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7~ n Baxter Model: Critical Behavior 
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The Z, Baxter Model is an exactly solvable lattice model in the special case of 
the Belavin parametrization. We calculate the critical behavior of Prob~(~ = ~o k) 
using techniques developed in number theory in the study of the congruence 
properties ofp(m), the number of unrestricted partitions of an integer m. 
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1. I N T R O D U C T I O N  

The ~ .  Baxter model with the Belavin parametrization of the Boltzmann 
weights is an exactly solvable vertex model (1) which for n - - 2  reduces to 
Baxter's eight vertex model. (2'3) The dual to this Zn vertex model is a spin 
model where the spins now "point" to the nth roots of unity. Thus a 
relevant quantity is the Probn(a = co k) where ~o = exp(2~i/n) and k = 0 ..... 
n -  1. In Ref. 1 it was shown that in the ferromagnetic regime 

Prob.(o- = co k) -- q~(x) ~ p(m) x m 
rn ~ k ( r o o d  n ) 

(1.1) 

where p(m) is the number  of unrestricted partitions of the integer m and 

(1-x') (1.2) 
n = l  

The above expression is well-suited to analyze the x ~ 0 limit where we see 
that P rob . ( a  = 1) tends to 1 and the remaining probabilities tend to 0. It  
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was further shown in Ref. 1 that as x ~ 1 all the probabilities tend to 1/n. 
Thus the variable x is a "temperature-like" variable for the 77 model, with 
x = 0 being the completely ordered state and x = 1 being the transition to 
the disordered state. The variable x cannot be directly related to tem- 
perature because the Belavin parametrization requires that the Boltzmann 
weights satisfy certain functional relationships. This follows from the fact 
that the Belavin parametrization contains only four parameters (counting 
the overall normalization) to describe rt 2 parameters for a general Zn vertex 
model. This seems to be a common deficiency in the solutions thus far 
found for multistate vertex models. Nevertheless it is of some interest to 
analyze the "critical behavior" of this model. To define the critical exponent 
/~ we write 

x = exp(  - nt  ), O <<. t <<. ~ (1.3) 

and introduce the conjugate variable 

p = exp( - n/ t )  (1.4) 

As t ~ 0, x ~ 1 and p ~ 0. We use p as the "deviation from criticality" 
variable, and thus we wish to determine/~ as defined by 

P r o b , ( a = c ~ k ) ~ l / n + c y  as p ~ 0  (1.5) 

The congruence properties of p(n )  have been studied in considerable 
detail starting with Ramanujan who stated that 

p(5n  + 4) x" = 5q~5(xS)/q~6(x) (1.6) 
n ~ 0  

Note that with such a result, and using the transformation properties of 
~0(x) under the modular group, it is now straightforward to determine the 
behavior of (1.6) as x approaches 1. This result of Ramanujan motivated 
the development of several methods to analyze (1.1); see, for example, 
Rademacher, ~4) Knopp, ~5) and Andrews. ~6) One of the most elementary 
approaches is that of Kolberg, ~7) which we employ here. Kolberg's method 
is summarized in Section 2 and applied to the Zn model in Section 3 for 
the cases n = 3, 5, and 7. Some general remarks about the case when n is 
prime and of the form 6m + 1 or 6 m -  1 are also given in Section 3. We 
note here that the critical exponent /~ is seen from these special cases to 
depend upon n. 
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2. K O L B E R G ' S  M E T H O D  

Let q denote any odd prime�9 Then for s = 0,..., q - 1 define 

gs(X)= ~ ( - -1)nx n(3n +')/2 
(1/2 )n(3n + 1) ~s (modq)  

so that by a well-known identity of Euler we have 

q--1 

q)(x)= ~ g~(x) 
s = 0  

(2.1) 

(2.2) 

Kolberg (7) shows that if 24s + 1 is a quadratic nonresidue, then g,(x)= O. 
(When 24s+1 is a quadratic nonresidue there are no terms in (2.1).) 
Furthermore, if D denotes the determinant 

(2.3) 

g q -  

go g q - 1  " ' "  gl 

gl go "'" g2 

1 g q - 2  " ' �9  go  

and D s is the determinant of the matrix formed by replacing the sth column 
of (2.3) by (1, 0,..., 0) r, then we have 

