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We calculate the polynomial relationships P(O, z)= 0 and P(O, ~)= 0 in both the ordered 
and disordered regimes for the hard hexagon model. We start with Baxter's exact solution which 
gives the physical quantities g, 0, and z parametrically as a function of a variable ~" and exploit 
the modular properties of Baxter's solution. Using elementary Riemann surface theory, the 
computation can be reduced to algorithms involving only linear algebra. These algorithms are 
implemented using a computer algebra system. The method will be applicable to other exactly 
solvable models in which cusp expansions can be computed. 

1. Introduction 

Solvable models of lattice statistical mechanics are essentially equivalent  to those 

for which the well-known Yang-Bax te r  equat ions [3,10] admit  a nontr ivial  solution. 

In  m a n y  instances,  these solutions involve elliptic functions;  and hence the 

Bo l t zmann  weights are parametrized in terms of a spectral parameter  and a modulus  

x ( =  e2"i~). The physical quanti t ies derived from these solutions inherit  these 

parameters ;  and  in the case of the order parameters,  are funct ions only of ~" (the 

spectral parameter  either cancels out or is set to a torsion point  of the elliptic curve). 

This  paper  looks at the simplest IRF  model that has these features; namely  Baxter's 

so lu t ion  of the hard hexagon model [1-3], and describes a computa t ional  method of 

der iving po lynomia l  relationships between the physical quantities.  The methods 

used are based on the modular  properties of the funct ions giving the par t i t ion 

func t ion  per site K, density p and activity z of this model. The computa t ions  
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themselves use only linear algebra. However,  in order  to do the computat ions,  it is 
essential that a computer  algebra system be used. The work presented in this paper  
is a detailed account  of the methods first announced in ref. [7]. 

In refs. [1,2] Baxter (see also ref. [3]) derived exact expressions for K, p, and z in 
the low activity (or disordered) regime, defined by z < z c where z¢ = (11 + 5vc5 ) /2 ,  
and the high activity (or ordered) regime defined by z > z c. In the disordered regime 
the local density is site independent  whereas in the ordered regime the local density 
depends  on which of three sublattices (denoted by 1, 2, or 3) it sits. A sublattice is 
def ined by a possible close packed configuration of hexagons (we take boundary  
condi t ions  so that the sublattice "1" is the close packed configuration ground state). 
Denot ing  the local density on the sublattice i (i = 1,2, 3) by p~, Baxter showed that 
in the ordered regime 02 = P3 4= Pl. Following Pearce and Baxter [6], in the ordered 
regime we will work with A p = f 5 ( p - p c )  where p = } ( 0 1 + 0 2  +p3 )  and & =  
( 5 -  v /5 ) /10  is the critical density. All the formulas that we now quote with the 
except ion of eq. (1.5) are due to Baxter [1-3]. Eq. (1.5) is due to Pearce and 
Baxter  [6]. 

Disordered regime (z < Zc): 

( 1 - - x - ' " ) - ( l S  ~ xS,,, 1)2(1 _ xS,,, 4 ) 2 ( l _ x 6 m  3 )2 ( l__x6m 2 ) (1  - x " " '  4) 
K(T) 11 ,,,=, (1 x 5''' 3 ) 3 ( 1 - - x S m  2 ) 3 ( 1 - - X 6 " ' - ~ ) ( 1 - - X 6 " '  s ) (1-x~" ' )2  

(1.1) 

#, (1 - x 6m 3) 
p ( r )  - x  .... 111 (1 x 2''' 1)(1 - x s'' ' ) (1 - x 5'' 4)(1 - x TM t2)(l  - x 3°' ' '  ' ~ )  ' 

( ( a - x  ~,,, ,)(1-x~,,,-4)) ~. 
z(~)=-xI~I.,=, (1 x 5'' ')(1 x ~'' ~) 

Ordered  regime (z > Zc): 

~(~) = ~ 1/~ l~I 
m ~ 1 

~P(~) - 6 .... 

(1 - x5")2(1 - xSm-2)2(1 -- X s m  3)2(1 -- X3"-1)(1  -- X 3m-2) 

(1.2) 

(1.3) 

(1 - x S m - 1 ) 3 ( 1  -- x S m - 4 ) 3 ( 1  -- x 3 m )  2 

(1 -- xm)Z(1 - ~ x " +  x 2 " ) ( 1  -- ~ox3" + x 6rn) 

(1 - x~")20 + ,o ~x'+ x ~ )  2 

z(~) =x ~ 1:[ ( (1 -  xSm-2)(1- x'm-3) ) 5 
.... 1 (1 x s" 1 ) ( 1 - x S ~ - ~  ' 

where o0 = ( - 1 + v/5)/2.  

