiTi’(T,- 
T)T -‘PM and since TM - T goes strongly to zero and T;’ is uniformly 
bounded (the spectrum of TM has a uniform gap in its spectrum about 0 [6]) 
it follows that s-lim M+m(T-‘- T,-‘) = 0. 

To prove the convergence of QM to Q observe first that if X, is a 
sequence of self-adjoint operators which converges strongly to X and X is a 
point of continuity for the spectral resolution E(h) associated with X then 
s-lim M+mEM(h) = E(X), where E,(h) is the spectral resolution of X,,,. 
This is a special case of Theorem 1.15 in Chapter VIII of Kato [33]. If we let 
X,,,, = TM then QM = 2,??,(l) - I and Q = 2E(l) - I. Thus since T has a 
gap in its spectrum about 1 it follows that s-lim,,,Q, = Q. Cl 

One consequence of Lemma 2.1 is that T$’ in the QM representation 
converges strongly to Tin the Q representation. To see this observe that the 
QM representation of T$ ’ is D,TG ‘D& with DM = 2 - ‘I2 

ever, AM = iQMP+ so that s-lim 
[ I 

: _ iM . How- 
,,,h,=hbyLemma2.1and~follows 

that s-lim M+mDMT;‘D$ = DT”D*. 
The last preliminary before theorem 2.2 is the following lemma. 
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LEMMA 2.2. Suppose that T c T,. Then 

lim IIB(m) - B,(m)ll,= 0, 
M-+W 

I~F~ llA”(m) - A~‘(m)ll, = 0. 

Proof: We begin with the proof that lim,,,I]B(m) - B,(m)ll, = 0. 

Since BM(m) = (1/2)(sM(m) + AMsM(m)AM) = (AM/2)[sM(m), AMI 
and A, converges strongly to A it suffices in view of Lemma 2.0 to prove 
that [s,(m), AM] converges in Schmidt norm to [s(m), A]. However, since 
[s(m), A] is a Schmidt class operator it follows that P,[s(m), A]P, 
converges in Schmidt norm to [s(m), A] as M --+ co. Thus, since sM(m) = 
PMz(m)PM, we are reduced to proving that PM[s(m),( A - AM)]PM tends 
to zero in Schmidt norm as M + cc. In order to deal with the difference 
A - AM we shall use the following contour integral representations for A 
and A, (see, for example, p. 359 of Kato [33]): 

A = -;IReZ=,(T- z)-‘dz, 

A, = -;l,,Z=,(TM - z)-‘dz. 

Each of these integrals is understood as a symmetric strong limit 
lRer=l * * -dz = lim N-,w/:-‘iiN” * * edz. These formulas may be proved simply 
in the spectral representation for T (or TM) using the fact that + 1 is not in 
the spectrum of either T or TM [6]. The simple estimates we use require 
additional information about the spectrum of T and TM. The function y( 13) 
has a positive lower bound for 8 E [-V, 771 and T < T,, so that the 
spectrum of T = {e v(‘) 10 E [-m, rr]} has a gap around + 1. For T < T,, 
Abraham and Martin-Lof prove that the spectrum of TM is a subset of 
{e *r(e)] 8 E [ -rr, ~1). Thus the gap in the spectrum of TM is uniform in M. 
(As noted in [6] there is an exponentially small gap above T, as M -+ cc and 
this is the reason the proof in this section does not work for T > T,.) 

If we let “a ” denote the gap in the spectrum of T about + 1 then we have 
the elementary estimates 

ll(T - z)-‘II d ’ 
(a2 + JJ~)“~ 

Rez= l,y=Imz 

Il(T, - z)-‘II 5 ’ 
(u’ + y2y2 (2.11) 
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Using the contour integral representations for A and AM one computes 

[s(m), A] = ‘/ 
T Rez=l 

(T - z)-‘[s(m), T](T - z)-‘dz, 

(2.13) 

Since [s(m), TM] = [s(m), T] when M > Iml + 1 it follows that 

[s(m), A,,, - A] = L ~ jRez=,Kv - z)-‘(T - TM) 

X(T- z)-‘[s(m), T](T- z)-‘dz + ;/Rez=l(TM -z)-’ 

x [s(m), T](T- z)-‘(T- T,)(T, - z)-‘dz 

for M larger than Irnl + 1. 

(2.14) 

In the basis {e,(k)} for % the matrix of [s(m), T] has only 16 nonvanish- 
ing matrix elements connecting {ej( m * l/2), j = 1,2}. On the other hand 
(T - T,)P, and PM( T - r’,) vanish except on the basis vectors {ej( M - 
l/2), ej( -M + l/2), j = 1,2}. If one multiplies (2.14) on both sides by P,,, 
and observes that PM and TM commute then P,(T - T,)(T - 
z)-‘[s(m), T] and [s(m), T](T - z)-‘(T - T,)P, are each encountered as 
factors in the resulting integrands. One may estimate the Schmidt norm of 
each of these factors by an M independent constant times the square root of 
the sum of the squares of the 4 X 4 matrix elements of (T - z)-’ connect- 
ing {ej(m * l/2), j = 1,2} with {e,(*M t l/2), j = 1,2}. A typical such 
matrix element may be estimated using 

II/” (T(0) - z)-lei(m-tM’eddII I Im ,“,I (n2+y2)-‘, 
--n 

Rez= l,y=Imz. 

This result is easily obtained in one integration by parts using the fact 
that T(B) is a differentiable 2a periodic function. It follows that the 
Schmidt norms of the finite-rank operators P,(T - T,)(T - z)-‘[s(m), T] 
and [s(m), T](T - z)-‘(T - T,)P, are dominated by (const./lm rf: MI) 
(a2+y2)-‘. This observation, the uniform bounds in (2.11), and (2.14) 
suffice to show that PJs(m), A - A,]P, tends to zero in Schmidt norm 
as M+oc. This completes the demonstration that lim,, m II B(m) - 
B,(m)11 2 = 0. 
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Since sy( m) = P,+,s(m)P,, s(m) = A(m) + B(m), and sM( m) = 
AM(m) + BM( m) it follows that P,A( m)PM - AM(m) = - (P,B( m)PM 
- B,(m)) and hence that lim,,,IIP,A(m)P,-A,(m)ll,= 0. 

It remains to show that P,A-‘(m)P, and A,‘(m) ax close in Schmidt 
norm for large M. Observe first that since P,s(m)(l - PM) = (1 - 
PM)s(m)P, = 0 we have 

P,A(m)P,+ (1 - P,)A(m)(l -P,) = A(m) + EM, 

where EM = (1 - P,)B( m)P, + P,B(m)( 1 - PM). 
However, since A(m) is invertible and EM tends to zero in uniform norm 

as M --) cc it follows that PMA(m)PM is invertible on P,% for all suffi- 
ciently large M and that (P,A(m)P,)-’ is uniformly bounded in operator 
norm as M + 00. But A,(m) is arbitrarily close to P,A(m)P, in operator 
norm for large M and so since P,A(m)P, has a uniform gap in its 
spectrum about 0 it follows that A,(m) is invertible for all sufficiently large 
M and that A&‘(m) (on P,%) is uniformly bounded in operator norm as 
M + co. We may also assert that lim,,,II(P,A(m)P,)-‘- A;‘(m)l12 = 
0 (on PM%,) since A,(m) and PMA(m)PM are close in Schmidt norm for 
large M. 

To finish the proof we need only show that P,A-‘(m)P, - 
t4.Am)PM)-’ (on PM% converges to zero in Schmidt norm as M + cc. 
However, 

P,[A%) - PMA(m)P,)-‘]P, 
= P,A-‘(m)[P,A(m) - A(m)PM](PMA(m)PM)-‘. 

But[P,, A(m)] = -[PM, B(m)]andlim,,,IIIPM, B(m)]l12 = O.Thislast 
limit is a consequence of the fact that the square of the Schmidt norm of 
[PM, B(m)] = (PM - l)B(m)PM + P,B(m)(l - PIM) (the sum of the 
squares of the matrix elements in the basis { ei( k)}) is the “tail end” of the 
convergent series for the square of Schmidt norm of 2B(m). Coupling this 
observation and the previously noted fact that (P,A( m)P,,,)-’ is uniformly 
bounded as M -+ cc it follows that PlllA-‘(m)P,+, - (P,A(m)P,)-’ does 
tend to zero in Schmidt norm as M + cc. q 

THEOREM 2.2. Suppose T C T, and let 

where the integers ni are ordered n, I n2 * * * 5 n,. Then 

lim [(~A)&,.J = (a)2,‘det,(l + G). 
M+m 
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The spontaneous magnetization (u) + is 

(CT>+ =[det(l + IA-‘B~~)]-“~. 

The operator G: W, + W, is an r X r block matrix with entries 

Gij = - T ‘,+IL~+,T’,+~ . . .Lj-,TA~Q, ARj, j>i+ 1, 
XT--- T “l+lQ, ARj, j=i+ 1, 

= 0, j= 1, (2.18) 

= T-A,Q- ARj, j=i- 1, 

=T-A~L,;‘,TAl-’ . . .L,;‘,T-A,+~Q- ARj, jCi- 1, 

where Li = L(u,,), ARi = AR(u,,), and Ai= n,- niml, and W, = W 
al a* . @ W (r times). 

Proof: We first apply Theorem 1.0 to the semi-infinite correlations 

pa;, m with gM(i) = um,V$+l-“i (i = l,,..., r) and with n,,, chosen so 
r+ll n,. 

The representation independent analog of (2.8) is 

L(gdi)) = bh~~,)T% 

Substituting this in (2.7) and making a similarity transformation in 
det,(l + L,AR,) to bring all the factors Q,$TAj@ Q; on the right of 
AR,(u,,) to act on the left of L, one finds 

k4si.,)’ = f oJm,,>L~et2(~ + GM), 

where 

(u~~),&,~ =[det(l + IA,1(m,)B,(mj)J2)]-“4 

and G, is the r X r matrix with entries 

G,&ij) =- T$+‘LM,i+l ***LM,j-,QQL AR,,,, j>i+ 1, 

=- T$+lQL AR,,j, j=i+ 1, 

= 0, j = i, 

= TiAIQ, AR, j 7 ’ j-z i - 1, 

= rMAl~&-, . - .L;‘j+,T,-A~+tQ; AR,,j, j<i- 1, 

where L,, i = L,(‘m,), AR,,, = AR,(u,,). 
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Lemma 2.2 assures one that A;‘B,(mi) converges in Schmidt norm to 
A-‘B(mi). Since det( 1 + K) is continuous in K in the trace norm it follows 
that ( %I, >t 00 converges as M --$ cc to [det(l + ]A-‘B(mj)]2)]-1/4. How- 
ever, ]A-‘B(m)12 = -(A-‘B(m))2 is similar to -(A-‘B)2 = ]A-‘B12 so 
it follows that (u,),&, m converges to [det(l + ]A-‘B]2)]-‘/4 as M + cc. 

