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The completely 2, symmetric S-matrix defined by Belavin is shown to satisfy the Yang-Baxter equations. In the projective 
space of Boltzmann weights, the curves on which there exist commuting transfer matrices are shown to be embedded elliptic 

curves. Explicit polynomial equations for these curves are given. For n = 2 these results reduce to the results of Baxter for the 

symmetric eight-vertex model. 

1. Inboduction 

Most two-dimensional lattice models in statisti- 
cal mechanics and one-dimensional lattice quan- 
tum models are “exactly solvable” only in the case 
that the Yang-Baxter equations [l, 211 possess a 
nontrivial solution. The reader is referred to Baxter 
[2], Takhtadzhan and Faddeev [19], and Thacker 
[20] for a review of these equations and their role 
in exactly solvable models. 

It is the purpose of this paper to examine one 
class of vertex models that are natural generaliza- 
tions of Baxter’s symmetric eight-vertex model [l, 
21, the so-called completely 2, symmetric vertex 
models first introduced by Belavin [4] and 
Chudnovsky and Chudnovsky [7]. There are other 
interesting generalizations of the Baxter model and 
the reader is referred to Perk and Schultz [17] and 
references therein. In Belavin [4] a formula is given 
for the vertex weights in terms of theta functions 
(see (4.1) below). With this parametrization the 
claim is that the Yang-Baxter equations are 
satisfied. I say claim, since there is some confusion 
on what was proved and what was conjectured 
(see, for example, ijttinger and Honerkamp 
[16]). These questions were further explored by 

fThis work was supported in part by the National ~Science 
Foundation under grant DMS8415678. 

Cherednik [6] who concluded the Yang-Baxter 
equations are satisfied in the elliptic caset. This 
paper, which is partly expository, gives an account 
of these matters. It was felt that the elegance of 
Belavin’s result required further explanation. In 
particular, I have emphasized the role embedded 
elliptic curves play in these models. 

In section 2, the Z, symmetric vertex model is 
defined and a representation for a Z, symmet- 
ric S-matrix is given. The material here can be 
found in either Belavin [4] or Chudnovsky and 
Chudnovsky [7]. Section 3 summarizes the results 
needed from the theory of theta functions. The 
books by Mumford [15] and by Krazer [13] are my 
main sources and wherever possible I follow 
Mumford’s notation. As do these authors, I stress 
the Riemann theta formulae. In section 4, a proof 
that the Yang-Baxter equations are satisfied is 
given, assuming the Belavin parametrization in 
terms of elliptic theta functions. The proof for 
arbitrary n is different in its details than that in 
Cherednik [6] but similar in spirit, i.e., function 
theoretic as opposed to algebraic. For the case 
n = 2 I point out that a special case of the Riemann 
quartic theta identity is precisely the Yang-Baxter 
equation. In some sense this is well known, but the 

f%ee remarks at end of section 7. 
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details do not seem readily available. Section 5 
takes up the problem of finding explicit homoge- 
neous polynomials in the Boltzmann coordinates 
w, that give the embedded curve on which there 
will exist commuting transfer matrices (we actually 
never discuss the relation to transfer matrices, but 
assume the reader understands this connection, see 
[2, 19, 201). This problem is equivalent to finding a 
set of homogeneous polynomials whose common 
zero set give the embedded elliptic curve. As the 
reader can imagine, the 19th century literature is 
enormous. Given below are n* homogeneous poly- 
nomials that the embedded curve must satisfy. 
Certainly at least two of these equations are de- 
pendent, but I do not have a proof (for n > 2) that 
there are n* - 2 independent equations. The dif- 
ficulty here is that the occurrence of too many 
theta nulls makes it unclear what is dependent and 
what is independent (the theta nulls themselves 
satisfy identities). All of these polynomials come 
from a particular set of Riemann theta formulae. 
The problem of reducing the number of theta nulls 
for n = 3 is discussed in considerable detail in 
section 6. A few remarks about the general case 
are given in section 7. The point in these sections 
is that to obtain the polynomial equations for the 
wa in Pn2-l, one finds polynomials for the elliptic 
normal curve in P”-l. This mathematics is classi- 
cal and our sources are Klein and Fricke [ll], 
Krazer [13], and Bianchi [5]. In these sections the 
Heisenberg group H,, previously introduced in 
sections 3 and 4, plays a prominent role in the 
determination of these homogeneous polynomials. 
An additional point to be emphasized is the ap- 
pearance of elliptic modular functions of level n. I 
expect this function theory to play an important 
part in the statistical mechanics of these models. 
This will be taken up in another paper. 

I 

i 

+ 
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x i, j,k,lEZ, 

Fig. 1. 

1 ,*.*, n - l} with addition modulo n. A con- 
figuration w is specified by assigning to each bond 
in A an element of Z,. Denote by L?* the collec- 
tion of all such configurations. To a given vertex 
x E A (see fig. 1) 
is assigned an energy E: and a corresponding 
Boltzmann weight Sf = exp ( - /3&f) where 0 < /I 
c co is proportional to the inverse temperature. 
The physical values of S:! are nonnegative real 
numbers. The energy E,,: 9, --) R U {‘co } of a 
configuration w is defined to be the sum of the 
energies E$ of each vertex of A. The probability of 
configuration w E s2, is given by the Gibbs mea- 
sure 

where Zn(P>=LEsaA exp (- fiE,( a)). To obtain 
the thermodynamics in the A --, Z * limit one must 
evaluate lim, _ zz(l/MN)log Z,(p). 

To proceed further one must make restrictions 
on the Boltzmann weights S/J’. The above vertex 
model is said to be completely Z, symmetric if the 
following two conditions are satisfied [4, 71 

(i) Sy=O, unlessi+j=k+I(n), 

(ii) sl”zjj:‘p” = s$ forallpEZn 

andalli, j,k,lEZ,. 

2. Completely 2 n symmetric vertex model 

For n = 2 this defines the symmetric 8-vertex model 
solved by Baxter [l, 21. Thus we call the com- 
pletely Z n symmetric vertex model the Z, Baxter 
model. 