(1 .4 )  

(1.5) 

(1.6) 
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It has been shown [9] that all of these expressions (or powers of) are modular 

functions with respect to some subgroup of SL2(]- ). More precisely, this was shown 
for all the above expressions except (1.5). The group theoretic significance of the 
Pearce-Baxte r  identity (1.5) is that although each 0i is modular with respect to the 

congruence subgroup F 1 [45], the density is modular with respect to the bigger 
subgroup FI [15]. If one examines the individual expressions (derived by Baxter) for 

the 0i (i = 1,2,3) then it is not obvious that 0 = ~(Ot + 02 + 03) is modular with 
respect to F 1 [15]; but using the Pearce-Baxter  identity it is seen to be modular with 
respect to this subgroup using methods exactly the same as those used for the other 

expressions [9]. 
We derive below polynomial relationships which are known to exist between pairs 

of functions above (this follows from the fact that each of the above or their powers 
are modular  functions). For example, in the disordered regime there is a polynomial, 

P(x,  y), such that 

P(o(~ ' ) ,~ ( ' r ) )=O 

for all r ~ H = { z ~ C : Im z > 0}. This equation defines implicitly the dependence 
of ~¢ on 0. In what follows, we will provide the details of the calculation of four such 

polynomials. In the ordered regime we will find 

p , ( a 0 ,  = 0,   '2(a0, z) = 0. (1.7) 

In the disordered regime we will find 

03(0, ) = 0 .  = 0 .  (1.8) 

The coefficients for Pt-P4 are in tables 1-4. The simplest of these polynomials is P2 
which can be written in terms of 0 and z as 

2 - 90 + 1502 - 1103 + 304 + (1 - 120 + 4502 - 6603 + 3304)z + (O 3 - 304)z 2 = 0. 

(1.9) 

From these polynomials it is a simple calculation to derive other interesting 
expressions such as the isothermal compressibility 

 _(00 

where the derivatives may be obtained by implicitly differentiating one of the 
polynomials  Pi- 

After the appearance of ref. [7], work by Joyce [5] demonstrated another way of 
deriving the above results. Joyce's work exposes more of the intriguing relationship 
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between modular functions and exactly solvable lattice models. Joyce uses the 
classical theory of modular functions as can be found in Klein and Fricke to derive 
the above polynomials. Our approach uses simple group theoretic notions and 
elementary results from Riemann surface theory coupled with the computational 
power provided by computer algebra systems. As a point of comparison, one can 
compare our derivation of the important equation (1.9) with that of Joyce's. We 
expect that the methods presented here will be more easily extended to other 
problems of a similar nature both in statistical physics and conformal field theory. 
In any case, we feel that these two approaches are sufficiently different to merit a 
long version of our Letter [7]. Once the polynomial relations have been computed, 
many interesting applications to statistical physics can be derived (some of these 
were briefly indicated in our Letter). However, this part of the analysis would be 
identical to that already done by Joyce so we refer the reader to Joyce [5] for these 
applications. 

When exact solutions are not known, one method of extracting critical behavior is 
from series expansions. When extrapolating from series expansions it is important 
to know the class of functions being approximated (cf. ref. [4] and references 
therein). The results here show that the physical quantities (or powers of) such as 
K, p, z, etc. satisfy polynomial relationships. We expect similar results for other 
solvable models coming from Baxter's methods (cf. ref. [3]) involving elliptic 
functions. This is to be expected since Baxter's corner transfer matrix methods are 
intimately related to modular functions. An important unsolved problem is to prove 
the existence of such polynomial relationships (and hopefully bounds on their 
degrees) without relying upon the explicit formulas. Perhaps such polynomial 
relationships exist for models "not  solvable" by the methods of Baxter, and a proof 
of the solvable case can be generalized. For example, the hard square lattice gas is 
"no t  solvable" (cf. ref. [3]), but do ~, 0, and z satisfy polynomial relations? 

The paper is organized as follows. Sect. 2 contains a brief description of the 
aspects of modular function theory we will need. Included in this section are 
references in which more detailed information may be obtained. Sect. 3 consists of 
general techniques, theorems, and notation which are necessary for the computa- 
tions of the four polynomials. Sect. 4 is divided into four parts, each part containing 
the algorithms for each computation. The details for the last three algorithms are 
somewhat brief. Those desiring more details may contact the authors. The appendix 
contains the cusp expansions necessary to do the computations. 