To finish the proof we need only demonstrate that lim,, ,det 2( Z + G,) 
= det,( Z + G). To avoid complicated notation we shall write P, for the 
projection PM@ .**C13PM of WC3 ,..@W on W,@ . ..@W.. It is not 
hard to see that since G is a Schmidt class operator, the operators (1 - 
P,)GP,, P,G(l - PM), and (1 - P,)G(l - P,,.,) all converge to zero in 
Schmidt norm as M + co. Since det,( 1 + K) is continuous in K in the 
Schmidt norm, it will follow that det 2( Z + G,) converges to det 2( Z + G) as 
M + 00 if we can show that lim,,, II P,GP, - G, II 2 = 0. 

It is enough to show that the individual matrix elements differ by 
operators which go to zero in Schmidt norm as M + cc. We will write 
x, * * *X/Y for a typical matrix element of G where each Xj represents one of 
the factors L*‘(m) or T*‘, and Y is 7Qt AR,,, (m = 1 . . .r). In a similar 
fasmon we write X,, , . . *X,,,Y, for a typical matrix element of G,, where 
X,, j denotes one of the factors LGf,, or T$’ and Y, denotes TQ~ 
AR,(m) (m = 1,. . . , r). The difference between the matrix elements of 
PMGPM and G, may be expressed: 

P,X, . . * X,YP, - x,, , . * ax,, ,Y, 

= PIM( x, - x,, ,)X2 . . *X,YP, 

+ &Af,, . . %f,H(x, - %4,,YP, 
+ c%fXMJ ** *&,,(Y - Y,)P,- (2.19) 

Since each X,, j is uniformly bounded as M + cc and since (1 - 
PIM)Xi. - . X,YP, tends to zero in Schmidt norm as M --* cc we may insert a 
projection PM to the right of each difference Xi - XM,i occurring in (2.19) 
making an error which tends to zero in Schmidt norm as M + co. Since 
Lemma 2.2 implies that P,,,L,F’P, - L,$lj goes to zero in Schmidt norm we 
may confine our attention to those terms in (2.19) which contain P,TP,,, - 
TM or P,T -‘PM - Ti’. In the discussion which follows Lemma 2.1 it was 
shown that P,TP, - TM and P,T -‘PM - T; ’ tend strongly to zero as 
M + 00 (here it is understood that T, occurs in the Qw representation and 
T occurs in the Q representation). Together with Lemma 2.0 this controls 
those terms in (2.19) in which P,T *‘PM - T$ ’ occurs and finishes the 
proof of the theorem. Cl 
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In the following corollary we show that the spontaneous magnetization 
(u)+ of Theorem 2.1 is given by the famous Onsager-Yang formula [53, 
741. 

COROLLARY 2.0. Suppose T < T,, then 

(o)+=[det(l + ]A-‘B]~)]-“~ = (1 - (sh2K)-4)“8. 

Proof. We first observe that since A-‘B: ‘X + % is a Schmidt class 
operator, the determinant which appears above is the determinant of a trace 
class perturbation of Z on % For any trace class T: Ex + %, let T, denote 
the complexification of T: T,f = Tf,@ Tf2 with f = f,@ f2 E %@ % We 
have 

det(1 + T,) = (det(1 + T))2. 

We now regard A-‘B as acting on % @ !X (we drop the subscript C), use 
A-‘B = -BA-’ and A2 + B2 = 1 to conclude 1 + 1 A-‘B12 = Aw2. Hence 
we have 

((e,))” = det(A2) = det(1 - B2), 

where A and B are regarded as operators on IV. Recalling the definition of 
B, we have B2 = a(sA - As)~, and an elementary calculation gives 

1 - B2= (s-Qs-)~ + (~+Qs+)~. 

Since W = 12(Z,,,, C2) we may write W = S-W @ s+ W with the result 
that s-Qs-(s+Qs+) acts on s- W(s+ W). Hence 

det(1 - B2) = det(s+Qs+)2det(s-Qs-)2. 

We can now apply &ego’s theorem as formulated by Widom [71] to 
conclude (we use Widom’s notation) 

det(s+Qs+)2 = det T[Q]T[Q-‘1 

= ~1~1 
= h detT,[Ql 

n-m G[Q]“+’ ’ 

where T[ Q] is the semi-infinite (block) Toeplitz operator s+ Qs+ with 
symbol Q(e), T,[Q] is the (n + 1) X (n + 1) finite section of T[Q], and 
G[Q] = exp{ 1/21r/,2”logdet Q(O) de}. We can now apply the scalar version 
of Szegd’s theorem to this last quantity (for details of this particular 
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calculation see [4O, 491). Similar considerations apply to det(s- Qs- )*, and 
the result follows. 0 

One can avoid the use of Szego’s theorem in the evaluation of (u)+ if one 
knows the explicit spectral theory of A = $(s - AsA). One is led to the 
eigenvalue equation 

where P denotes the Cauchy principal value, the contour of integration is 
the unit circle, It] = 1, 1 E W, and O*(eie) = exp(ia(l)). This integral 
equation is essentially the equation studied by Yang [74] (see also Abraham 
[ 11) in his derivation of the spontaneous magnetization. 

Thus the abstract characterization of (u)+ in Theorem 2.1 leads naturally 
to either the techniques employed by Montroll et al. [49] (Szegii’s theorem) 
or those of Yang (spectral theory of A). 

Combining Theorem 2.2 with Theorem 3.1 of [56] we have the following 
“abstract” characterization of the infinite-volume correlations. 

THEOREM 2.3. Suppose T-C T,. Then the infinite-volume correlation 
(uA)+ = (Nm,, n,) -. *u(mr, n,)) is given by 

($A)+ = (u,,Y”2-“‘u,* * * * V’-“‘-‘um,l,, lo). 

The vector 1, is the Q-Fock vacuum, where Q = i/rjRez=,(T - z)-’ dz, T is 
given by (2.1), V= T(T)=Z@ T+@(T+@T+)@ a.-, and a,= lJs(m)). 
The normalization of u,,, is determined by u: = Z and (a,,&, le) > 0. 

This result can be used as a startin point for generating alternative 
“explicit” formulas. The factorization r- ;] = [8:-, y] [: “51 Cal- 
pled with the idea of the proof of Theorem (3.0) of [56] leads to different 
formulas that have certain advantages over the ones presented here. 

3.0. In this section we establish the duality relations that we shall use 
to deal with the spin correlations above the critical temperature. The idea 
for the duality presented below is taken from [23, 311. 

The duality map d (defined below) is slightly different from the duality 
maps constructed in [23] and the explicit consideration of boundary condi- 
tions makes the treatment distinct from that in [31]. For the convenience of 
the reader we adopt the notation and ideas from [23] and refer the reader to 
[23] for a more complete treatment of duality than we present here. 

Let A = {(m, n) E Z*: [ml I M, InI 5 N} with M, iV E Z+ , and iden- 
tify each configuration of A with the subset of A at which sites the spin 
values of the configuration are - 1. The set ‘??(A) of subsets of A (now 
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thought of as configurations) is a group under symmetric difference with the 
identity given by 0. For Y E T(A) define uy: T(A) --) { - 1, l} by a,(X) 
= rIiErui (configuration X) = (- l)lynxl, where \Y fl XI is the number of 
points in Y n X. The map 9(A) 3 Y + ay( 0) is a group homomorphism 
from T(A) onto the characters of T(A). We now define a subset $8 of T(A) 
by 

‘?i3 = {{a,b}(aandbarenearestneighborsinA} U i?A, 

where 

aA= {{a}~aEAandeither~a,)=Mor(a,~=N}. 

This set will be the set of bonds in our model, and we will write % for the 
subgroup of T(A) generated by ‘??I. 

Suppose now that K is a complex valued function on $8. The partition 
function Z(A, K) we define by 

Z(A, K) = x exp x K(Y)u,(X). (3.1) 
XGh Y@ 

In order to construct the high- and low-temperature expansions for 
Z(A, K), we introduce two subgroups of T(%), the power set of 53 with 
symmetric difference the group operation. The first subgroup is the kernel 
of the group homomorphism r: T( $8) + % defined by “{B,, . . . , B,} = 
lIy= ,Bi. We write 3c = ker s and refer to X as the set of closed graphs in 
T(%). The second subgroup is the image of the group homomorphism 
y: T(A) + $I’(%) defined by y(X) = {B E %\ux(B) = -l}. We write I 
= Im(y). 

The high-temperature expansion for Z(A, K) is 

Z(A, K) = 214 fl c!&(B) 2 n M(B) (3.2) 
BE% /3CK BEB 

The low-temperature expansion for Z(A, K) is 

Z(A, K) = 24 n (3.3) 
B&3 

The reader is referred to [23] for a proof and further discussion of these 
results. 

We are now ready to introduce a dual system (A*, K*). Let A* denote 
the subset of Zf,* defined by 

A* = {(k, I) E Z&21 Ikl < M,lll < N} U aA*, 
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all* = {(k, /)I JkJ = M + l/2,1/1 < N} 

u {(k 111 Ikl < M, 111 = N + l/2} 

and M, N E Z + are the same as in the definition of A. 
We define the set of dual bonds 

‘$* = {{a, b}l a and b are nearest neighbors in A*} U C, 

where C = C, U C, U C, U C, and the Cj are the comer bonds starting at 
the upper-left comer of A* and moving clockwise to the lower-left comer of 
A*. Thus, for example, 

C,= {(Al+ 1/2,-N+ l/2)&%4- 1/2,-N- l/2)}. 

We next describe a map d: ‘?B + a*. If B is a pair bond in $8 then dB is 
the pair bond in %* which crosses B at right angles. If B is a point bond in 
% then dB is the pair bond in $i!J* with elements in aA* that lies “closest” to 
B. For example, 

d{(a, b),(a, b + 1)) = {(u - l/2, b + 1/2),(u + l/2, b + l/2)}, 

d{(M, N)} = C,, 

d((M,l)} = {(M- l/2,/+ 1/2),(M-t l/2,/+ l/2)}, 

111 c N. 

The dual interaction, K*, we define by 

e -*K(B) = thK+( B*), or more symmetrically 

sh2K(B)sh2K*(B*) = 1, (3.4) 

where B* = dB. 
Since $I’( 9) is generated by the elements { Bi}( Bi E 3) under symmetric 

difference it is clear how to extend d to a group homomorphism from ‘??(a) 
onto 9(93*) which we shall also denote by d. (Here we seem to part 
company with the formalism in [23].) The property of d: 9(a) + 9(%*) 
which we wish to exploit is that the restriction of d to r establishes a 
bijection of r onto X *. We leave the proof of this to the reader. 
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Following Kadanoff and Ceva [31] we identify correlations as ratios of 
partition functions. For B E 9(a) define 

Kp(B) = K(B), B 4P, 
= - K(B), B E j3. 