Consider a square lattice A with M rows and N We want to rephrase properties (i) and (ii). To 
columns with periodic boundary conditions. De- do this we consider the vector space V = C ’ and 
note by Z, the group defined by the set (0, denote its standard basis by {em),,, E z,. We define 
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linear maps g and h by 

ge, = wiei, he, = ei_l, (2.1) 

where w = exp [(2am)/n]. The Boltzmann 
weights S:! define a linear map S: V 8 V -+ V 8 V 
in the basis {ei@ej}i,jEZ, for T/e V. 

Lemma 2.1. Property (i) holds if and only if S 
satisfies 

S(g@g)=(g@g)S. (2.2) 

Proof. We assume (2.2). Applying (g-’ 8 g-‘) 
S( g 63 g) to ek 8 e, gives Xi, j E z,S+Ok+‘-i-iei 0 
ej. This must equal Xi, j E ,“Stei @ ej. Thus S$ = 0 
unless i +j = k + f(n). Reversing the above steps 
establishes the converse. 0 

Lemma 2.2. Property (ii) holds if and only if S 
satisfies 

S(h@h)=(h@h)S. (2.3) 

Proof. To show (2.3) implies (ii) we apply (h-’ Q 

h-‘)S(h @ h) to ek 0 e, and equate the result to 
the result of applying S to ek @ e,. This establishes 
(ii) for p = 1. To obtain the general case apply 
(h-P@ h-P)S(hP 0 hp) to ek 0 e,. Reversing these 
steps gives the converse. cl 

The matrices g and h have a group-theoretic 
meaning. To see this let 

G,+= {(+~~)la,,a,‘=.} 

and 

(2.4) 

H,,= {@,+E~L,,aEG,}, (2.5) 

where p, denotes the multiplicative group of the 
n th roots of unity. With the multiplication rule 

(X+)(X,/3)= (xx’o-=‘2s’,a+/3) 

H, becomes the Heisenberg group [15]. If we 
define 

I, = h”‘g”*, a E G,, 

then a calculation shows 

InIs = w-a2q+B. (2.6) 

Thus the map H,, 3 (X, a) H Xl, defines a 
representation of H,. 

Proposition 2.3. An S-matrix is completely Z,- 
symmetric if and only if 

for all aEG,. 

Proof. By the two previous lemmas we have S( ha1 

@ h”l) = ( ha1 8 ha1)s and S( g”2 @ g”‘) = (g”2 8 
g”2)S if and only if S is completely Z, symmetric. 
Thus 

(Z, 0 1,)s = (h”lg”2 8 hUlg=2)S 

‘= ( ha1 @ h”l)( g”2 @ g”z)S 

= (h”WPl)S(g”‘egn2) 

=S(h”lg*~eh”lg”‘)=S(I,eZ,). •I 

Proposition 2.4. The set { Ia},E G, forms a basis 
for the vector space M,(C), the vector space of all 
n X n matrices with complex entries. 

Proof. For A, B E M,,(C) we define the standard 
inner product 

(A, B) = c AjkBjk. 
i.k 

Using (Ia)ij = 6i, j-qw jaz a calculation shows 9 

(I.,Ig)=S.,81~~~exp(~k(a,-8,)) 

= n6, 8. 
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Thus the set { lu}asG, is a linearly independent 
set and since there are n* elements it follows that 

{U&G, is a basis for M,(C). Cl 

Theorem 2.5. An S-matrix is completely 2, sym- 
metric if and only if S is of the form 

s= c WJ, 8 I,-’ (2.7) 
UCG” 

for some choice w, E C. We call w, the Boltzrnann 
coordinates. 

Proof. Let S E &(C). Since { I,0 IB}u,BEo. is a 
basis of Mn2(C). S has the expansion 

s= c wasru@IB, W&EC. 

Assume that S is completely Z.-symmetric. Then 
S( 1, @ I,,) = (I,0 1,)s for all u E G,. A compu- 
tation shows (using (2.6)) 

Since these must be equal for all u E G, and the 
fact that { 1, @ ls}a,BE o, is a basis, we conclude 
that ai + & = O(n) and a2 + fi2 = O(n). Hence 

s= c w,_,I,OI_,= c w,1,01,-‘. 
UEG” UEG” 

where w, = w”~~~w,_,. If S is of the form (2.7) 
then using proposition 2.3, we conclude S is Z,- 
symmetric. 0 

3. Elliptic curves and their theta functions 

In this section we collect the results we need 
from the theory of elliptic curves and theta func- 
tions. The reader is referred to either Krazer [13] 
or Mumford [15] for details. Wherever possible we 
follow the notation of Mumford. 

Let H denote the upper half-plane, T E H, and 
A, = Z + 27. We identify an elliptic curve with 
the complex torus E, = C/A,. We define theta 
functions a,,( z, T) with rational characteristics 
a, b E (l/n)Z by 

8a,b(z,~)= C exp(ri(m+a)*r 
msz 

+2ai(m + u)(z + b)). (3.1) 

We frequently suppress the dependence upon 7 
and write 19,. b(z) for 19,. b( z, 7). Also we denote by 
Qa,, the null values S,, b(O, r), 9( z, 7) for a,( z, r), 
and we sometimes use the abbreviated notation 

S,(z) = %,,“U2,” (z, r) for a E G,. For every holo- 
morphic function f(z) and real numbers a and b, 
let 

&f)(z) =f(z+ b), 

(T,f)(z)=exp(aia*r+2aiuz)f(z+ur). 
(3.2) 

In terms of these operators we have 

%,Jz) = (S,T,@(z)~ (3.3a) 

(‘%$u,,)(~) = %,b+bl (z), foru,b,,bE$Z, 

(3.3b) 

@j%,,)(z) =exP(-2niU,b)9,1+,,,(z), 

foru,u,,bEbZ, (3.3c) 

9 ~+p,b+q(z)=ex~(2~iud%,b(Z)~ 

%‘,qEZ,u,b+-Z. (3.3d) 