Ps = ~', p(qn + s) x q'+s = Ds/D (2.4) 
n ~O  

The reader can quickly verify this by multiplying the equation 

q 1 

Ps =  o(x) -1 
s ~ 0  

by (2.2) and observing that g~Pk-~ is x k times some power series, thus 
giving q linear equations for P,. Thus the evaluation of the sum in (1.1) is 
reduced to evaluating the functions gs(x) and the determinants in (2.4). 
Kolberg further shows that the determinant D can be expressed in terms of 
 o(x) 

D ~- q ) ( x q )  q+ 1 /q) (xq2)  ( 2 . 5 )  

As it stands, the functions gs(x) as defined by (2.1) are not in a form 
suitable for analyzing the x ~ 1 limit. For primes of the form 6m + 1 and 
6m - 1, Atkin and Swinnerton-Dyer (8) have shown (Ref. 8, Lemma 6) how 
to express g~(x) in terms of the function 

f ( w , x ) =  f i  ( 1 - x " - l w ) ( 1 - x " w - 1 ) ( l - x n )  (2.6) 
n ~ l  

822/44/1-2-13 



186 Tracy 

which is essentially an elliptic theta function. The cases used below 
(q= 5, 7) go back to Watson. The function f (w ,  x) frequently arises in 
exactly solvable models. {3) For us the most important property f ( w , x )  
satisfies is the transformation formula 

f(exp( - 27zzt), exp( - 2rot)) 

=- - t  -1/2 exp[-Ttt/4 - rcz(1 - z) t] 011(z , i/t) (2.7) 

where 011(z, ~) is the Jacobi theta function 

~11(z, ~) = ~ exp[ni(n + 1/2) 2 + 2rci(n + 1/2)(z + 1/2)] (2.8) 
n~ --o3 

A proof of (2.7) can be found in any textbook on theta functions or in 
Ref. 3 (see eq. 14.2.28). We will also need the transformation formula 

q~ (exp( - 2rci/z)) 

= ~ exp((~i/12~) + (~iz/12)) ~0(exp(27ziz)) (2.9) 

with Ira(z)> 0 and the Dedekind eta function 

~/(z) = exp(Tzir/12) q~(exp(27ti~)) 

3. FORMULAS FOR PROBq(O'=W k) 

A. The 7/2 Case 

We first analyze the Onsager-Yang-Baxter result to clarify the notion 
of deviation from criticality as defined in the Introduction. For n = 2 we 
have 

Prob2(a = 1) = (1 + (o-))/2 (3.1) 

where ( a )  is the Onsager-Yang-Baxter spontaneous magnetization (3'9'1~ 

(0")  =HI,== (3.2) 

First recall the product representations of the Jacobi theta functions 

go0(0, z ) =  I~I (1 -x2")(1 + x  2" 1)2 
n=l  

001(0 , "C) = f i  (1 - -x2n)( l  --x2n--1) 2 (3.3) 
n=l  

OqlO(0 , / : ) = 2 X  1/4 f i  (1 --X2n)(1 -~X2n) 2 
n~ l  
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where x = exp(ni~) and then write (3.2) as 

('~01 (0, T)) 1/2 
( ~ )  = \,O, oo(O, ~ 

The Jacobi  theta  functions 0oo(0, r)  and 3o1(0, z) satisfy 

~oo(0, - l / z )  = ( - i t )  ~/2 0oo(0, z) 

0o~(0, -- l /z)  = ( - - i z )  ~/2 O~o(O, z)  

so that  

187 

(3.4) 

= ( O , o ( O ,  - 1 / ~ ) ]  1/2 

( ~ )  \Ooo(O, - l / z ) /  

r1 ( 11+p2~ +p2~ = 21/2p 1/8 ~_.~ p = e x p ( - - n i / z )  (3.5) 
n=l 

As p -~ 0 we have 

Prob2(o- = 1 ) = 1 + 2 -1/2p,/8 + 0(p9/8) (3.6) 

so that /7  = 1 is the critical exponent  using p as the deviat ion f rom criticality 
variable. 

B. The Za Case 

F o r  q = 3 we first evaluate  the Kolbe rg  de terminants  

Do = go 2 -- gl  g2 

D1 = g~ - go gl  (3.7) 

D2 = g~ - go g2 

Using the Jacobi  triple p roduc t  identity Kolberg  shows that  

gO(X) = f ( x  12, X 27) 

gl(x)  = - - x f ( x  6, X 27) (3.8) 

g2(x)  = - - x Z f ( x  3, x 27) 

Using (1.1), (2.5), (2.7), (3.7), and (3.8) we obta in  

Prob3(a  = 1) = n3( s ) [O~(4 /9 )  - <911(2/9 ) 01~(1/9)] 