Let /3* = d/3 and observe that as a consequence of (3.4) 

K;(B*) = K*(B*), B* 6! rB*, 

= K*(B*) + F, B* E /3*. 

Comparing the low-temperature expansion for the ratio Z(A, KB)/ 
Z( A, K) with the high-temperature expansion for the ratio Z(A*, I$)/ 
Z(A*, K*) and making use of (3.4) and the bijective correspondence 
between r and K* one finds 

zb KB) _ _ n e&Q(B)-K(W n chK*(B*) Z(A*, K;) 

Z(A, K) BEB B*Ep’ chK;(B*) Z(A*, K*) 

= ( -i)‘B’BzBep2K(B) fl cthK*(B*) fji:’ 2; 
B*Ep , 

= (+) 
,/3 zP*, KS*) 

Z(A*, K*). (3.5) 

Since uB. = (- i)e(in/2)aB. it follows that 

We now specialize the interaction to the Ising model which we wish to 
consider. Henceforth let 

K(B)= & if B is a two-point bond 

= H=-0 if B is a one-point boundary bond. 

From (3.4) it follows that 

K*(B*) = J/kP if B* is a bond with at least 
one element in the interior 
of A*, 

= - iln(thH) if B is a boundary bond. 
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Combining (3.5) and (3.6) for this interaction and letting H + + 00 one 
finds 

(3.7) 

The expectation on the left is for open boundary conditions; that is, the 
terms which couple boundary spins are omitted. The partition functions 
Z+ (A, KB) and Z+ (A, K) are computed with + boundary conditions 
on A. 

Suppose A c A*, then (Us);)%., K*) = 0 unless A contains an even number 
of sites in A*. In order to make use of (3.7) to compute ( (IA);)X*, K.) we shall 
describe a particular collection of bonds /3* such that a, = n,lE~.a,. when 
( A ] is even. If a row in A* contains an even number of elements in A then 
include in p* those bonds which connect the elements of A in a pairwise 
disjoint fashion. If a row in A* contains an odd number of elements in A we 
include in p* those bonds which connect the element in A with the smallest 
x-coordinate to the left end site of the row and those bonds which join the 
remaining elements of the row pairwise as before. Since ] AJ is even there are 
an even number of rows which contain an odd number of sites in A, and we 
eliminate extraneous boundary spins by including in p* those bonds along 
the left edge of A* which connect the “odd spin” rows in a pairwise disjoint 
fashion. It is clear by construction that uA = lI,.EB*uB.. 

The dual “path” /3 consists of vertical bonds in 9(s) which lie between 
pairs of points in A, vertical bonds between boundary points in A* and 
points in A, and one point bonds on the boundary of A. Because of the plus 
boundary conditions, the point bonds in p do not affect the partition 
function Z+ (A, KB) and we may confine our attention to the effect of the 
vertical bonds in /3. In particular we now show how to introduce “disorder” 
variables [31] in the transfer matrix formalism to reveal Z’(A, Ks)/ 
Z ‘( A, K) as a correlation. Suppose to begin that the jth row in A* con- 
tains the points (k,, j), . . . , (k,, j) in A and that 1 is odd. Recalling the 
development of the transfer matrix in Section 1, one sees that the vertical 
bonds all occur in the factor I,“= -,,, 8 (eK[; y] + e-“[; ;])m (which 
becomes V, after factoring out (2,~!22K)~+ /*). To change the bond strength 
K to -K at the mth site one need only multiply this factor in the transfer 
matrix by C,,,. Now introduce pcl; = pkuk, ,,2, k E h,,,, and note that 

ck,+1,2 ” “k,+,--1/2 = i-$&c,+,. 
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Thus to incorporate the appropriate bond flips for the jth row it is 
sufficient to include the factor &, * * api, next to V, in the transfer matrix at 
the jth row. Now define pk = V;‘/2p;V2-‘/2. Then since Vi’2pkV2-1/2 = 
(chK)p, + i(shK)q, and vy2a,+,,2v2-“2 = $+I/2 we have ,.kk = 
[(chK)p, + i(shK)qk]ak+,/2. We have shown that 

where Pi, denotes the product flfi=rpk,; that is, the product of disorder 
variables appearing in the jth row. 

The analysis of the semi-infinite-volume limit given in Section 1 applies as 
well to the right-hand side of (3.8) and we have: 

THEOREM 3.0. Let ( uA )$‘, K* = lim,,,( a, ),“,4, K*). Then if A c 
[-M, M] X [-n, n], n, M E Z+, we have 

h~,K* = k4-,,2vM* * ’ VMkn+,,21QM~ ‘Q,>, (3.9) 

where pk = (chKp, + ishKqk)uk+,,2, k E Z,,,, and the expectation on the 
right is evaluated at bond strength K determined by sh2Ksh2K* = 1. The 
operators V, and QM are the same as in Theorem 2.1. 

This theorem is of interest since when T* = J/kK* is greater than T, the 
dual temperature T = J/kK is less than T,. As before it is not hard to guess 
the infinite-volume limit of (3.9). The operators pk and qk have natural 
infinite-volume counterparts and since only even correlations occur the sign 
ambiguity in uk+ ,,2 which results from defining this operator in terms of its 
induced rotation is of no consequence. 

Employing the same notation as in Theorem 2.0 we now state the result 
from [56] which we will use in conjunction with Theorem 3.0 to compute the 
infinite-volume correlations for T > T,. The following result is a special case 
of Theorem 3.2 in [56]. 

THEOREM 3.1. Suppose gi is a factorable element of G( W, Q) for i = 
1 ,.*-, r.LetwiE W(i= l,...,r)anddefine 

h,=: wig;:zfF(Q+wi)gi+ @(Q-w,); 

then if(g, “‘g,)Q# 0 we have 

(h * * *hr)Q = (g, * * %)QPfH, 

where pfH is the Pfaffian of the r X r skew symmetric matrix H with entries 
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above the diagonal given by 

Hi,k= -((I + LAR)-‘Ll,(w,), Ii(@)), i c k. 

The map Ik is the injection of W into the k’th slot in ( W @ . . . @ W), and 
the inner product in the definition of H, k is (x1 fI3 . * * @xr, y, @ . . . @v,) 
= &,(Xj, y,). 

In order to use this theorem we need to write pLk in “normal ordered 
form.” Suppose w E W. Then by definition : wu,,, : = F( Q, w)u, + 
o,F(Q- w) = F((s,Q- +Q+ )~)a,. Since chKp, + ishKq, 
= &?F(chKe,(k) + ishKe,(k)) it follows that pLk = : w(k)u,+,,2: provided 
that Ok+ ,,*Q- + Q, )w( k) = n(chKe,(k) + ishKe*(k)). To solve for 
w(k) we will invert s,Q _ + Q + . For T < T, this is possible and it is easy 
to see how to do it in the Q-representation. In this representation 

s,Q- +Q+ = 

Below T, the operator A(m) is invertible and we have 

b,Q- +Q+ I-' = [A -;$)I. 

Applying this operator (m = k + l/2) to the vector D :I:$‘:::)) and [ 1 
making use of I - K-‘(m) = I + A-‘&m) = A-‘(m)s, and s,eJk) = 
ej( k) for m = k + l/2 one finds 

w(k) = fiD 
(chK)A-‘(k + 1/2)e,(k) 

I (shK)A-‘( k + 1/2)ez( k) * 
(3.10) 

The same calculation is meaningful for (s,Q, + Q,$ )- ’ and one finds 

w&l = h?~ I (chK)A,‘(k + 1/2)e,(k) 1 (shK)A&‘( k + 1/2)e,( k) * 

We are now prepared to state the principal result of this section. 

THEOREM 3.2. Suppose T* > T, and let 

(u/J&* = (/lk,vp . *+-~-‘,-$lk,leM, l&)) 

where k,, Ii E E,,, and the half integers li are ordered 1, 1. l2 I . * * 5 I,. 
Then 

$imm [(uA)z,k,12 = (u)‘+‘det,(l+ G)det H. (3.11) 

In this formula (u)+ is the spontaneous magnetization at temperature T -C T,. 
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The operator G is the same as the operator G in Theorem 2.1 evaluated at 
mi = ki i- I/2, Ai = li - lie, and temperature T < T,. Finally H is the r X r 
skew symmetric matrix with entries above the diagonal given by 

H(ij) = -((l + G)-‘Kw,,iS,), i, j E h, (3.12) 

where w, = Zi( w( k,)) and K is the r X r block matrix with entries 

K(ij) =- TA,+lLi+,TA1+2...Lj_,TA~Q+, j>i+ 1, 

= - TA,+lQ+ j=i+ 1, 

IX 0, j= 1, 

= T-A1Q-, j=i-1, 

= T-A,L,;~,T-A~-I . . .,&‘,T-%+I,-, j<i- 1. (3.13) 

The notation is the same as in Theorem 2.1. 

Proof Let gw(i) = u,,,,T$+i and observe that ((chK)p,,- ,,* + i 
(shK)q,,-,,,)g,(i) = : w,(k,)u,,,,: TAl+l = : (Qi TpAg+l CB QG )wM(ki) 
u,,TAi+l :. If we write hi = :(Q; TpAl+l + QL )wM(ki)u,8TAl+l: and 
successively apply Theorems 3.1 and 2.0 to (h, . . .h,),M we obtain the 
semi-infinite analog of (3.11) except for a minor discrepancy due to a 
similarity transformation which we now explain. In the following discussion 
we will use the subscript M to identify obvious semi-infinite analogs of 
infinite-volume operators. Let E denote the block diagonal matrix with 
entries E(ij) = a,.(Q, TGAl+l + Q$ ). Then as already noted in Theorem 
2.1 E*LMARME*-’ = G,,,, and the factor det,(Z + G,) is obtained from 
det,( Z + L,AR,) by a similarity transformation. For the matrix element 
H(ij) we have the formula 

H&j) = - ((I + L,AR,)-‘L,Ew,, j, Ew~,~ ). 

Observing that E*L,E = K,,, we have 

H,(U) = -((I+ G,t,-‘K,+,WM,j> ‘M,,). 
In order to prove the convergence of the infinite-volume limit to the 

product in (3.11) we may ignore the first two factors since their convergence 
has already been proved in Theorem 2.1. Griffith’s inequalities imply that 
(uA)& L ll,,,(u,)‘. Thus det,(Z + G,) 1 l(T C T,). It follows that 
det,( Z + G) 2 1 and Z + G is invertible. Indeed since G, was shown to 
converge in Schmidt norm to G (in the appropriate representation) it follows 
that (I + G,)-’ converges uniformly to (I + G))‘. Thus to show that 
H,(q) converges to H(ij) (so that lim,,,det H,,,, = det H) we need only 
show that K,w,+,, j and w,, j converge in W to Kwj and wj, respectively. This 
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is an elementary consequence of the strong convergence of Tk’, Q,,,, and 
A,$’ established in Lemmas 2.1 and 2.2. Cl 

The following characterization of the infinite-volume correlations above 
T, is a direct consequence of Theorem 3.2 in this paper and Theorem 3.2 in 
1561. 