The functions 19=~( z), a, b E (l/n)Z/Z, form a 
basis for the vector space V, of entire functions 
invariant under S,, and Tn. Furthermore, an entire 
function f(z) is in V, if and only if 

f(z)= C, C,exp(lrim*r+2nimz), 

me--Z n 

such that C,,,, = C,,, if m’ - m E nZ with the action 
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of S,,” and T,,” on V” as follows: 

S i,” 
i 

C C,exp ( lrim2r + 2rrinrz) 
1 

me;2 

= C C,exp(~m)exp(rrim2r+2rrimz), 

mslz R 

T l/n 

i 
C C,exp ( nim2r + 2rrimz) 

,,A2 i 

= C ” Cm_i,“exp(~im2r + Zsimz). 

mclz ” 

If we use the coefficients {C&n E (l/n) Z/nZ} 
as coordinates, then on V” we can define operators 
h and g in an analogous way as in (2.1) where 
nowhandgaren2xn2matricesandw=exp(2?r 
R/n2). We then observe that Tl,” and S,,” 
restricted to V” can be identified as h-’ and g, 
respectively. These results are from Mumford [15, 
pages 8-101. 

The geometrical significance of S,,(z) is that 
for n 2 2 the complex torus E, can be embedded 
into B”‘-l using, these functions. Explicitly, let 
(ai, bi) be a set of coset representatives of 
[(1/n)Z/Z12 in [(l/n)Z12, 0 < i I n2 - 1. Write 
g,(z) = 9,,,,(z), then the map ‘p,: E, + Pnapl de- 
fined by 

zc*( . . . . gi(nz,7) ,...) (3.4) 

is a holomorphic embedding (see Mumford [15, 
pages 11-141) of the elliptic curve into p”*-‘. The 
set cp,( E,) is an algebraic subvariety and is defined 
by certain homogeneous polynomials. 

To find these homogeneous polynomials it is 
easiest to proceed using the Riemann theta for- 
mulae. To every rational orthogonal h X h matrix 
T there is a corresponding Riemann theta identity 
(Mumford [15, page 2111). The classical choice of 
Riemann is 

I1 1 1 l\ 
T_l1 l-l -1 

-z 1 -1 1 -1 I I 
\l -1 -1 11 

(3.5) 

and the various identities that result for the half- 
integer thetas are explicitly written out as equa- 
tions R, thru R,, on page 20 of Mumford [15]. It 
will be these identities that are relevant for the Z 2 
Baxter model. If we define the 2n X 2n matrix J2” 
to be the matrix consisting of all l’s, then the 
choice 

T=i(J2n-n12n) (3.6) 

gives identities for the thetas 90,b(z), a, b E 
(l/n)Z. Such identities appear to have been first 
worked out by Krazer and Prym [14] over one- 
hundred years ago. Let 9, pci), and E E Z 2 where 
we write 7 = (r),, q2), etc. Define (E, VI) = &1n2 - 
e2q1 and recall w = exp[(2si)/n] and the notation 

S,(z) = Q,l,“,,I,“(z), cy = (a,, a2) E G”. Then the 
identities read (Krazer and Prym [14, page 2741 
and set p = 1 in their &‘) 

2n 

n I-) 91_pci,( nui)w-1)1’12 
i-l 

n-l 

=c W’..“)-ele.,~s,+,,i,(n”i), (3.7) 
e,,e*=-0 

where p (1) + p(2) + . . . + pt2”) = (0, 0), and the vari- 
“1 

ables ui are related to the ui by u = TV, u = 

i 1 

i , 

v2n 

Ul 

UC : 

i I 

. ’ and T is the 2n X 2n matrix (3.6). 

U2” 

We set nu,,, = -*- =nvzn=x; ul= me* = v, 
=O; pl= . . . =p,=(O,O); P”+l= *** =Pz”-l 
=UE G,, p*“= -(n - 1)~; and q = (0,O) in (3.7) 
to obtain 

n(%&))“@-A” 
n-1 

= c ,-eI(e2+“2’(s,)“(go+,(x))“, (3.8) 
e1,e*-O 

where we used (3.3d), i.e. 
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The geometrical significance of (3.8) is seen by 
setting xij = I!+~,,, j,n (x, 7) in (3.8) to obtain the n2 

homogeneous polynomials 

n-l 

which in P”*-’ define an algebraic variety 8”. For 
n = 2 the equations reduce to 

&$j9&l(X) =90:9&(x> + W%(x), (Et) 

&$%(x> = 9&&t(x) --~:&W, (E;) 

6&9&(X) =9&9&)(x) +&X,(x), 0%) 

&#,(x) = W%(x) -?W:cJ(x)~ 0%) 

for u = (O,O), (0, l), (LO) and (1,l) respectively. 
For n = 2 the above four equations are the famous 

Jacobi equations (Mumford [15, pages 23 and 571, 
Krazer [13, page 3311). Only two of the above 
equations are independent (one normally chooses 
E, and E2). Furthermore the intersection of E, 
and E, defines a curve cC$ which coincides with 
the image cp,(E,) from the Lefschetz embedding 
(Mumford [15, page 231). 

For arbitrary n 2 2 the variety c?,, is at least of 
dimension 1 in lPnz-t since as x varies over E, the 
theta functions satisfy (3.9). The problem is 
whether this specialization of the Riemann theta 
formula gives a complete set of homogeneous 
polynomials characterizing the embedded curve. 
The problem is that there are too many theta nulls 
in (3.9) and they satisfy many identities (set x = 0 
in (3.8), for example; for n = 2 this reduces to a 
single identity a,$ = 19:~ + 9&). These questions 
are taken up again in section 6 for the special case 
n = 3. 