2. Modular functions and cusp expansions 

2.1. MODULAR FUNCTIONS 

The key to deriving the polynomial relationships is the identification of the 
various physical expressions (or powers of) as modular functions with respect to 
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certain modular subgroups. This has been done by Tracy et al. [9]. The modular 
subgroups we shall be interested in are FI[N ] for N = 5,15, 30, 45. Their definitions 

a r e  

, ")moa } F , [ N ] = { (  a b ) ~ s L 2 ( Z ) : ( a  b ) - + ( 0  1 . 

Matrices 7 ~ SL2(7/) act on points r ~ H by 

7(,r) = ( a b ) ( r ) - a r + b  
c cr+d 

A meromorphic function f ( r ) ,  defined on H, is modular with respect to a modular 
subgroup F* c SL2(7/) if for any 7 e F* we have 

f (7(r ) )  = f ( r ) ,  

for any r ~ H, and f (r)  is meromorphic at the cusps of F* (we are assuming F* has 
no parabolic points, cf. Schoenberg [8]). For the hard hexagon model, it is shown in 
ref. [9] that in the disordered regime 

p ( r )  is modular with respect to F 1 [30], 

x ( r )  is modular with respect to F 1 [301 , 

z(r) is modular with respect to F 1 [5]; (2.1) 

and in the ordered regime 

zip(r) is modular with respect to F 1 [15], 

K3(r) is modular with respect to F 1 [15], 

z (~)  is modular with respect to/"1 [5]. (2.2) 

Given a F~[N] and a fixed N, we may identify two points z, w ~ H if there exists 
a ~ ~ FI[N ] such that ~,(z) = w. Using this equivalence relation on H, we can define 
a quotient space H/FI[N ] =OWN- If we include compactifying points then OWN is a 
compact Riemann surface (cf. ref. [7]). The compactifying points are either the point 
at infinity, iov, or rational points h/k on the real line. In either case these points are 
called cusps. A function modular with respect FI[N ] is defined by its behavior on 
the compact Riemann surface ow N. For El[N], a fundamental domain is the closure 
of a connected, maximal set of inequivalent points. Often we will identify the 
fundamental set with owN- 
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A well-known result from modular function theory (cf. ref. [8]) which will be of 
particular importance to us is the following: 

Theorem 2.1. If f and g are modular with respect to the same modular 
subgroup, then there exists a polynomial relationship between them. That is, there 

exists 

N M 

e(x, y) = E E c , S /  
i = 0  j = O  

such that P( f ( r ) ,  g( r ) )  = 0 for all r ~ H. 

In fact, the theorem says more. The valence of a meromorphic function f ,  defined 
on a compact  Riemann surface 2 ,  is defined in the following manner. Pick a 
w ~ ~' ,  then the size of the set 

does not depend on the choice of w. The valence of f ,  or va l ( f ) ,  is then just this 
size. Note  that if va l ( f )  = or, then f is constant. A particularly nice choice for w 
would be either 0 or re. In this case v a l ( f )  is just the number  of zeros or poles of f .  
Knowing the valence of the functions f and g allows us to bound the degrees of the 
polynomial  in the theorem above. In the following theorem, let deg(P, x)  denote the 
degree of the polynomial P in the variable x. 

Theorem 2.2. If va l ( f )  -%< M and val(g)  .%< N and P is irreducible, then deg(P, f )  

-% N and dee(P,  g) -%< M. 

Using theorem 2.1, we know that there must be polynomial relationships between 
any two of the functions listed in eqs. (2.1) and (2.2). This is because if N 1 divides 
N 2 then FI[N2] C/'1[N1]. Hence if f is modular with respect to FI[N1] then it must 
also be modular  with respect to FI[N2]. For example, in the disordered regime, z is 
modular  with respect to F 1 [5] while 0 is modular with respect to F 1 [30]. Thus both 
are modular  with respect to F 1 [30] and thus by theorem 2.1 there must be a 
polynomial  relationship between them. 