THEOREM 3.3. If A = {(ki, l,)li = l,..., r} c Zf,* and (u~)~* is the 
infinite-volume limit above T, then 

((IA& = (/Lk,W’I - - - V’r-‘r-‘QQ, le), 

wherepk = &?[(chK)F(e,(k)) + i(shK)F(e,(k))]a,+,,,, V= T(T), and lQ 
is the Fock state at temperature T dual to P. 

4.0. Before we turn to the consideration of the scaling limit we shall 
restate Theorems 2.2 and 3.2 in a more convenient form; in particular we 
shall introduce a similarity transformation to simplify the kernels for A -’ 
and A-‘& We will also take the trouble to give translation invariant 
formulas for the correlations; this would not have been useful in the original 
statements since we wanted formulas with semi-infinite analogs. 

We first introduce a Hilbert space $X(6, T). Here 6 > 0 and T refers to 
temperature. %( 6, T) will denote the Hilbert space of functions 
f:[-n/6, m/6] + c* satisfying the reality condition f( -p) = f(p) 
(ordinary complex conjugation) with the real inner product: 

df, 8) = Re/:iJ8[fdp)g,(p) +f2(P)g2(P)][2nshy(Sp)]-‘6dp 

and complex structure y - ’ L I . 
In the formula for the inner product the 

function y is evaluated at temperature T. The parameter 6 is introduced for 
convenience and will play a role in the later discussion of scaling. 

The Fourier series f(0) = ZkEZ,,, fkeike identifies 
the functions in L*([-r, r],C*) which satisfy 
Plancherel theorem the real inner product on % = 1*( Z,,,, I?*) becomes 
Rej?,[ f,( 13)g,( @) +f2(6)m](2r)-‘de. We introduce a real orthogonal 
map U, mapping % onto %( 1, T) defined by 

u,f(e) = em’ze)‘* 
1 

O (~wW*fw eia(W* 1 
This definition is partly inspired by some calculations in S.M.J. [63] and 

some identities in [73] but might also be motivated by observing that it is a 
natural orthogonal conjugation transforming A = [ ,o,~ -:a] into the 

canonical complex structure y -i . That is [ 1 3 T T U AU* = y -i . Thus Ur 
[ I 
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is a unitary map from (55, A) to X(1, T). If we now transform A-’ and 
A -‘B given in (2.9) by this similarity we find 

U A-‘U; T = 2-‘(d~y)“~(usu-’ + a-‘su)(shy)-“2J, 

U,A-‘BU; = 2-‘(~hy)“~(usu-’ - a-‘sa)(shy) -l/2 I, (4.1) 

where a is multiplication by (a + (e”)/u _ (eie))‘/2, Z = i y , and [ 1 J= ’ -y. [ I 
Since:- (ele) =u+ (e”)-‘itfollowsthatu+ (eie)/u- (et@) = la, (e”)12. 
From this one may deduce that 

a = ju+(eie)j = (2thK/.~hy(B))“~ch(y(8)/2) 

and a -’ = (2/(thK)~hy(t?Z))‘/~sh(y(8)/2). If we substitute these results in 
(4.1) along with the principal value kernel, -isin((8 - Q/2)-‘, for s 
(relative to dt9/2r) we obtain the following kernels for A- ’ and A-‘B 
(relative to the measure (2&zy(8))-‘de): 

A-*(8,8’) = --i 
SWY(fi) + YW/2) z 

sin( (8 - ey2) ’ 

A-‘B(8, 0’) = i SWYW - YWP) J 
sin( (0 - e’)/2) ’ (4.2) 

whereZ= i y and.Z= A -y. II 1 [ I 
The first kernel is to be understood in the principal value sense. In fact, 

although (4.2) is a convenient shorthand, when we come to estimate A-’ we 
shall understand (4.2) in the spirit of (4.1) as a sum of operators each of 
which is s bracketed by multiplication operators. Since y(0) is a differenti- 
able 277 periodic function the kernel A - ‘B( 8,8’) is not singular. 

We now restate Theorems 2.2 and 3.2 in a form which will make it easy 
for us to prove the scaling limit result in Theorem 4.2. The reader might find 
it useful to note that A-’ will scale to an unbounded operator and the 
scaling limit of A-‘B will no longer be Schmidt class. The formulas we 
present below will (partially) overcome these problems by an elementary 
factorization which expresses everything in terms of e-‘YAP ‘e -‘Y and 
e -ryA-‘Be-ry(s, t > 0) the first of which scales to a bounded operator, the 
second of which scales to a Schmidt class operator. We write ( u~A)~..~, for 
the infinite-volume ‘+’ state correlations for T -C T, and ( u,,),,~. for the 
infinite-volume correlations above T, with A’ = {a - (1/2,1/2))u E A}. 

THEOREM 4.1. 

k4%<T,= (u)%det2( Z + G(T)), 

+?4t>~>Tc= (u)sdet,(Z + G(T*))det H(P), 
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where sh(2J/kT)sh(2J/kP) = 1 and (cI)~ is the spontaneous magnetiza- 
tion at temperature T. 

G(T) is the r X r block matrix with entries 

Gij(T) =-K,j(T)D,(An,)[ i i]y j>i+ 1, 

= zAmg+lD,(Anj) i i , [ 1 j=i+l, 

IZ 0, j = i, 

= zeAmrD~(Anj+~)[ y i], j = i - 1, 

where z = e”, D,(s) = e-Sy/2A-‘Be-S7/2, Ami = m, - mi-,, Ani = n, - 
ni-, and K(T) is the r X r matrix with entries 

K,,(T) = -zAm~+lCl(Ani+,, Ani+2) *. .zAm~~C,(Anj-,, Anj)zAm~ A i , [ 1 
j>i+ 1, 

Ix -z Am,+1 j=i+ 1, 

= 0 j = i, 

_ j=i-1, 

=z -AmC,(Ani, An,-,) . . .z-A”~+2C,(Anj+2, Anj+,)zpAm/+l 8 y , [ 1 
jC i- 1, 

where C,(s, t) = e--sY/2A-‘e-tY/2. 
H(T) is the r X r skew symmetric matrix with entries above the diagonal 

given by 

Hij(T) = - ((l+ G(T))-‘K(T)u,, z?), 

where the vector ui E (W 63 . . . @ W), is given by 

(4.3) 

e-@~.Ij’h(e)/2 ~ e-(A”t+,-lh(~)/2 1 [ . 
0 
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With uk given by this formula the operators A -’ and A - ‘B in the 
definition of C,(t, s) and D,(s) are to be understood as integral operators 
on X(1, T) with the kernels given in (4.2). 

The complex structure implicit in (4.3) is the direct sum of r copies of 

[: -Al @L-Y Al on X(1, T) @ X(1, T); the conjugation u -+ U is the 

direct sum of r copies of 
[ 
y A on X(1, T) @ X(1, T) with Z the identity 

] 

on 5X(1, T). 

Proof. This result is a similarity transformation away from the conclu- 
sions of theorems 2.2 and 3.2. Let M denote the r X r block diagonal matrix 
with entries Mij = 6,je-‘“/e(Q+ e-A”/+ly(8)/2 + Q- eAnjy(8)/2). Let G and 
K denote the operators defined in Theorems 2.2 and 3.2. The operator G(T) 
is MGM -’ in the Q-representation transformed further by the similarity in 
(4.1). The operator K(T) is MK@ in the Q-representation transformed by 
the similarity in (4.1). Finally, to make the formula for H(T) correct the 
vector uk must be related to w(mk) in Theorem 3.2 as follows: 

uk = Zk(UT@ UT)e-i"ke(Q-e-An&+ly/2 + Q, epA"~y/2)~(mk). 

The result quoted for uk in the theorem is a relatively simple calculation 
using (3.10) and (2.9). 0 

We now describe the scaling limit for the correlations. First we introduce 
a lattice spacing 6 for the two-dimensional Ising model. At fixed tempera- 
ture this has the obvious effect of multiplying the correlation length by 6. As 
we wish to let 6 + 0 we choose the temperature in a S dependent fashion so 
that the correlation length approaches a finite value as 6 -+ 0. Since the 
correlation length diverges to + cc as one approaches the critical tempera- 
ture T, [40] this is possible provided T(S) + T, as 6 -+ 0. However, since 
lim r.+r,-(u)r = lim,,~+(a),, = 0 it t u rn s out to be essential for a non- 
trivial result to divide the r point function by (u)~ before passing to the 
limit. In the language of quantum field theory, (u) is the wave-function 
renormalization constant Z,(6). For more discussion of this point see 
McCoy and Wu [48] and Glimm and Jaffe [21,22]. Two distinct limits are 
possible depending on whether T(6) approaches T, from above or below. 

We define a unitary scale transformation from %( 1, T) to X(6, T) by 
f( 0) + f(6p) (p E [--r/S, n/S]). Under similarity transformation by this 
scaling operator the kernels of A - ’ and A - ‘B become (relative to the 
measure (27rshy(6p))-‘6dp) 

‘-‘(p, P’> = XS(P) 
4(YW + Yww2)X8(p,)z 

jsin(d(p -p’)/2) 9 

‘-lB(p’ P’) = -X*(P) 
4(YW - Yww2)xs(p,)J 

jsin(b(p -p’)/2) 9 
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X*(P) = 19 IPI m/a* 
= 0, IPI =-n/a. 

Next we define 6 so that 6*(correlation length) is 1 in the limit T + T,. 
The correlation length is known [13,40] to be asymptotically given by 
(~(1 -z2))lt2+2z- II-‘(t=thK)forTnearT,.Ifwedefine6=Iz2+ 
2z - ll(z(1 - z’)))‘, a = (1 + z~)~, and b = 2z(l - z*) then 

chy(B)=f-cod 

= 1+ (f-2) + (1 -cosQ 

=l+T+(l-cod). 
Introducing the variable p = e/6 as before, we define y( p, 6) by 

chy(p,6) = 1 + (1/2)62-t (1 - cos6p). 

To obtain the appropriate temperature dependence in the kernels for A - ’ 
and A -‘B we define A, ‘( p, p’) to be the kernel A -‘( p, p’) with y(6q) 
replaced by y(q, 6) and A,‘&( p, p’) to be the kernel A-‘B( p, p’) with 
y(6q) replaced by y( q, 8). The operators A;’ and Ai’& act on $X(S) = 
X(6, T(S)) where T(6) is implicitly defined by yTCG,(Sp) = y( p, 6). 

We introduce the obvious analogs of the operators C, and D, in Theorem 
4.1: 

cc4 Pv P’) = e -V(P.~)/~,Z&‘(~, p~)e-f~(P’.6)/6, 

Q( P? p’) = e -V(P.~)/*&‘B8( p, p’)e-V(P’.a)/a. 