4. Yang-Baxter equations 

Let S be a completely Z n symmetric matrix with representation (2.7). Following Baxter [l, 31 (for n = 2) 

and Belavin [4] (for arbitrary n E N, n 2 2) we set 

(4.1) 

where z, q E E,, a E G, and 1) is chosen so that ae(n) # 0 for all a E G,,. Observe that w,,, = wa for all 
a E G, (use (3.3d)). If we define 

P(z) = c w,(z)& 0 I,-’ @I, 
nsG" 

P(z)= c w,(z)z,8181,-', 

uec, 

(4.2a) 

(4.2b) 

and 

s23(z)= c w,(z)z@z,~z,-’ (4.2~) 
UEG” 

(I is the n x n identity matrix) then the Yang-Baxter equation for the Z, Baxter model is 

s’*( z,)P( z1 + z*)P( z*) = P( z*)P( z1 + z,)P( zl) (4.3) 
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for all zr, z2 E E,. 

Proposition 4.1. The Yang-Baxter equation (4.3) is equivalent to the identity 

F,,(z,,z2)=0, forallz,,z,EE,andalla,bEG,, (4.4) 

where 

Proof. Using (4.2) and the multiplication rule for the Ia’s we have 

Let a = c + d, b = -c + e, and summing over a, b and c the above expression becomes 

a,az-bib,-a,b, 
&(b’c)wc(z,)w,_,(z, f z2)wb+= t2 

( )I -1, @ Ib@ I_,_,’ c 
A similar calculation gives 

s23(z,)s’3(z, + z2)sr2(z,) = c 6,-“‘Q2-b1b2-01b2 Cw-‘b’c’w,(z,)w,_,(z, + z2)w,,+C(z~) 
a,b C I 

‘t,@I,@I_,_,* 

Using the fact { Ia} is a basis we see that (4.4) and (4.5) now follow. cl 

Observe that (4.4) is immediate for b = (0,O). Thus we assume b # (0,O) for the remainder of this section. 
Let z2 E E, be fixed and for simplicity we write Fob(z) = Fob(z, z2). 

Proposition 4.2. For a, b E G,,, z E E,, the function &b(z) vanishes at 

(9 0, z- 

(4 z=;(b17+b2). 

Proof. (i) Setting z = 0 in (4.5), using the fact that w,(O) = 1, and changing the summation index 
(c * a - b - c) in the term with the factor ti(a-C,b) shows that Fab(0) = 0. 

(ii) Using (3.3) we first observe 

%+b(Z2+ q) 
exp -yb,(c,+b,) 

b2 

%(a) 

-inA nz’-2si:(z2+n) 
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where 

- Fbr( az + 2b,) - 2ia 
b* b, b 

h = exp -I-r - 47ri;q - 2rri;;?-z2 
n2 

Hence 

%+b-,tz2 + +b+c('2 + d 
9c(q)90_c(q) [d-*b) - &b)]. 

Letting, c I+ a - c in the term with the factor w(@-“~), we conclude that Fab 

Let f,,(z), a, b E (l/n)Z, be an entire function of z, not identically zero, with the transformation 
properties 

&,(Z + I) = w?(2via)f,b(z) 
(4.6) 

and 

f~b(z+7)=exp(-2nib)exp(-2ni(z2+7)-4ni(z+q))fa6(z). 

We have 

Proposition 4.3. The function fob(z) has exactly two zeros in the fundamental region for C/A, and their 
sum is equal to 

-m-(b+z2+2v) (modA,). (4.7) 

Proof. This is a standard contour argument, i.e. look at 

to conclude there are exactly two zeros, and look at 

& jrrdlO!3fob(Z) = 

to conclude the sum is given by (4.7). The contour I’ is the boundary of the fundamental paralleogram. 
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Putting all this together, we have 

Theorem 4.4. If S1’, S13, and S23 are defined by (4.2), then the Yang-Baxter equation (4.3) is satisfied for 
all zi, z2 E E,. 

Proof. Observe that Fob(z) is an entire function of z with transformation properties (4.6). In view of 
propositions 4.2 and 4.3 we must conclude Fob(z) is identically zero. The transformation properties (4.6) 
follow from 

w 
a 

(z + 1) = (slsa)tz + ‘) = exp 2ria’ w (z) 
%(ll) ( ) n a ’ 

w,(z+r)=exp(-isr-2rri(z+q)) mvtz + d 
%(11) 

=exp(-iar-2rri(z+q))exp -2nia2 w,(z), 
( n) 

where a E G,,. cl 

The proof of theorem 4.4 is short though not exactly instructive. It is the author’s belief that 
Fnb( zi, z2) = 0 can be derived as a special case of the generalized Riemann theta identity (see Mumford [15, 
page 2121) for some choice of T. It would be very nice if the Yang-Baxter equation came from the identity 
(3.7); however, the author has been unable to show this. To substantiate this conjecture I point out that for 
n = 2, the Yang-Baxter equations are precisely a special case of the Riemamr quark identity. Explicitly, 
for n = 2, the YB equation is 

k ) 
-1 (0.b) 

- l] [ wOO(zl)w~(zl + z2)wb(z2) + (-l)b’w~I(Z1)w~I,,~+l(Z1 + Z2)Wb,,bZ+1(z2) 

+(-1)b*W10(Z1)wa,+l,o,(zl+Z2)Wb,+l,b,(Z2) 

+(_l)b’+bz 
%m%l+l,o,+l 1 ( ’ + z2)wb,+1.b,+1 h)] = 0. (4.8j 

For (- l)lOpb) # 1 we obtain six equations (see Baxter [2, page 2101). We multiply each of these six 

equations by s,(1l)s,,(11)s,,(q)s,,(rl) ( we are using the standard notation Qti(z) = S++(z), etc. for the 
half-thetas) and obtain six quartic identities for the half-thetas. These equations are precisely a special case 
of the Riemann quark theta formulae. For example, for a = (0,l) and b = (l,O), (4.8) becomes 

Comparing this with equation R, of Mumford [15, page 201 and letting x-z1 +n, y+zi +z,+q, 
u + z2 + TJ, u + n, we see (4.9) and R, are identical. The other five equations resulting from (4.8) can be 
obtained by similar reductions of equations R19, R,, and R,, of Mumford. Observe that the RHS of the 
Riemann theta formulae vanishes in the above special cases since in each case 9,,(z) is evaluated at z = 0. 
I leave it as an exercise to show that for n = 2 the YB equations are also a special case of the Riemann 
theta formulae based upon the choice T = $( J, - 21,). 
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5. Polynomial equation for the Boltzmann giving the constant ci in terms of the tixed n 
coordinates and r. 