Prob3(~  = co) = n3(s)[O~i(1/9)  + ~ , ( 2 / 9 )  0H(4 /9 ) ]  (3.9) 

P rob3(a  = co 2) = n3( s ) [O~(2 /9 )  + 0H(1/9 ) ~9H(4/9)] 
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where all ~ functions are of modulus  T 3 = 2is/27 and 

n3(s) = 3 2 exp(ns/27)  q)(e -4~')  (p(e-4~/9)/q)4(e-4~/3) 

= 3 2t/(27z3) r/(3"C3)/t/4(9"C3) (3.10) 

The  small p expans ion  of (3.9) is now rout ine 

P rob3(a  = cok) = �89 + ck p4/27 + 0(p8/27) (3.11) 

where the constants  ck are given by 

Co = (4s3/9 )(s~ + s2 + 2s4) = 1.1371580... 

e~ = ( -4s3/9)(2s1  + s4 - s2) = -0.3949308.. .  (3.12) 

c2 = ( -4s3/9) (2s2  - s~ + s4) = -0.742272.. .  

with s j=sin( jr t /9) .  Observe  that  the sum of these constants  is zero 
reflecting that  the sum of the probabil i t ies  is one. In  the sense discussed in 
the In t roduct ion ,  the critical exponen t /~  for the 7/3 Baxter  model  is 4/27. 

C. The ~s Case 

F o r  q = 5 w e  h a v e  

Do = go 4 - g3 g2 + 2go gi  g~ 

D1-~ _g3  g l _  gog3 + g~ g~ 

D2_~ _g3  g2 + g2og ~ _ g, g3 (3.13) 

D3 = 2g~ gl g2 - go g~ + g4 

D4 --= g2 g22 _ 3go g2 g2 + g4 

F r o m  Atkin and Swinner ton-Dyer  ~8) we find tha t  

go(x) = f2 (x l~  x25)/qg(x 5) 

gl (x)  = - x f ( x  w, x 2s ) f ( x  5, x25)/cp(x s ) (3.14) 

g2(x) = - x 2  f 2(x',  x25)/~o(x s) 

Proceeding as in the above  q = 3 case we conclude 

P r o b s ( a  = 1 ) =  ns(s) ,9~1(2/5)[0~t(2/5)-  30~1(1/5)] 

Probs(cr = co) = ns(s) 011(1/5) 012t(2/5)[0~(2/5) + 2 0 ~ ( 1 / 5 ) ]  

Probs(  a = co2) = ns(s) 0~1(1/5) 011(2/5)[20~(2/5)  - 015~(1/5)] (3.15) 

Probs(cr = o93) = ns(s) ~9~(1/5) [30~s~(2/5) + 0~1 (1/5)]  

Probs(~r = o94) = ns(s) 5~41(2/5) oa41(1/5) 
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where all theta functions are modulus z5 = 2is/25 and 

nds)  = 5-4 exp(4zcs/25) (P(e-4~') q~(e (4~/25)s) 
(p lO(e - 4~/5) 

= 5 -4r/(25rs) tl(%)/q1~ (3.16) 

Using the identity 

011(l/5) ,911(2/5 ) = , , ~  q1/2qg(qlO ) q~(qZ), q = exp(zci%) 

the Probs(a = co 4) simplifies to 

Probs(a = o94) = 5 -1p(qSO) q~S(qZ)/~o6(qlO ) 

which is essentially the Ramanujan result (1.6) in conjugate variables. The 
small p expansion of (3.15) is straightforward, although rather messy 

Probs( o k 1 p4/25 0(p12/25) =00 ) = s + C k  +c'~pS/ZS+ (3.17) 

for k = O, 3, 4 and 
Probs(r = co k) = �89 + G p  8/25 + O(p 12/25) 

for k = 1, 2 where the constants are given by 

Co = (x/5 + 1 )/2 c; = 0 

c ,  = (x / ' 5 -  1)/2, 

c2 = - ( ~ / 5  + 1) /2 ,  (3 .18 )  

c3 = - ( , / s -  1)/2 c ;  = 0 

c4 = - 1 ,  G = 1 

Thus the exponent fi is 4/25 for k = 0, 3, 4 and 8/25 for k = 1, 2. 