We have dropped the explicit r and s dependence to unburden the 
notation. The following three lemmas provide the technical core of the 
convergence proof for the scaling limit. Throughout the discussion preceed- 
ing Theorem 4.2 we suppose t and s are fiied reals srricrly greater than zero. 

LEMMA 4.1. The function y( p, 6) has the following properties: 

(1) There are constants m > 0, and M > 0 independent ofp and S such 
that mw( p) I 6-‘y( p, 6) I Mw( p) for p E [--r/6, r/S]. 

(2) lima,0 6 - ‘y( p, 6) = o(p) uniformly for p in any compact subset 
OfI?. 
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Proof. Let w:(p) = 1 + SP2( 1 - cos 6~) so that chy( p, 8) = 1 + 
( 1/2)S2& p). The formula for the inverse hyperbolic cosine yields y( p, S) 
= log(1 + 6x), where x = os(l + (1/4)62wi)1/2 + (l/2)6&. Since log(1 
+ 6x) ‘I6 = 6 -‘j”+‘? -’ dr we have the elementary estimates: log( 1 + 
6x1 ‘1’ 5 x and log(1 + 6x)“” 1 x/(1 + 6x) (x > 0). Thus 6-‘y(p, 6) = 
log(1 + 6x)‘/& I x 5 w,(l + 6~~) and K’y(p, S) = log(1 + 6x)“’ 2 
log(1 + 608)“8 2 us/(1 + 6~~). We have demonstrated 

%(P)(l + h(p))-’ 5 a-‘Y(P> 6) 5 %(P)(l + 6%(P)). (4.3) 

Since wd( p) converges uniformly to w(p) for p in a bounded subset of R 
part 2 of the lemma follows from (4.3). To obtain a uniform upper bound 
from (4.3) observe that 1 - cos x I x2/2 so that wf( p) I 1 + p2 = w2( p) 

and S-‘y(p, 6) I w(p)(l + b(p)) I (1 +4-),(p) for p E 
[-x/6, n/6] and S < 1. F inally since (1 - cos 8)/d2 is bounded away from 
zero for 8 E [-s, ?r] it follows that cog(p) L const. w(p) for p E 
[--r/S, m/6]. From this observation and the bound 6w8( p) 5 const., p E 
[--77/t?, n/6], it f 11 o ows from (4.3) that S-‘y( p, 6) 2 mu(p) for some 
constant m > 0 and all p E [-r/6, n/6]. 0 

Let X(O) denote the Hilbert space of functions f:lR -+ C 2 subject to the 
reality condition f( -p) = f(p) with real inner product 

and complex structure y 1 1 - A . Define an isometric injection i,:%(6) + 

%O) by 

We write is(p) = (6w( p)/shy( p, S))‘12 and note that i,*: X(O) + X(6) is 
multiplication by %.,( p)i,( p)-‘. Let 

D( p, p’) = iemS” U(P) - dP’L”“cp’jJ 
P-P’ 

and define a bounded operator on X(O) by 

W(P) =sm WP> Pl)f(Pl)(2nw(P’))-‘dP’. 
-cc 
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Let 

c( p, p’) = -ie-S”(P) W(P) + 4P’) e-,w(p,)I 
P-PI 

and define a bounded operator on X(O) by 

Cf(P) =Jrn C(P, P’)f(P’)(2mw(P’))-‘dP’, 
-cc 

where the integral is understood in the principal value sense. 

LEMMA 4.2. Suppose s > 0. The difference xsDxs - isDsiQ tends to zero 
in Schmidt norm as 6 + 0. 

Prooj We must show that 

limldp-jdpLlx8(p)D(p, P’)x~(P’) - i,D&(p, P’)I* = 0. 
s-0 W(P) O(P’> 

By Lemma 4.1, is(p) and is(p)- ’ are Q-uniformly bounded for p in 
[-n/6, a/6] and converge pointwise to 1 as 6 + 0. It is a further conse- 
quence of Lemma 4.1 that D6( p, p’) converges pointwise to D( p, p’). We 
may thus employ the dominated convergence theorem provided we establish 
an adequate bound for D,( p, p’). For brevity in the following discussion we 
write y(p) = y(p, 8). To obtain a bound for D6(p, p’) we proceee 
follows: 

sh(lP)(y(d - Y(P’)) Sh(Y(P) - Y(P’)) 
sin(l/2)S( p - p’) sin( l/2)8( p - p’) 

= w9 shy(p) 
chy(p’) -thy(p) + chy(pjsh~(~) -shy 
sin( l/2)8( p - p’) sin( l/2)6( p - p’) 

I as 

Thus (recall the identity (shx - shy)/( chx - thy) = (chx + thy )/(shx + 
shy )> 

sh(l/2)(y(p) - Y( P’)) chy(p’) + chyb) 
sin( l/2)6( p - p’) shy(p) + chy(dshy(p~) + shy(p) 1 

chyb) - Wp’) 
’ sin(1/2)6( p -p’) . 

But thy(p) - chy( p’) = cos Sp’ - cos 6p, (cos 6~’ - cos 6p)/ 
(sin( l/2)6( p - p’)) = 2 sin(l/2)6( p + p’), and shy(p) + shy( p’) L y(p) 
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+ y( p’) so that 

sw/2)(Y(P) - Y(P’N 
sin( l/2)6( p - p’) 5 shy(p) + ChY(P) 

[ 

ChY(P’) + ChY(P) 
y(p’) + y(p) 

XJsin(1/2)6(p + p’)j. 

Finally observe that )K’sin(1/2)6(p + p’)/6-‘(y(p) + y(p’))( I 
/(1/2)(p + p’)/m(w( p) + w( p’))j 5 1/2m and that Iy( p, 6)( is uniformly 
bounded in p and 6. Consequently 

ID8( p, p’)( 5 (const.)e-m’“(P)e-mS”(p’), p, p’ E [-n/6, r/S]. 

This bound and the analog for D( p, p’) are evidently sufficient for 
dominated convergence. 0 

LEMMA 4.3. Suppose s > 0 and t > 0. The difference xsCxs - i&i,* 
tends to zero in operator norm as 6 + 0. 

Proof Observe that i&i: is the sum of two operators each of which is s 
bracketed by multiplication operators. Now s is uniformly bounded and the 
presence of exponential factors in each of the multiplication operators 
makes it possible to conclude from Lemma 4.1 that each of these multiplica- 
tion operators converges uniformly to its pointwise scaling limit. Thus if we 
replace the multiplication operators in i&i,* by their pointwise scaling 
limits we make an error which tends to zero in uniform norm as 6 -+ 0. To 
prove the lemma we are thus reduced to showing that the operator with 
kernel 

e-ly(p)b(P) + ~(P’))xs(P)x6(P’)(~/2)e-so(p’) 

sW/N P - P’) 

and the operator with kernel 

e-‘W(P)b(P) + w(P’))xB(P)xs(P’)e-.,(,‘) 

P-PI 

differ by an operator which tends to zero in uniform norm as S + 0. Let 

1 
- - X8( P’) 

P -P’ 1 
and 

g( p, p’) = e-‘OcP)e --Q”(O( p) + w( p’)). 

We wish to estimate the operator norm of the operator with kernel 
g( p, p’)A,(p, p’). To deal with this kernel it is convenient to make an 
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additional subtraction which eliminates “spurious” singularities at ( p, p’) 
= (‘n/6, G/6). c onsider the kernel g(s/6, R/B)A~( p, p’). Since 
g( a/6, n/6) tends to 0 as S + 0 and A8( p, p’) is the kernel of a uniformly 
bounded operator it follows that we may work with the kernel [ g( p, p’) - 
g( a/S, n/S)]As( p, p’) rather than g( p, p’)A,( p, p’) making an error which 
tends to zero in uniform norm as 6’ + 0. 

If K( p, p’) is the kernel of an integral operator K on X(O) then the 
following estimate gives a well-known bound for the operator norm of K: 

2nllKII 5 supJrn Jzqp, p’)l--& I P -co 
I’/*[ s;fml K(P, P’)l&]“*. 

We shall use this to estimate the norm of the operator with kernel 
K( p, p’) = [ g( p, p’) - g(r/S, a/S)]A,( p, p’). Observe first that 

Now since, sinx 1 x - vr -‘x2 (x E [0, s]) we have 

0$-L- 
sin x 

15 
x _ ;-lx2 - l = 5 (x E Lo.9 4). 

Thus 

a/2 1 W)(P - P’) 1 

~i4vuP - P’) 
-- = 

P - P’ I I sin( a/2)( p - p’) - ’ P -Pt 

(V2)( P - P’) 1 a/2 

s4v2)(P-P’) (P-P’)=a-(v2)(P-P’)’ 

In a similar fashion 

a/2 1 -- a/2 
sin(S/2)(p -p’) p -p’ 5 T + (S/2)(p -p’)’ 

02-p-p’> +. 



ISING CORRELATIONS 369 

Making use of these estimates in (4.4) one finds 

+a 
/ 

P dPv P’) - d’+L n/a) dp’ 

-T/s b + bl + b - WI 4P’> 
< 6 - 

J 
evh P’) - b+/h P’> dp’ 

P 77 - sp 4P’> 

+ 6 
/ 

+gb/& P’) - dW% r/a) dp’ 

P 77 + 6p’ 4P’) 

+a 
J 

P dP, P’> - d’@, P’) dp’ 

-T/S lr + sp 4P’> 

+a 
J 

P d+4 P’) - gb/h n/a) dp’ 

-n/6 IT - 6p’ 4P’>. 

It is now straightforward to estimate the terms on the righthand side of 
this last inequality to show that they go to zero uniformly in p as 6 -+ 0. The 
same estimates also control sup,, j?‘, 1 K( p, p’)ldp’/o( p’) and we have 
finished the proof of the lemma. 0 

Before we state Theorem 4.2 we introduce some notation. First observe 
that the formulas in Theorem 4.1 for the Ising correlations on the lattice 
make sense for nonintegral “lattice sites.” If x E R2 we write vj(x) for the 
j’th component of x. Suppose xi,. . . , x, E R2 and ni(x,) -C r2(x2) . . . < 
7r2(x,). We define 

~;(x,,..., xr) = det,(I + G(T)),, T< T,, 
= det,(l+ G(T*))det H(P), T> T,. 

(4.5 > 
The parameters in the definitions of G(T) and H(T) are Ami = a,(xi) - 

nl(Xi-l) and Ani = rz(Xi) - r2(xi-1). If ~1 . * *x, E lR2 and the xi all have 
distinct second coordinates, let (Y denote the permutation of 1, . . . , r such 
that n,(x,(,)) < -a* < m,(x,(,)). We define uT(x, -..xr) = 
9-(Xc%(,) * - ‘Xa(r) ). We make no attempt to define ur(x, . . -xI) at points 
where there are coincidences among 7r2(x,), . . . , r2(x,). 