By specializing the Riemann quartic theta for- 
mulae, all the identities reduce to the two indepen- 
dent equations E, and E, (such equations as 
R,,-R,, in Mumford which contain the Yang- 
Baxter equations for n = 2 reduce to the trivial 
statement zero equals zero). As mentioned in sec- 
tion 3, equations E, and E, define the embedded 
elliptic curve in P3. Baxter, in his analysis of the 
n = 2 case, was led to the two polynomial equa- 
tions 

(ii) To show E, and E, =+ B,, we first calculate 

c,+c,+l w&-w;i 
= 

c2 - Cl - 1 wo”l - WI!0 

A similar argument shows that this expression 
equals 

ao1a10 

i 1 

2 

- 

acHA1 

cd 
- =cl, 
ab 

a2+b2-c2-d2 
zab =‘27 032) 

where ci and c2 are constants. In terms of the 
notation of section 2, a = woo + w,,~, b = w, - wOI, 

c = wIO + wI1, and d = wIO - wI1. 

Theorem 5.1. Assume n = 2 and that wa, cu E G,, 
are given by (4.1). Then the Jacobi equations (E,) 
and (E2) imply the Baxter equations (B,) and (B2). 

Proof. 

(i) E, and E, = B,: 
We write aij = Sij(q), i, j E G,, 

cd 40 - 41 -= 
ab w,$,- W& 

aooao1 2 

[ I[ afl~fo(x + 17) - aFo~fl(x + 17) = 
alOall 1 a&6&(x+7j)-a&+$(x+7j) ’ 

Using E, and E, with x + x + 17, we express 8:,(x 
+ r)) and 19,&(x + 9) in terms of 8&(x + n) and 
8:,(x + q) (and the theta nulls). The (aij)2 also 
satisfy E, and E,. Using E, and E, a second time, 
we conclude the second factor in the above equa- 
tion is 1 (this could be obtained more quickly if we 
simply used the addition formulae). Thus 

I 

2 

and hence (B2) follows. 0 

For arbitrary n 2 2 the Boltzmann coordinates 
wa will satisfy polynomial equations. To obtain 
these equations we need only to obtain the homo- 
geneous polynomials giving the embedded elliptic 
curve coming from the Lefschetz embedding. In 
these equations, recall xij = ai,“, j,n(~, r), we sim- 
ply let x ---,x + n and use (4.1) to obtain the 
polynomials in w,. As shown above, the n = 2 case 
of (3.9) reduce to the Jacobi equations E, and E,, 
which in turn imply the Baxter equations B, and 
B,. In this sense (3.9) under the transformation 
x+x+7, xij-+ r,n, j,n(n)~ij give the natural 
generalization for the Z, Baxter model. 

Remarks. 

(1) The 8,(n) also satisfy (3.9). Presumably the 
theta nulls may be eliminated in the polynomials 
for wa with only the constants S,(n) appearing. 

(2) As mentioned above, we have not proved 
that (3.9) gives enough equations to give the em- 
bedded elliptic curve. 

(3) For n = 2 and each point x E P3, x = 
(x0, x1, x2, x3), xj # 0, it is clear from (B,) and 
(B2) that thru this point passes an embedded 
elliptic curve. For n > 2 this is not the case. It 
would be of interest to characterize the algebraic 
surface in lPn2-l on which the embedded curves 
lie. It would be important to be able to produce an 
explicit basis for the associated polynomial ideal 
before the parametrization in terms of theta func- 
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tions. In other examples, this typically requires 
long calculations. 

6. Thecasen=3 

The ideas and calculations of this section follow 
Bianchi [5], Krazer [13], and Klein and Fricke [ll]. 
A 20th century reference is 
and consider the map from 

Hulek [9]. Let x E E, 
E, to P 2 given by 

x,=9,(x)6,t(x)6,5(x), 

xi = 9~o(x)9,,(x)6~1(x), 

x2 = 19~0(x)9~~(x)9~f(X). 

(6.1) 

In the language of theta functions, x0, xi, and x2 

are third order theta functions of characteristic 
[I 
x 

(see Krazer [13, pg. 361). Such third order thetas 
form a vector space of dimension 3 and 
{x0, xi, x2} is a basis. The functions xi can also 
be thought of as sections of the line bundle L3 [8], 
but we will not need this formulation here. What 
we do need is that the map (6.1) is an embedding 
of E, into P2 (see, for example, [8, pg. 3171). 

Recalling the results from section 3 we can 
easily verify that 

S;Xo = x0, T;xo = Ax,; 

Six1 = 0x1, T+xl =Xx,; (6.2) 
Six2 = w2x2, Tix2 = Xx0, 

where w=exp($ri) and X=w-‘exp(-insr- 
4rix/3). Thus on P2 the Heisenberg elements S; 
and T; can be identified with the 3 X 3 matrices g 
and h-l, respectively, of (2.1) for the case n = 3. 

Now the Heisenberg group H3 maps E, to itself 
such that the nine torsion ‘points of order 3 are 
permuted amongst themselves (in geometrical 
terms, these nine points are the nine inflection 
points of the elliptic curve). Since this action ex- 
tends to P2 we must have that in P2 the em- 
bedded curve is invariant under H3 (that is, a 
point on the curve is taken to a point on the 

curve). Now it is easy to see that no quadratic 
equation in x0, xi and x2 can satisfy this require- 
ment. The cubic homogeneous polynomials that 
are invariant under Sg are xi, x1, xz and x0x1x2. 
Writing 

fbo9 x1, x2) = Ax; + Bx; + Cx; + Dxox1x2, 

we see that A = B = C follows from invariance 
under T;. It is customary to write D = 6uA to 
obtain the elliptic normal curve q3 (Hesse form) 

x~+x:+x~+ ~uxOX,X~=O (6.3) 

that the theta functions given by (6.1) must satisfy. 
The parameter a will be a function of T and in 
fact is an elliptic modular function of level 3. 
The classic reference on modular functions is 
Klein and Fricke [ll]; a modern reference is 
Schoeneberg [18]. Recalling (3.1) and letting v, 
denote the normalized Boltzmann coordinates 
@,(n)w,, we see that we have the single equation 

u~u&u~2 + u:ou:iu:2 + u:ou;1u;2 

+6auuuuuuuuu 0. 00 01 02 10 11 12 20 21 22 = (6.4) 