We use theorem 2.2 to obtain bounds on the degrees of the polynomials we wish 
to compute.  This is essential because otherwise we would not even know an upper 
limit on the number  of unknown coefficients which we seek. To obtain these bounds 
we must know bounds on the valences of the functions. A glance at "definitions" 
(1.1)-(1.6) of z, ~, 0, and A 0 makes clear that one needs more information in order 
to determine the valences. This additional information is obtained from the cusp 
expansions. 
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2.2. C U S P  E X P A N S I O N S  

A cusp expansion of a function f defined on a quotient space ~N = H/FI[N] is 
simply a definition of f in terms of a local variable defined about a particular cusp. 
The standard approach is to use a local uniformizing variable x~ defined near the 
cusp ~. For details concerning the precise definition of a local variable we refer to 

Schoenberg [8]. 
This local uniformizing variable has the property that as T approaches the cusp ~, 

the local variable x approaches 0. For example, at the cusp i s ,  the local uniformiz- 
ing variable is simply x = e 2~iT. Thus eqs. (1.1) (1.6) are simply cusp expansions in 

the local variable at i s .  It is worth noting that a local variable defined about a cusp 
is in fact valid throughout the entire fundamental domain of F~[N]. 

In order to obtain cusp expansions of modular functions one must know their 
t ransformation properties. This is most easily done by writing the function in terms 

of generalized Dedekind eta functions (these functions also arise as determinants of 
Dirac operators on elliptic curves). The transformation properties of these are well 

known [8]. By writing a function in terms of the generalized eta functions one can 
also recognize a subgroup under which a function is modular. The process of 
identifying infinite product expansions as products of generalized Dedekind eta 
functions and then doing the transformations to local variables is tedious but 
mechanical. For a complete description of this process, see ref. [9]. 

To obtain a complete description of a function modular with respect to Ft[N], 
one first derives cusp expansions at a complete inequivalent set of cusps for ~ u -  For 
the functions listed in eqs. (1.1) (1.6), cusp expansions are given in the appendix. 

F rom the cusp expansion at ioo given by eqs. (1.1)-(1.6), it is clear that functions of 
this type can only have zeros and poles at the cusps. Hence once all the cusp 
expansions are done one simply counts the zeros (including multiplicities) at all the 
cusps to obtain the valence. From the cusp expansions of p in the disordered 

regime, we see that in L~-30, val(p) = 8. For valence of z in the disordered regime, we 
first must convert the cusp expansion of z in ~ to cusp expansions in ~30- For 

each cusp in ~5, one finds a complete set of inequivalent cusps in ~-~30 (but 
equivalent under F t [5]). Then the local variable about the cusp in ~5 is easily 
converted to a local variable about the new cusps in ~30. Once again, the reader is 
referred to ref. [8] for details. In this case we discover that val(z) = 24 in Y30. Thus 
we know that the polynomial relationship between O and z must have the form 

24 8 
i j P(o,  : t  = Z E c, joz -- o. 

i = 0  j = o  

At this stage if one had access to unlimited computing power it would be 
straightforward to find the 25 × 9 = 225 coefficients cij. Since the polynomial is 
only unique up to an overall multiplicative factor, arbitrarily set one of the 
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coefficients equal to, say, 1. At any cusp, derive Laurent series expansions with at 
least 224 terms in the local variable x. Substitute these series into the unknown 
polynomial  P(p, z ) =  0. The result of this substitution would be a series whose 
coefficients depend linearly on the co. Since this series must be identically zero, all 

of its coefficients must also be identically zero. Equating the first 224 to zero would 
yield a system which determines the remaining 224 unknowns. However, under 
limits on computing power, this approach is troubled because of round-off error. 

The approach in this paper will be to use the information given by the cusp 
expansions to reduce dramatically the number of equations that must be solved at 
any one time. For example, for the polynomial above, we will see that it is never 

necessary to solve more than four equations in four of the unknown coefficients at 
any one time. This allows us to do the computations in exact rational form. 

3. General techniques 

In this section we will outline some of the general techniques and notation to be 
used in the subsequent calculations. First of all, we will be quite interested in 

coefficients of power series in the local variable x. Let f be any modular function 
on H and ~ any cusp. About that cusp we will have a local variable x. Let 

cof~ (n ,  f )  = coefficient of x" in the Laurent series of f at cusp ~. 