We now define 

%(x1,..., XJ = a,(,)( 6 -lx,,. . . ) 6 -lx,), 

S,i(x, )...) x,) = u*(6)*(6-‘x ,,..., F’x,), (4.6) 
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where T(6) is the temperature below T, implicitly defined by &y(B) = 2 + 
(l/2)6* - cos 8. The reader may note that there is some ambiguity in ur 
caused by taking a square root. For points on the integer lattice it is easy to 
remove the ambiguity by taking a positive square root. We will discuss the 
elimination of the ambiguity in the scaling limits, lim,,OS,‘, in the course 
of the proof of Theorem 4.2. 

In the proof of Theorem 4.2 we shall write i, for i&B . . ’ @i, to avoid 
clumsy notation. We will also make use of the fact that if G,:%(6) 
$ . . . wx(6) -+ %x(6) @ . . . WX(i3) is a Schmidt class operator, then 
det 2( I + G,) = det *(I+ i,G,i,*). This follows from the isometric character 
of i,. 

THEOREM 4.2. Let x,,..., x, E R* and suppose ?T*(x,) < v2(x2) . - . < 

n2( x,). Then 

$$a-(x,5..., x,)]’ = det,(l+ G), 

~n$+(X,>..., x,)]’ = det,(l + G)det H. 

G is the r X r block matrix with entries 

Gij= - KijD(Anj) i i , [ 1 
tAm,+lD( AnJ 0 1 = [ 1 0 0’ 

= 0 

0 0 =z -*“lD(Anj+ 1) 1 0 > [ 1 

j>i+ 1, 

j=i+ 1, 

j = i, 

j=i- 1, 

j<i- 1, 

where z = eiP, Ami = IT, - T,(x~_-), An, = r2(xi) - 772(xi_,), D(S) is 
the integral operator on “x(0) with kernel 

ie-s”(P)/* w’p’ - w’p” e-_SW(p’)/2J 

P-P’ 
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and K is the r X r block matrix with entries 

Kij = - zAm’+C(An,+,, Ani+2) . . . zAm,-C(Anj-,, Anj)zAm, :, 8 , [ 1 
j>i+ 1, 

- j=i+ 1, 

II 0 j = i, 

= zAm~C(Ani, An,-,) . . . z-Am~+2C(Anj+2, Anj+,)z 

j<i- 1, 

where C(s, t) is the bounded operator on ‘%(O) with principal value kernel 

e -so(p)/2 4 p) + 44 e-‘w(p’)/2 

i(P -If) 

H is the r X r skew symmetric matrix with entries above the diagonal 
given by 

Hlj= -((I+ G)-‘Ku,-,U;). 

The inner product in this definition is the hermitian symmetric inner 
product on the direct sum of r copies of 5%(O) @ a(O) with complex 
structure [y - A] e [ _ y A] and conjugation [“I ~1. The vector ui is 
given by 

ui = 1, e -A~P(P)/~ [I :, $ e-Ani+~4~)/2 :, [ I) . 
Proof First introduce the unitary scale transformation into the formulas 

in Theorem 4.1. This has the effect of changing %x(1, T) to %(a, T). Next 
introduce the scaled parameters Amj/6 and An,/6 for Amj and Anj and 
evaluate the result at T = T(6). One finds S&(x, . . ox,) = det 2(1 + G,) 
and S,“(x, . . -x,) = det,(l + G,)det Ha, where Am,/6 = r,(xj) - 
m,(xj-,), Anj/S = r2(xj) - ~T~(x~-,), G, is obtained from G(T) by replac- 
ing C(t, S) and D(S) by Cs(t, S) and Q(s), and H, is obtained from H(T) 
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by the same substitutions and the further replacement of ui by its scaled 
counterpart. 

Let x6 denote the projection on X(O) given by multiplication by x*(p). 
As above we also use xs to denote direct sums of copies of x6. To establish 
the convergence of Sap we may follow the argument in the proof of 
Theorem 2.2 to reduce the problem to showing that xsGxs - iiG8i,* 
converges to zero in Schmidt norm as 6 + 0. Inserting additional projec- 
tions xs in the matrix elements for xsGxs and using the convergence results 
in Lemmas 4.2 and 4.3 we have lim,,OIJ~sG~s - i,G,iQ)I 2 = 0. 

As in the proof of Theorem 3.2 we wish to show that det,( Z + G) # 0 
from which we may conclude that (I + G) is invertible and that (I + Ga)-’ 
converges to (I + G))’ uniformly. Suppose (x,, . . . , xI) is an r-tuple of 
points in R* with dyadic rational components and distinct second compo- 
nents. Let 6, = 22”. Then since for sufficiently large n we have (x,, . . . , x,) 
E (S,Z 2)r it follows from Griffith’s inequalities that det,(Z + G) = 
lim n+mdet2 (I + Gs,J 2 1, where G and G, are evaluated at the lattice 
points (xi,. . . , x,). However, G depends continuously (in Schmidt norm) on 
the parameters (x,, . . . , x,) in regions which stay away from coincident 
second coordinates. This is easily proved using the observation that the 
Schmidt class continuity of an operator valued function x --) U(x)V follows 
from the strong continuity of x + U(x) and the Schmidt class character V. 
The continuity of G and the density of the dyadic rationals imply det,(Z + 
G) 2 1 at all r-tuples in (lR*)’ without coincident second components. Thus 
(1 + G) is invertible at such points and Lemmas 4.2 and 4.3 supply all the 
additional information needed to show that ZZs converges to H. The reader 
should note that the ambiguity in Sap is naturally resolved by taking a 
positive square root. The remaining ambiguity in S,+ is settled using 
det H = (pfH)*, ( see Theorem 3.1). 0 

5.0. In this section we will establish some of the probabilistic and 
field theoretic properties which are expected for the scaled n-point func- 
tions. Since the classic work of Dobrushin [14, 151 and of Lanford and 
Ruelle [38] it is customary to consider the infinite volume Ising model as a 
particular example of a Gibbs random field. We briefly review this prob- 
abilistic framework. Let u E !J = { - 1, l}‘* and take Z to be the u-algebra 
pf_s;bsets of Q generated by the cylinder subsets of the form {a( *)I a(~;) = a,, 

,---, n}, where ai E { - 1, l}, i = 1,. . . , n. A Gibbs state p, at temper- 
ature T for the two-dimensional Ising model is a probability measure on 
(!J, Z) whose conditional expectations satisfy the appropriate D.L.R. equa- 
tions. The set of Gibbs states at temperature T is a Choquet simplex. For 
T > T, this set has only one extremal point [39] and for T < T, there are 
exactly two extremal Gibbs states p + and p _ [7, 81. The measures p + and 
I*- are obtained by passing to the thermodynamic limit with + and - 
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boundary conditions [ 151. Since the random variable u at sites x assumes 
only the values 2 1, the finite-dimensional distributions of the random field 
p are directly computable from the moments j&x,) . . .a( Xn)dpr, where 
xi E Z 2. Thus for fixed T # T,, Theorems 2.2, 2.3, 3.2, and 3.3 give a 
concrete characterization of the finite dimensional distributions of the two 
dimensional Ising field. 

Theorem 4.2 gives the scaling limit of these expectations when the 
one-point functions are divided out. It is natural to ask if the resulting 
functions are the moments of a generalized random field on S’(R 2, [ 16, 201. 
In order to answer this question we introduce random fields uF( =) as 
follows. Let f E S(R2), 6 > 0, and define us(f) = (u );(\, 
z .,zzu(n)f(&t)82 
W&LEZ 

as a random variable on (a,& c+.+~~)) and u,“(f) = 
~u(n)f(i%r)s~ as a random variable on (3, Z, d~r*(~)). The 

characteristic functions of these random fields are 

Since X,‘(a) are the characteristic functions of random fields they are 
necessarily positive definite in the following sense [20]. Suppose Js. E s(lR ‘) 
andoljEC(j= l,...,n)then 

(5.2) 

Since $(f) is a bounded random variable the power series for 
exp[iud( f )] converges uniformly and it is permissible to integrate this series 
term by term to obtain 

x;(f)=l+@ z 
,=, ‘! 

f(8 ) n, 
“, . ..n.EZ2 

-.-f(c%z,)S~(Gn ,,..., tb~~)6~‘. (5.3) 

Given the pointwise convergence (almost everywhere) in Theorem 4.2 it is 
natural to conjecture that lin++,+X~(f) = X’(f), where 

(5.4) 
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Much of the rest of this section will be devoted to a proof of this 
convergence. As we wish to use the Bochner-Minlos theorem (see, for 
instance, [20, 241) to show that x * ( f ) are the characteristic functions of 
generalized random fields on S’(R 2, the convergence of x6 (f) to x * ( f ) 
and (5.2) will establish positive definiteness for x * (f ). The reader should 
note that the formulas for S * (x,, . . . , x,) given in Theorem 4.2 do not 
manifest this positivity in an obvious fashion. The continuity of x * ( f ) as a 
function of f in S(R2) and x* (0) = 1 are the other hypothesis of the 
Bochner-Minlos theorem. The second property is evident from the defini- 
tion of x* (f) and the continuity will be apparent in the course of the 
proof of the convergence of xg ( f ) to x % ( f ). 

The scheme of our proof is to establish integrable bounds for S,’ 
(XI,. . ., x,) uniform in S so that we may employ dominated convergence to 
pass from (5.3) to (5.4). Gaussian domination [51] reduces this problem to 
finding bounds for the two-point function. The formula in the following 
theorem is of interest in its own right and will yield the estimate we desire 
directly. 

THEOREM 5.0. Let T < T,. Then if7r2(x2) 2 ?r2(x,) 

S8-(x,, x2> = g I;;,(Am, An), 
k=O 

Am = 77,(x2) - am, 

An = 77,(x2) - 77,(x, ), 

where Fo(Am, An) = 1 and 

F2,(s, t) = (2k!)-‘/+3 . . . e 

with 

and y(p) = Y(P, 4. 
Prooj We will give the proof for 6 = 1 and leave it to the reader to 

introduce the obvious change of scale. By Theorem 4.1 we have S,-( x,, x2)2 
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= det 2( I + G(T)), where 

375 

I 0 

0 

0 

0 

0 

zA"D(An) 

zA"D(An) 
G(T) ; 0 0 0 0 0 0 = 

0 0 0 0 0 0 1 
z-""D(An) 0 0 0 1 z-""D(An) 0 0 0 1 

It we define a kernel g(tY,, 8,) by 

where 

h(e e ) = ~~[(YM) - Y(e2wl 
1, 2 sin[(e, + e2)/2] ’ 

then it is an elementary calculation that 

Tr[G(T)“] = 0 n odd, n 13, 

Tr[G(T)“] = 21” de, - j” de,g(e,,e,)g(e,,e,)...g(e,,e,), 
-77 -II 

n even, 

where de = (2&y(8))-’ de. 
To verify this result one should make the changes of variables 0, + -0, 

for even integersj ( making use of y( 0) = y( -8)) and when computing the 
trace of an integral operator on ‘X(1, T) one should keep in mind that this 
space is 12(Z ,,2, C) to avoid introducing an extra factor of 2. 