Of course, the u,, will satisfy more independent 
equations. These additional equations arise by 
considering different bases {x&x;, x;} for the 

space of third order thetas of characteristic i . It 
[I 

is easy to check that for a, #I E G,, /3 # (O,O), a, 
2a that 

x;, = %ow3a(~)92,b)~ 

4 = ~,(X)~,,8(X>~,,,,(X), (6.5) 

-G = 928(x)9,+28(X)92B+2a(X), 

is a basis for third order thetas of characteristic 
[I 
8 

(recall convention: 9,(x) = Qa,,3a,,3(~), a E G3). 
The choice (Y = (0,l) and /3 = (1,O) corresponds to 
(6.1). 

We now examine (6.5) in the case a # (0,O); 
thus 0, a, and 2cw are distinct elements in G,. 
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Delme 

S’ = C1,3SP2,3 7 T’ = l&$,/3 3 

so that when a = (0,l) and j? = (1,O) we have 
S’ = S; and T’ = T+. Using the transformation 
properties of the theta functions we have 

where h is a common exponential factor (never 
vanishing) and 

The elements S’ and T’ generate H3. We see as 
before that the invariant polynomial must be of 
the form 

r$x;,.x;,x;)= (x;1)3+(x;)3+(x;)3 

+ 6a’x’x’x’ 0 1 2’ (6.6) 

There are four subgroups of G, that are isomor- 

phic to z 3; 4J = ((0, O), (0, 11, (0, a}, 4 = 

{(O,O),(LO),GO)}, A,= {(0,0),(1,1),(2,2)} and 

A, = {(0,0),(1,2),(2,1)}. Observe that if a E A, 

then so is 2a. Hence the condition j3 # (O,O), a, 2a 

can be given as if a E A,, then /? 4 A,, /3 + (0,O). 

Note further that choosing different (nonzero) ele- 
ments of a fixed subgroup A, for a leads to the 
same basis (6.5). Hence there are four distinct 
choices of a and six choices for 8. For a fixed a 
the six different choices of fl correspond to either a 
different ordering of (x6, x;, xi} or certain coor- 
dinates are multiplied by either w or o*. Hence for 
fixed a, we get the transformations 

a’=wa and a’= w*a. (6.7) 

As far as distinct equations for the normalized 

Boltzmann coordinates u, we get four distinct 
equations corresponding to the four distinct choices 
of CY and any representative choice of p. 

But, of course, these change of bases are related 
by linear transformations on (x0, xi, x2). Thus 
there must exist a theta identity connecting (6.1) 
and (6.5). This is the meaning of eq. (98) on page 
395 of Krazer [13]. In the notation here this equa- 
tion reads 

x,=k(x;,+x;+x;), 

W*X,=k(x;,+W*X;+WX;), (6.8) 
ax* = k(x;, + wx; + w’x;), 

where we denote by a prime, the choice a = (l,O), 
j? = (0,l) in (6.5). The constant k is expressible in 
terms of the theta nulls, but its exact form need 
not concern us here. Using the fact that w* + w + 
1 = 0, we see that substituting (6.8) into (6.3) the a 
is related to the a’ of (6.6) by 

a’= G, fora=(1,0),/3=(0,1) (6.9) 

(a useful identity in these calculations is 
(A+B+C) (A+wB+o*C) (A+w*B+wC)= 

A3 + B3 + C3 - 3ABC). Eiq. (6.8) can be viewed as 
a theta identity. It is in fact derived from the 
Riemann theta formulae (3.7) for the case n = 3. 
The details of this can be found in Krazer’s book 
or complete details in Krazer [12]. There are two 
more equations we get by setting a = (1, l), ,d = 

(0,l) and a = (1,2), j3 = (0,l) in (6.5). Again there 
must exist a linear transformation and this will 
lead to a transformation on the corresponding a’. 

We have (use formula 1, of Krazer [12]) 

a+ l’,,“,“,, fora=(1,1),/3=(0,1) (6.10) 

and 

1 -w*a 
a+ 

1 + 2w*a ’ 
for a = (1,2), B = (0,l). (6.11) 

The transformations S: a + wa and T: a + (l- 
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a)/(1 + 2~) generate the tetrahedron group. The 
group generated by S and T is isomorphic to 
r/r( 3) (see Schoeneberg [ 181). 

We now turn to the case a = (0,O) in (6.5). 
Writing J$ for this case, (6.5) becomes (and chang- 
ing the /3 label to a’.) 

y; = 9&(x), Y; = a:(x), r2’= a;,(x), (6.12) 

where there are four distinct choices for a; namely, 
a # (0,O) and one representative from each sub- 
group A,, I = 0, 1,2,3. We will choose a = (0, l), 
(l,O), (l,l), and (1,2). We now fix /.I = (0,l) in the 
basis (6.5). Since (6.5) defines a basis there exists a 
linear transformation, depending upon a, that 
takes (6.12) to (6.5). Krazer gives these maps in eq. 
(107), page 397 of [13]. It reads 

X,=k,(Y,+ Y2+ Y,), 

x2=k,(Y,+oY*+W2y,), (6.13) 

x, = k2( Y, + w2Y2 + WY,), 

where 

Xi = %o(x)%(x>L(x), 

x2 = ~~(x)s~+~(x)s~-,(x)w~~~~ (6.14a) 

x, = 9_fl(x)9_ /3+a(x)~_~-,(x)~a’% 

r, =&L)(x), 

Y, = a;(X)W+, (6.14b) 