D. The Z7 Case 

The determinants Ds, s =  0,..., 6 are rather involved and will not be 
explicitly written out here (each D, is a homogeneous polynomial in 
go, gl,  g2, and g5 of degree 6 with 12 nonzero terms). Again product 
representations for the nonzero g,'s can be found in Ref. 8. In terms of 
f ( z ,  x) they are given by 

2 go = f 2.f3/[~P(Y) q~(yT)] 

g, = - - x f  , f2/{cp(y) (p(yV)j 
(3.19) 

g2 = - x 2  f l f 2 f f f [~p (y )  ~9(y7)] 

g5 = x~ f 2  f2/[~o(y) qffy7)] 
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where we have used the abbreviation f j= f ( x7J ,  x 49) and y = x  7. The 
resulting formulas  for Ds can be further simplified if we make  use of  the fact 
that  there are identities connect ing the var ious  functions gs(X). Kolberg  
derives these using the Jacobi  identi ty for q~(x) 3. In  terms of the functions 
f j ,  the identi ty we will use becomes  

yf3 f2 = - f ~  f 3  + f 3  f3 (3.20) 

We proceed as above:  first, express Ds in terms of the functions f ;  using 
(3.19); second, el iminate all terms with a "y var iable"  using the identity 
(3.20), and  third, use (2.7) and  (2.9). The  result is 

P rob7(a  = 1) = n7(s) [ - 13tl t9t~ - ~1t2 t6 tl0~2 "3 

+2 t~  312 126 414 t2t 3 + l l t 2  t 3 + 2 t l t  3 ] 

Probv(a =co)=n7(s ) [15 t l  0~176 . 3 -  15tl 7 9 

+9t~  4 11 4 13 13 5 t2t 3 -- 5t I t2t 3 -- 3t z t 3] 

Probv(  a co2)=nT(s ) [_b t l t~ l  6 2 8 8 = t 3 + 26tl  t2t3 -- 31t3 ~5 ~10.2~3 

+ ll tat~t~ 2+ t14t4123 

Prob7(a  = co3)=nv(s)[5t l t~2t  ~ -- l l t~  t2t397 
(3.21) 

_~ 3 6 9  4 3 1 1  5 1 3  
- -  - - t i t  3 ] 18tlt2t3 8tl t2t3 

t 1 3 t 4  2 10 6 7 8 PrObT(O co 4) = n T ( s ) [ - t l ~  -3 + = 12t i t  2 t 3 -  12t31t2t3 

4 4 10 5 12 + 3t l t2 t  3 + 3t l t2 t  3 ] 

Probv(~r = o)5)=nv(s)7t~t~ta3[2t I t26 tas + "1t2 ' 3  t7~2  ~3 

t 3 t 9 93  -- i 3-- t2t3] 

2 6 7  Prob7(~r = ~0 6) = nv(s) t2t3[ - lOt1 t9t~ + 17t 1 t2t 3 

At-t~ 3 9 t4t11] t2t3 + 1 3 

where 
tj = 011(j/7, %), j = 1, 2, 3 with z7 = 2is/49 and 

( 9 ~ )  ~o(e - 4 ~ )  
nT(s)=  7 -6  exp - ~ s  (p14(e_4~zs/7) ~o5(e_47zs/49) 

= 7 6 r/(49zT) 
~/14(7r7) rib(r7) 

The expression for P rob7(a  = co s) can be further simplified but  we do not  
pursue this here. (s) F r o m  the above  expressions it is now clear that  the 
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correction terms to the constant 1/7 are of order 10 4/49 times some constant. 
However, an evaluation of these constants shows that they are all zero. A 
calculation of the next term which is of order p8/49 shows that the constants 
are nonzero only in the cases k =  0, 2, 5, and 6. If  c is the constant for 
k = 0 ,  then 1 -  (1/c) is the constant for k = 2 ,  and ( 1 / c ) - c  is the constant 
for k = 6. The constant for k = 5 is - 1 .  These results are based upon a 
numerical evaluation of the constants expressed in terms of the relevant 
trigonometric functions. Numerically we find c =  1.80193773580485 .... We 
have not investigated the higher-order terms. 

E. The Zq Case,  q Prime and of  Form 6 m + 1  or 6 m - 1  

The Kolberg method works for any odd prime q and the functions 
gs(x) have by Lemma 6 of Ref. 8 product expansions expressible in terms 
off(w,  y) where y = x q and w = x jq, j = 0,..., q - 1 whenever q is of the form 
6 m + l  or 6 m - 1 .  Thus the general structure of the sum (1.1) will be 
similar to the above cases q = 5, 7 and the correction term to the leading 
1/q behavior will be of order p 4/q2. It may happen that the constant mul- 
tiplying p 4/q2 vanishes, in which case the correction term will be higher- 
order, say p 8/q2. 
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