Suppose that we have two functions f and g, both modular with respect to the same 
modular  subgroup and that v a l ( f )  = M and val(g)  = N on some compact Riemann 
surface. Therefore, the resulting irreducible polynomial takes the form 

N M 

P(f ,g)= E E cijf'g j=O. 
i=O j = 0  

A means by which we may reduce the number  of equations that need to be 
considered at any one time in order to determine the ci/ is illustrated in the 

following scenario. Suppose there is a cusp ~ at which f and g have the power 
series expansions: 

f (x)  =ao+alx+ .... g(x)=xm(bo+blx+ ...)= xmff(x) .  (3.1) 

Let Qj and Pk be defined by 

N 

Qj= ~_~ cijf', 
i = 0  

Pk = ~ gJQj 
j=o 

so that P = PM- For convenience, let P 1 -- 0. Thus we have for i = 0 . . . . .  m - 1 
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and k ~< N, 

0 = cof~(mk + i, P)  = cof~(mk + i, Pk) 

= cof~(mk + i, gkQk ) + c o f , ( m k  + i, Pk-1) 

= cof~(i ,  ~,kQk ) + cof~(mk + i, Pk 1), 

which we may write as 

cof~(i ,  ~kQk ) = - c o f ~ ( m k  + i, P k - , )  • 

The left-hand side only involves c~k and the right-hand side only involves c~n with 
n < k. Thus we have m linear equations for c~k defined recursively in terms of c~, 
with n < k. 

These equations may be written in matrix form as 

CO'k 
GkA " = --Bk,  

CN, k 

where G is a lower triangular m x m matrix whose nonzero entries are given by 
(G)i  j = bi_j, A is an m × (N  + 1) matrix whose entries are only dependent on the 

a o through a, ,  1, Bk is an m X 1 column whose ith entry is co f~(mk+ i, Pk-1). 
What  is particularly nice about the matrices G and A is that each is independent of 

k. The key is either to get several of these type equations from different cusps with 
the same series structure for f and g or to have enough of the coefficients cik 
already determined so that only m of them remain. In our case, the entries of G, A, 
and B k are either rational numbers or in the field Q(V~). 

Another  important  consideration is to ensure that the bounds on the degrees of 
the polynomial  are as sharp as possible. Determining the degrees from the valences 
is fine as long as we are sure that we are working with the largest possible modular 
subgroup for the functions in question (equivalently, the smallest possible common 
fundamental  domain). If one does not identify this largest modular subgroup, then 
the bounds on the degrees will not be optimal and one would conclude that the 
degrees of the polynomial P are higher than they actually should be. Of course what 
would happen upon calculation is that all the higher degree terms would have zero 
coefficients. However, the larger number of unknown coefficients might make the 
method of this paper computationally infeasible. Thus we would like to be able to 
recognize when we have not found the optimal modular subgroup. It is often 
possible to do so by looking at the cusp expansions. 



690 M.P. Richer, CA. Trac T / Hard hexagon mode/ 

Theorem 3.1. Suppose that f and g are modular functions with respect to a 
common modular  subgroup F*. Let a set of inequivalent cusps be given by 

H =  c~lU...UWk where ~ nc~ y=  ~ for i4:j and icy[ = I~j[ = s  for all i,j. Let 

N = va l ( f ) ,  M = val(g) on H/F*. For each cusp, let us use the same symbol x to 

denote a local variable at that cusp. Suppose that for either f or g, that its cusp 
expansion in x only depends on the set Wi containing that cusp. Then, if P(f, g) = 0 
is the irreducible polynomial relationship between f and g, we have 

deg( P, f )  ~ M/S,  deg( P, g) <~ N/S. 

The importance of this theorem is that it allows one not to worry about finding the 
optimal modular  subgroup for a pair of functions. Instead any common subgroup 
will work. One simply uses that subgroup to calculate all the cusp expansions for the 
two functions at the inequivalent cursps. Then if all the expansions do not group up 
as in the theorem, the subgroup is optimal. If they do, one simply remembers that 

the degrees of the polynomial can be reduced by some factor. 
There are other techniques that make the calculation of the coefficients c~ easier. 

One, for instance, is to exploit any symmetry in the cusp expansions. For example, 

if there is a pair of cusps at which the expansion of f does not change, but the 
expansion of g goes to - g ,  then the polynomial P(f, g) must be even in g. To see 
this, suppose the pair of cusps with this property is ~ and 4'. In the local variable x 
at ~, write 

f ( x ) = a  o+alx+a2 x2+.., g(x)=b o+blx+b2x 2= .... 

In the local variable x '  at 4' we can write 

f(Xr) : a o +  a lx '+ a2x'2+ .. . .  g(x') : - (bo+b lX '  +b2x'2+ . . .) ,  

where the coefficients a, and b i are the same in both cases. For any value ~" ~ H, 
there is a value ~" such that x(~)  = x'(~-'). At these values we have 

f ( z )  = f ( T ' ) ,  g (T)  = - g ( z ' ) .  