Y3 = @3(x)Xa~W(l 

with 

k,= -2ak, (6.14c) 

and k, is expressible in terms of theta nulls de- 

pending on the theta characteristic a. Again (6.13) 
follows from the Riemann theta formulae (3.7) 
though here more work is required to see this [12, 
131. Choosing a = (0,l) then Xi, X2 and X, are 
essentially x0, xi and x2 (Xi --,x0, X2 + w2x1, 

X, + wx2) and r, +yo, Y23~1, and Y, +y2. 
Working in this basis we compute 

x; + x; +x; + 6ax,x,x, (6.15) 

using (6.13). The polynomial that results is (up to 
a nonzero constant) 

where 

b= -s (a=(O,l)). (6.16) 

Now setting a = (l,O), (6.13) gives the map from 
(6.12) to (6.5). The resulting b’ is related to the 
corresponding a’ exactly by (6.16) since the poly- 
nomial in x&xi, xi is of the form (6.15). We 
hence need only know how this a’ is related to a. 
From the above work we see that a’ = Tu so that 

b+ _ 4o-43 
l-2a+4a2 

(a = (LO)). (6.17a) 

Similarly, 

b+- 
4(1 - WQ)’ 

1 - 2wa + 4w2a2 
(a = (l,l)), (6.17b) 

b+- 
4(1 - ,2a)3 

1 - 2w2a + 4wa2 
(a = (1,2)). (6.17~) 

This produces an additional four polynomiaIs and 
in ah eight polynomiaIs. 
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We now collect these eight homogeneous poly- 
nomials: 

fi = x&x&& + x:ox:1x:2 + x;ox;1x;2 

+6ax 00 01 02 10 11 12 20 21 229 x x x x x x x x 

f2 = x~x;ox;o + x;1x;1x:1 + x;2x:2x:2 

l-a 
+6~ 1 + 2a %0~01~02~10~11~12~20~21~22~ 

f3 = x&)x;1x:2 + x;1x;2x;o + x;2x:ox;1 

+6 
l-wa 

1+2&M ~2%o~ol~02~lo~ll~12~20~21~22~ 

f4 = x&)x;2x:l + x;1x;ox:2 + x&x:& 

+6 l-w2u 

1+ 2w2u 
~%0~01~02~10-%1~12~20~21~22~ 

- 216 
a3 

-4&42 9 
1 + 8a3 

fs = (x& + x:0 + x:0)’ 

-24 (’ - ‘)’ 
1 - 2a + 4a2 

x,$;ox;o , 

f7 = (x& + x;1 + xi,)’ 

-24 (’ - Wu)3 
1 - 2wa + 4w2a2 

x&x;,x:,, 

fs = (40 + x1’2 + x:,)’ 

_ 24 (l - U2a)3 
1 - 2w2a + 4wa2 

x&x:2xz1, 

The modular function a of level 3 can be ex- 
pressed in terms of theta nulls. There are many 
different looking expressions for a (there are many 

theta null identities!). The one in Krazer [13] is 

2 8!,+8&+6q;’ 

Note there is a misprint in the middle of eq. (94) 
on page 394 of Krazer [13]. In Krazer’s notation 

replace 

by 

63{p}+7(u,s)~3{)8+LY}+72(a.8)93{P-(y}, 

where (cw, /3) = cQ2 - a2j3i. Without this correc- 
tion the small q expansion of the two expressions 
occurring in eq. (94) of Krazer do not agree. Also 
the expression for u(r) now agrees with eq. III of 
Krazer [12]. Note that we have substituted 9:; = 
9:_ f = 8& in Krazer to make u(r) look more 
symmetric. These equations express the 7 depen- 
dence in terms of the single function u(r) com- 
pared with the nine theta nulls appearing in (3.7). 
The price is that they are harder to generalize and 
their degree is higher than in (3.7). 

As a comparison we recall the n = 2 case 

fi = x& - k’( 7)x& - k( 7)xfo, 

f2=xf1 -k(7)X~~+k’(T)X:0, 

where 

/P(r)+/P(r)=l, k(r)= 2. 

Thus the function u(r) for n = 3 plays an analo- 
gous role to k(r) in the n = 2 case. Also from 
(6.18) we can answer (for n = 3) the question 
posed at the end of section 5. Namely, by using 
say fi to solve for a, we can eliminate a(~) in 

f 2,. . . , fs. These remaining polynomials define a 
two-dimensional surface in P 8 on which the renor- 
malized Boltzma~ coordinates V, must lie in order 
for there to exist commuting transfer matrices. 
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7. Thecasesn>3 

In this section we indicate the method of reducing the number of theta nulls appearing in the set of 
homogeneous equations for the normalized Boltzmann coordinates. The method is a generalization of the 
ideas presented in the previous case n = 3, though the details will be considerably more involved. For this 
reason we present only a sketch of the steps involved. The problem naturally divides into two cases, n even 
and n odd. For n odd the generalization of (6.1) is immediate: 

PI-1 

xi= n7Yj,n,k,n(x,7), j=O,l,..., n-l,n=l(O). 
k-0 

(7.1) 

For n even the map from E, to 8, ‘-’ has to be slightly modified as was first shown by Hurwitz [lo] in the 
case n = 4. We restrict the discussion here to n odd; and though not necessary at first, we further restrict 
the discussion to n prime. For details of the general case of elliptic normal curves see volume 2 of Klein 
and Fricke [ll]. 

We have for all j = 0, 1, . . . , n - 1 

Sl,nxj = wixj, Tl/,,xj = Ax,,,, xi+,, = xj, (7.2) 

where w = exp(2ai/n) and X is a nowhere vanishing function independent of j. Thus H, lifts to lPnel as 
before, and we have the crucial fact that the embedded curve V?,, in tP”-l is invariant under this action. 
For n = 3 we determined a single polynomial in x0, xl, and x2 that defined &. Now we seek a collection 
of homogeneous polynomials in x0,. . . , x,_~ that defines the algebraic curve %‘,,. That these polynomials 
can be chosen to be quadrics goes back to Bianchi [5] who considered both n = 3 and n = 5 in considerable 
detail. 