Since g(8,, 0,) = -g(e,, e,) it follows that Tr[G(T)“] = 2Tr(g”) for all 
n 2 2. The Plemelj-Smithies formula [67] expresses det,( I + G(T)) in 
terms of the traces Tr[G(T)“] and one finds 

det,(l + G(T)) = (det,(l + g))‘. 

We now use the Hilbert formula for det & 1 + g) to obtain 

det,(l + g) = g $1: de, .--/" de,g 
k=O n -77 

= det[ g,,] k xk has entries g,, = g( /I,, 0,). Zeros along the 
for the Hilbert formula but because of the antisymme- 

try g(e,, /I,) = 0 in any case. Observe also that since the matrix [ g,,lkxk is 
antisymmetric, det[gi,lkXk = 0 for odd k. 
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If we now pull the factors e(iekAm-7(e~)An)/2 out of det[gijlkxk we find 

. . . 

= det[hij]2kX2k, hij= h(8,, %). 

To finish this proof it remains to establish that 

det[hij12kX2k = l-Zi!&2k(hij)2 

This identity is crucial for the estimate we wish to make. 
To prove (5.5) we find it necessary to first express hij in terms of Jacobi 

elliptic functions. That such a parametrization is possible is suggested by the 
work of Onsager [52] and by work of Johnson et al. (in particular, see their 
Eq. (3.5)) [27]. 

We proceed to uniformize a+ (z) and a _ (z). The fractional linear 
transformation 

a2 - kz’ 
’ = 1 - a2kz” 

k = (sh2K)-*, 

puts the branch points into canonical positions 

and then the substitution z’ = sn*(u, k) gives the desired uniformization 
once one recalls the identities 

sn*(u, k) + cn*(u, k) = 1, 

dn*(u, k) + k*sn*(u, k) = 1, 

for the Jacobi elliptic functions sn(u, k), cn(u, k), and dn(u, k) [17]. 
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The identity 

+J+(Z,b-(4 - ~-(z,)u+(z*)][s~f(e,+ e,,]-’ 

= eia(e’)/2[Shy(e,)]-“2h(e,, e2)eia(e’)/2[shy(e2)]-“2 

(5.7) 

follows from (4.1) where zj = e”J, j = 1,2. In this identity we make use of 
two further identities 

[sini(fI, + e2)]-’ = -2R(z;)(l - /c~z;z;)-‘R(z;) 

and 

ci@)shy(tl) = k1/2(l - z~)[R(z~)]-~, 

where R( z’) = [( 1 - ai)- ‘( 1 - a2kz’)( a, - kz’)]“’ and z; is the image of 
I, under the fractional linear transformation above. To prove the last 
identity first recall (2.2), multiply this by e -ia, use e -lo1 = [u + (z)u _ (z)] - ’ 
and (5.6), and simplify the resulting expression. 

The result is an expression for h(8,, 0,). Now make the substitutions 
z; = sn2( u,, k), j = 1,2 and use the addition formula 

sn(u, - u2, k) = SIC2d2 - CldlJ2 

1 - k2s2s2 I 2 

(we employ the notation sj = sn(u,, k), etc.) to obtain 

h,, = -k1’2sn(u, - u2, k), 

where h,, = h(8,, 8,). When -T c 8 < 71 the u variable is on the line 
segment x + 4X’, (x] c K with K (K’) the real (imaginary) quarter period 
(see, for example, p. 377 of [17]). 

To prove (5.5) we show that 

Pf(htj) = II 
1 Si<J/12k 

hi,l (5.8) 

where h,, = -k’i2sn( u, - u,, k). The case k = 1 is obvious. We can use 
the expansion formula of the pfaffian to write the left-hand side as 
Efi,( - l)jh, jpf( h[ 1 j]), where h[ 1 j] denotes the matrix obtained from h by 
striking out the 1st row and column and the j th row and column. Hence 
pf( h[l j]) does not depend upon the variable u, for all j = 2,3,. . . ,2k. We 
take the variables u2, uj,. . . , uZk as distinct, otherwise (5.8) is trivial. A 
simple induction is now possible. We use the inductive hypothesis on the 
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expression pf( h[ 1 j]), j = 2,3, . . . , 2k. It is then clear that as a function of 
the complex variable u, the product II Isi<js2khij and Zf~2(-l)ih,jpf(h[lj]) 
are both elliptic functions, have the same periods, and both have simple 
poles (we restrict our attention to the fundamental parallelogram) at uj + 
iK’,j= 2,3 ,..., 2k and at uj + 2K + iK’, j = 2,3,. . . ,2k. (Recall sn(z, k) 
has in the fundamental parallelogram two simple poles at iK’ and 2K + iK 
with residues k - ’ and -k -‘, respectively,) If we show that the residues at 
these poles are equal, then as a simple consequence of Liouville’s theorem it 
follows they differ only by an additive constant. The proof is now reduced 
to evaluating the residues at the poles uj + iK’ and uj + 2K + iK’, j = 
2,3,. . . , 2k. It is straightforward to see that these residues are equal once 
one makes use of the identities [ 171 sn(z - iK’)sn(z) = k -’ and sn(z - 2K 
- iK’)sn(z) = -k -‘. The additive constant can be shown to be zero by 
comparing the two functions at a zero. 

For real z, ]sn(z, k)l I 1. Hence if fij, ek E (-7rIT, m) it follows that 
uj - uk is real. Hence 1 hijl I k ‘I2 < 1 for T < T,, and we obtain from 
(5.5) the inequality 

ldet[hjj]ll 1. Cl (5.9) 

As mentioned in the introduction, the infinite-volume correlations which 
result from passage to the thermodynamic limit in the two-stage process 
natural for the transfer matrix formalism, and the correlations which result 
from letting the sides of a square box tend simultaneously to infinity are 
identical for plus boundary conditions [39]. Since the correlations in a 
square box are evidently invariant under simultaneous rotation of all sites 
by a/2 (about the origin of the box) the same can be said for the plus state 
infinite-volume correlations (rotated about any lattice origin). The correla- 
tions we computed above T, are also invariant under rotations by n/2 since 
they are correlations of e2Ko= (ch2K) + (sh2K)a calculated with plus 
boundary conditions below q. Invariance under reflections across lattice 
axes follows in the same manner. This dihedral group invariance extends the 
convergence domain in theorem 4.2. In particular the two-point functions 
&%(x1, x2) converge as 6 + 0 except when X, = x2. The invariance under 
rotation by a/2 will be of some use in the following preliminary to Theorem 
5.1. 

LEMMA 5.1. There exists a constant a > 0 such that 

where r2=,IIx2- x,l12, x,, x,E 6Z2, and K,(o) is the modified Bessel 
function. 
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Proof. We first consider S,- (x,, x2). Since Sap (x,, x2) is actually a 
function of the difference x2 - x, and is furthermore invariant under 
rotation of x2 - x, by a/2 we may confine our attention to the sector of 
the upper plane defined by n,(x, - x,) = An 2 Am = 7r,(xz - x,). In this 
sector we have An 2 2-‘/*r. If we estimate S,- (x,, x2) using the formula 
in Theorem 5.0 by bringing absolute values inside the sums and integrals 
and using the bound 

sh[W,) - Y(~*Wl < 1 
sin[(B, + 8,)/2] - 

established in the proof of Theorem 5.0 then we find 

. m”) 

In Lemma 4.1 we proved the &uniform lower bound S -’ y( p, 6) 2 mw( p) 
for p E [-r/6, n/6]. Let a = 2-‘/*m then 

e --rY(P)/fi6 5 e -orwJ) 2 p E [-+, q1. (5.11) 

Employing the notation of Lemma 4.1 we have thy(p) = 1 f 
(l/2)S2&p) so that shy = (ch*y - l)‘/* = (thy + l)‘/*(chy - l)“* = 
((thy + 1)/2)‘/*Sw,( p). Thus 6 -‘shy(p) 2 w8( p). However, 

w:(p,= 

1 + 2 11 - cos~Plp2 
@PI2 >A 

o*(P) 1+p* -7r* 

since 8 -*(l - cos 0) attains its minimum on [-r, V] at the end points 
8 = kn. We have then 

p E [-n/6, n/6] (5.12) 

Substituting (5.11) and (5.12) in (5.10) and then pushing the integration 
limits to 2 cc one finds 

f&-(x,, x2) I ch -! 
[ 4 / 

00 e-aNP) 
--m w(p) dp . I 
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so that we have finished the proof for S8-(x,, x2). 
Now suppose T < T,. In a finite box for + boundary conditions, 

Griffith’s inequalities [36] imply that the correlations are decreasing func- 
tions of the temperature so that (u(xI)u(xZ))~, 5 (u(x,)u(x,))~. Above 
T, it is known that boundary conditions do not influence the correlations in 
the infinite-volume limit [39]. It follows that $+(x,, x2) I S-(x,, x2). The 

- estimate we proved for S, is consequently true for S,+ as well. 0 

THEOREM 5.2. Let 4 E S(W2) (j = 1,. . . , n). The scaled correlations 
S’(f,,..., f,) = /S&(x,, . . . , xn)f,(xl) * * *f,(x,)dx, *. adx, are the mo- 
ments (a ‘( f,) . . au ‘( f,)) of random field% u’(f) on S’(W*). The functions 
S yx,, . . .) x,) are locally integrable. 

Proof. A partition {Ai ,..., A,} of a set {x ,,..., x0} into disjoint 
subsets is said to be a pair partition if each hj has two elements when n is 
even and if exactly one Aj has a single element and the rest have two 
elements when n is odd. We write S,‘(A) = S,‘(xi, xi) if A = {xi, x,}, 
S,‘(A) = 0 if A = {xi}, and &(A) = 1 if A = {xi}. Theorem 3 in [51] 
implies the following correlation inequalities 

sP(x,,..., xn) I ZS,*(A,) . . S,*(A,), (5.13) 

where the sum on the right is over all pair partitions of {x,, . . . , xn}. We will 
use this inequality to reduce all estimates to bounds on the two-point 
functions. 

Suppose f,, f2 E S(W’). We shall first demonstrate that 

=~fi(xdfib~)~k xd h, dx,. 

(5.14) 

Observe that SE(x, x) = (u&6,= 0(6-‘I*) (see Corollary 2.0 and the 
definition of T(6)). Thus the terms in the sum on the left-hand side of (5.14) 
on the diagonal x, = x2 do not make a contribution in the limit S + 0. 