Though a more modem proof can be devised (see Hulek [9]), in the spirit of the Riemann theta formulae 
we follow Krazer [13, pges 399-4041 to show the existence of a set of quadrics { Qi} defining ‘i4, follows 
essentially from the Riemann quartic identity. 

The first step is to realize that (7.1) can be written as a single theta function and then to use the Riemann 
theta identity for this theta. Start with the identity 

where c is independent of x, a, and b. A quick proof of (7.3) follows the standard Liouville argument (look 
at the ratio and observe the n zeros in E, for both the numerator and denominator agree. To show c is 
independent of a and b look at the transformation of the ratio under x + x + l/n and x + x + l/m). 

Now it is a classical result of the Riemann quartic identity (details are in Krazer) that 

for all t, u, u, w E E, (here a,,(~, r) is the half-theta &;(z, 7)). It is somewhat more convenient to write 
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(7.4) in terms of 9(z, 7) (I have writteA both out since (7.4) is more readily recognizable): 

e2ni”~(~+~+t7+5,7)S(t-~+~7+~,7)9(~+W+~7+~,7)9(U-W+~7+~,7) 
+e2niw8(t+u+$7++, ++(t--U+ 37+ +,7)8(w+u+ $7+ ~,7)79(w--u+ $7+ $,7) 

+e2RiU8(t+~+f7+~,7)8(t-~+ t7+~,7)9(u+u+17+t,7)9(u-u+~7+f,7)=0, 

(7.5) 

where common nowhere vanishing factors have been removed. Now let 

a1 t=*nx+ -7*-$(7+1), 
n 

u=3nx+ :7*-,(7+1), 

u= $lx + :7* - 4(7+ l), 

w= $nx+ 47*- i(7+1), 
n 

(7.6) 

in (7.5), remove common nowhere vanishing factors, let 7 + n7, and then set 7* = 7. The resulting identity 

reads 

-7t $n7+ +,n7 

( a2-a3 x8 n 
-7+ +n7+ +,n7 -0. 

1 
(7.7) 

Since n is odd, Qa,nb+;(n_lj (z, 7) = exp (si(n - l)a)a=,, J z, 7). Hence 

x, = 8,,,,0(nx, n7), a=O,l,..., n-l, 

where we used (7.3). Comparing with (7.7) we conclude that 

c1xa,+a2xa,+a, + c2xq+a3xu2+(14 + c3xq+a,x,*+a, =(A (7.8) 

where cr, c2, and c3 are independent of x but depend upon al, a*, a3, and a4. Eq. (7.8) is the desired set 
{ Qi} of quadrics. Observe that the aj must be distinct for (7.8) to be nontrivial (thus (7.8) does not say 
anything about the case n = 3). 



C.A. Tracy/ Embedded elliptic curves and the Yang-Baxter equations 219 

Once the existence of the quadrics is established, their form can more readily be deduced using the action 

of the Heisenberg group H,. For example, choosing ai = 2, a2 = 3, aj = 1, and a4 = 4, one choice of (7.8) 

for n = 5 is 

Qdx IJ,“‘, XJ =x0’+ UxZXj + bx,x,. (7.9a) 

Observe that Q, is invariant under S1,S and the action of T,,, g enerates an additional four polynomials: 

Q,b o,...,x‘J = x1’ + a.xJx4 + bx2xo, 

Q,b ,,,...,x4)=x;+ux4xo+bx3x1, 

Q,b 
(7.9b) 

0,“‘, x4) = x: + axox + bx,x,, 

Q& o,...,x4)=x~+uxlxz+bxox3. 

Furthermore, as shown by Bianchi [5], 

b= -5. (7.10) 

To see this, first recah that 9,(x, r) is zero at x = $( T + 1). Thus x0(x) vanishes at this point, and 

evaluating Qz and Q., at x = i(r + 1) gives 

(7.11) 

To simplify (7.11) we write x,($7 + $) = x4( - $r-$+++l)andx2($r+~)=x2(-+r-f+r+l),use 

thefactsx,(-u)=wx,(u), ~~(-u)=~~~~(u),andx~(u+r+1)=X~(u)~~(~)whereh,(u)~exp(5(-s~ 

- Zlriu)) to show that (7.11) implies (7.10). In (7.9) there are three independent quadrics; in fact, 

x,Q3 = xzQo + axoQl- ~3Q2, x,Q, = - a,Qo + m,Q, + XOQZ. 

Thus the set {Qi},‘_O for n = 5 defines the elliptic normal curve ‘ie,. In general there wiU be n - 2 

independent quadrics. 

To obtain the additional homogeneous polynomials for the xii= Qi,n,j,n(~, r) we first consider the 

generalization of (6.5): 

n-l 

“j’I kn08jp+,,(x,7), j=O,l,...,n-1. (7.12) 

Since n is prime there are n + 1 subgroups A, of G. that are isomorphic to 2, (see Hulek [9]). They are 

generated by (0,l) and (1, I) for I = 0, 1, . . . , n - 1. The choice a = (0,l) and B * (1,O) in (7.12) corresponds 

to (7.1). We Ex j3 = (1,0) and choose a to be a representative from each of the subgroups A,, k 2 1. This 

change of basis from x + x’ will in each case correspond to the generalization of (6.8) and its variants in 

the n = 3 case. For n = 5, Bianchi has shown that the quad&s { Qi} retain their form under this basis 

change and the a now transforms according to the icosahedral group. Thus for n = 5 there is a single 

modular function, a = a(~), of level 5 that appears in the quadrics Qi. The final step is to define the basis 
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(use the fact that n is prime) 

y,!=IY,;(x,r), j-o,1 )...) n-l, 

where again (Y is a representative from the subgroups A,. Now we must generalize (6.13) to obtain the 
generalization of (6.16). This step is involved and will be left for future work. 

Added remarks 

After this paper was written, M. Jimbo brought 
to my attention the paper “Factorized S-matrices 
and generalized Baxter models” by A. Bovier (J. 
Math. Phys. 24 631-641 (1983)) in which a proof 
with complete details of the Belavin conjecture is 
given. The proof given in this paper in section 4, 
though not identical, is quite similar to that in 
Bovier. 
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