Next define functions Gt(x,, x2) on R* in the following manner. If 
(x,, x2) is an element of the open cube of side 6 and center (r,, y2) E 6L4 
define Gd(x,, x2) = fi(yl)f2(yz)S~(y1, y2) if y, + y2, and G:(x,, x2) = 0 
if y, = y2. Set GB(x,, x2) = 0 on the remaining set of measure zero in W*. 
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We have 

2 /IblMx*)~~( x,, x2)S4 = I G:(x,, x2) dx, dx,. 
x,. x2 E8Z2 

x1 fX2 

Theorem 4.2 implies Gd(x,, x2) converges almost everywhere to 
f,bw2(-%)~‘( x,, x2). Thus to prove (5.14) we need only show that 
Gd(x,, x2) is dominated by a “sequence” of positive functions which 
converges in L’. Since f, and f2 are in S(W*) there exists a constant C > 0 
such that If,(x)1 5 C(1 + (x[*)-~ and jf2(x)l I C(1 + j~]*)-~. Let 
19(x,, x2) = C2(l + jx,J2)-*(l + Ix,]*)-*ch(l/2)K,(aJx, - x,1) and de- 
fine Z&(x,, x2) as follows: if (x,, x2) is in the open cube with edge 6 and 
center (y,, y2) E 6Z4 let Q(xI, x2) = NY,, y2) if yI + Y, and Q(x,, x2> 
= 0 if y, = y,. Set DJx,, x2) = 0 on the remaining set of measure zero in 
W4. It is an obvious consequence of Lemma 5.1 that IG;(x,, .x,)1 5 
I&(x,, x2). But /I&(x,, x2) dx, dx, is a Riemann sum approximation to the 
integral lD(x,, x2) dx, dx,. Since ch(l/2)K,(ar) is O(r-‘12) as r + 0 and 
is asymptotic to 1 as r + cc it follows that D(x,, x2) is absolutely integra- 
ble. Furthermore lim,,r,jD,( x,, x2) dx, dx, = jD(x,, x2) dx, dx,. This is a 
consequence of the fact that it is possible to make the contributions to the 
Riemann sums for D( x,, x2) coming from a neighborhood of the diagonal 
x, = x2 and near cc uniformly small in S by choosing “small” enough 
neighborhoods of x, = x2 and cc. The monotone behavior of 
ch(l/2)Ko(alx2 - x,1) near xl = x2 and of (1 + Jx,J*)-* near cc make it 
straightforward to give the appropriate estimates. We have finished the 
proof of (5.14). 

Now suppose h(x) E S(R*) (I = 1,. . . , n); the correlation inequality 
(5.13) and the behavior of the two-point function S,‘(x, x) = (u);$) at 
coincidence are enough to show that the sum over pair coincidences x, = x, 
makes no contribution to the sum ExEGz2”f,(x,) . . .f,(x,)&?(x,, . . . , xn)a2” 
in the limit S + 0. As above we define functions Gd(x,, . . . , x,). Let 
G;(x,, . . . , x,,) =fl(vl> . . -I(y,)Sg’(y,, . . . , Y,) if (xl,. . . , x,,) is in the 
open cube with edge 6 and center ( yt . * .y,) E 6Z2” and all the points 
Yl,..., y,, are distinct. Let Gi (x,, . . . , x,,) = 0 otherwise. Then 

z fdX,)dz(X,)%+,, . . . . x,)6*“= G;(x ,,..., xn)dx, .--c&c,. 
x$$qn I 

l I 

Choose C > 0 large enough so that Ifi( 5 C(1 + IxI*)-~ for I = 
1 ,..., n. If n is even we may use (5.13) to give the estimate: 

(5.15) 
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where the sum is over all pair partitions. Since each D,(A,) converges in L' 
it follows that the right-hand side of (5.15) converges in L'. Theorem 4.2 
implies that G&x1,. . . , x,) converges almost everywhere so that by 
dominated convergence 

ji”,/G;(x, . . ax,) dx, . . ‘dx, 

When n is odd only trivial changes are necessary to obtain the same result. 
We have shown that 

*F. 2 ftb,) ***fnb”)&%,,..., x,)82n 
xESZ2” 

=Jr,(x,)...~,(x.)Sl(x ,,..., xn)dx, -,.dx,. (5.16) 

When n is even we have 

n! 

= 2”‘+2/2)! 
v?a r))“‘“~ (5.17) 

where D,(f, f)= Zx~sz4f(x,)f(x2)D~(x,, x,)S4.When nis odd 

Cn! 

5 2(“-‘)/*[(n - 1)/2!] 
(D,( f, f ))-‘)? (5.18) 

where the constant C is chosen to dominate IZxE6Z2f(~)62 I. Since D6( f, f) 
converges as 6 + 0 the estimates in (5.17) and (5.18) can be made uniform 
in 6. This observation coupled with (5.16) is sufficient to conclude that 
x ,‘( f ) + x’(f) as 6 + 0. As remarked earlier this convergence suffices to 
demonstrate the positivity necessary for the characteristic function of a 
random field on S’(R *). The continuity of x ‘( f ) as a function off E S(tR 2, 
is evident from estimates given already. The Bochner-Minlos theorem 
applies and we have completed the proof of the theorem. Cl 
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THEOREM 5.4. The two-point Schwinger functions S *(x1 - x2), x,, x2 E 
R 2 have the representation 

S-(x,- x2) = 1 t g F,,(r) (r ’ 0) (5.19) 
n=l 

and 

S+(x,7x2)= !i F2,+,(r) (r>O), 
n=O 

(5.20) 

where r = II x, - x2 II and 

fern = 1,2,... . 

Proof: To derive (5.19) for S-(x1 - x2) first take the scaling limit 
6 --f 0 + of S,- ( x, , x2 ) in Theorem 5.0. Now make the change of variables 
pJ=+(uj+ ui’), j= 1,2 )...) 2n. To see that the result is rotationally 
invariant rotate the Uj-contours (see [73] for details). 

The derivation of (5.20) for S +(x, - x2) is somewhat more involved 
since we have not yet derived the analog of Theorem 5.0. To do this we first 
make a Neumann expansion of the inverse appearing in the expression for 
pf H and obtain for the two-point function 

pfH= i g2n+1,6@m27 An213 
n=O 

where 
2nfl 

g2n+&m2r 
dt? 

An,) =/” 2 ...e jF, 
e -iAm@, -An&O,) 

-7r ShY(ej) 

x E sht[Y(q) - Y(‘j+,)] 
j=l sinf[B, + e,,,] exp[WW, - e2,+A 

+ 0/2)(Y(4) - Y(@2,+,))1. 

This agrees with earlier results of other authors [73]. For the higher n-point 
functions our expression for pfH is quite different from the corresponding 
formulas in [4, 10, 43, 571. We could derive an expression for S,“(x, - x2); 
however, since we are mainly interested in the scaling limit 6 --* 0 + we 
proceed as follows. Take the scaling limit of pfH and multiply the result by 
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det,( 1 + G); one obtains 

s+(x,-x2) = 5 g,,+,(r) : L(r)7 
n=O It=1 

where gzn+,(t) is the scaling limit of g2,,+,JAnt2, An,). Define F&+,(T) 
for n = 0,1,2... by Fin+,(r) = Z’g,,+,(r)F,,(r), where the sum Z’ is over 
all k I 0 and 1 L 1 subject to the restriction k + I= n. It is now a 
combinatoric problem to rewrite this sum in a more tractable form. For 
details of this see Nappi [50]. The result is 

where 

/ 
m 4, 

F2,+1(r) = (2n : l)! -,2n . 
dPzn+ 1 ..- 

2s 

2n+1 2n+2 

XrI 
j=l 

eP~~p~;(P’)det( A+) , 
J a.fl=I 

where (AolS) is a (2n + 2) X (2n + 2) matrix with elements A,, = 0, A,, = 
(4 P,) - 4 pgN/(pa + ps), a, B = 1,2,. . . ,h + 1, and 42n+2 = 
-A 2n+2.a = l,a= 1,2 ,..., 2n + 1. As before one changes to the uJ vari- 
ables,j= 1,2 ,..., 2n + 1, rotates the u,-contours to obtain explicit rota- 
tional invariance for S +(x, - x2), and finally evaluates the resulting 
determinant using the same method that is used to evaluate Cauchy de- 
terminants. One obtains (5.20). Cl 

We have only sketched the proof of this corollary since many of the 
calculations are already in the literature [73]. The final “simple” expression 
for F, is new. 

It follows from the local integrability of S-(x, - x2) and simple esti- 
mates from (5.19) that S+(x, - x2) and S-(x, - x2) - 1 are in L’(R2). 
Thus the Fourier transforms of S + and S - - 1 exist; making use of the 
rotational invariance of S’, these transforms are easily seen to be 
27r/~rdrJ,,(rp)S+(r) and 2vrj;rdrJo(rp)[S-(r) - I], respectively. Here p 
is the magnitude of the Fourier transform variable p’ E R2 and J,(x) is the 
zeroth-order Bessel function. Using the corollary above, series expansions 
for the spectral densities are easily derived (the identity /For drJ,,( rp)e -(I’ = 
a( a2 + p2) -312 is useful). These Fourier transforms are of considerable 
interest in physics, and have been studied in [69]. The interpretation as the 
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spectral density of a generalized stationary process is possible in light of 
Theorem 5.2. For a indication of the rate of convergence of these series 
expansions for the spectral densities at small p see [47, 70, 731. This work is 
numerical, but it suggests that at p = 0 the first three or four terms in the 
series give ten decimal place accuracy! 

We conclude with some remarks concerning the Osterwaider-Schrader 
axioms for the scaled correlations. Symmetry is enforced as a matter of 
definition, and the distribution property is a consequence of the estimates 
given in the proof of the preceeding theorem. OS. positivity on the lattice is 
a consequence of the positive self-adjoint nature of the transfer matrix. 
Since we can replace sums by integrals, as in (5.16), the positivity property 
carries over to the scaled correlations. The cluster property is the one 
nontrivial axiom which follows from our formulas directly. We will sketch 
how this goes below T,. Suppose A and B are finite collections of sites in If4 2, 
and a E BP2 with a, > 0 (this can be arranged by making one or two 
rotations by a/2 if it is not true to begin with). We wish to show that 
lim A- +cQ(uA%r+All )+= (uA)+(uB)+. Making use of the determinant for- 

mulas one finds (u~u~+~,J+ = det, I + 
( I 

G(A) ‘%z(hn) 
Gdha) I) G(B) * 

The off- 

diagonal piece G,,( Au) contains the exponent& e -ha2w and goes to zero in 

Schmidtnorm.Thus limX+m(~A~B+ho)+= det,(I+ [Gy) G;B)l). 
The function det, is not in general multiplicative; however, G(A) and 

G(B) are manifestly limits (in Schmidt norm) of finite rank trace 0 
operators. We have then 

= det,(Z + G(A)) 

Xdet,(l+ G(B)) = (eA)+ (Ug)+ . 

Similar considerations apply above T,. Rotational invariance is the one 
axiom we have not proved. We remark that this property is closely related 
to the continuity of the scaled correlations at collections of sites in which 
two sites have coincident second coordinates. Our formulas are not well 
adapted to prove such continuity results. 
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