Since the polynomial P(f, g) must be zero we get for any value in H, 

o r  

P(f(~),g(~)) =O=P(f(¢) ,g(T')) ,  

P(f($),g(~)) =P( f (T) , -g(~) )  

and hence P(f, g) is even in g. 
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4. Algorithms 

In  this section we will present details of the algorithms used to calculate the four 
polynomia ls  in eqs. (1.7) and (1.8). We will drop the subscripts 1, 2, 3, and 4 from 

the polynomials  since in each subsection we will be referring to only one polynomial  

at a time. For  the first polynomial,  that is subsect. 4.1, we will include a large 

amoun t  of detail so that the reader may see the type of  calculations which must  be 

performed.  In  the subsequent subsections we will simply sketch the outlines of the 
algorithms. 

4.1. P(A O, ~ 3 ) =  0 F O R  A 0 A N D  • IN T H E  O R D E R E D  R E G I M E  

In  this subsection we will calculate the polynomial  p ( A p ,  ~3) = 0 for At) and ~ in 

the ordered regime. First we see from the cusp expansions that v a l ( a p ) =  4 and 

val(~ 3) = 22. At  any of the cusp pairs (0, }),(6 ~, }), etc., we see that in terms of  the 

appropr ia te  local variable x that K3-~ _~¢3 while Ap remains unchanged.  Thus P 
must  be even in ~3. Define a new variable Y = (~3)2 and write 

22 2 

,p(ap,  = E E c,jap' J = 0. 
i = 0  ; = o  

The coefficients c,j are displayed in table 1. 

Step 1. Consider  the cusps 6 ~ and ~. At each of these cusps ff has a pole of order 

10 and A o has a pole of order 1. This implies that c22.2 = c21,2 . . . . .  c3, 2 = 0 and 

C22,1 ~ C21,1 . . . .  = C13,1 ~- 0 .  

Step 2. We now look at the cusp i ~ .  At this cusp ff has a pole of order 2 and Ap 

is nonzero.  This gives us equations in c~, 2. We already know that G,2 = 0 for i > 2, 

and that  one coefficient of P, say e0, 2, is arbitrary. The other two coefficients, cl, 2 

and c2, 2, are determined by the two equations above. Therefore we have completely 
de termined the coefficients c,, 2 for i = 0 . . . . .  22. 

Step 3. We now consider the cusp 0. Here we have the expansions: 

t~ = k 0 + 0 x  A- 0 x  2 -4- k3 x3 A- . . . .  A p  = x 2 ( 1  - -  x A- 0 x  2 + r3 x3 A- . . .  ) .  

The fact that  ff has no x 1 or x 2 coefficient will be important .  Define Q, and Pn by 

Q, = ci, o + ci,lY, + ci,2 if2 , en = L ApiQi. 
i = 0  

We see that 

c ° f 0 ( 2 k ,  P )  = c ° f 0 ( 2 k ,  Pk) = cof0(0 ,  Qk) + co f0 (2k ,  Pk-a )  = 0. (4.1) 

This gives one equation in the coefficients ck. 0 and ck, 1 in terms of cij with i < k 
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TABLE 1 

The coefficients c,/ are represented as an ordered pair (a~j, bil): cij = aij + ¢5bij. To simplify the 

j 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

entries, K 6 is rescaled so that the leading coefficient is 1 at the cusps (0, 41). 
To obtain ~ as normalized in eq. (1.1) let c 0 ~ FJcij, where 

6 

F =  10 sin3 (~r/5) = ~  (1525 - 682vr5 )" 

0 1 2 

2, 0 4, 0 2, 0 
- 1 8 ,  6 36, 12 - 1 8 , - 6  
- 2 7 ,  117 - 3 6 , - 1 4 4  63, 27 

- 8 4 0 , -  120 -1860 ,  1020 0, 0 
9855, 2745 -6075 ,  4365 0, 0 

45324 - 24480 73368, -  41400 0, 0 
54621 32793 194538,-  66534 0, 0 

-1880064 827424 - 1459188, 622908 o,  0 
- 7997310 3593970 -2478465, 1136475 0, 0 
-2914480 1284520 6991720,-  3144320 0, 0 
127074558 - 56812470 5635290,- 2513190 o,  0 
737266608 - 329728464 - 16357680, 7313760 0, 0 

2459142582 - 1099753902 7329150,-  3277530 0, 0 
5794100820 - 2591204940 0, 0 0, 0 

10280792160 - 4597708140 0, 0 0, 0 
14087220816 - 6299997360 0, 0 0, 0 
15015313971 - 6715052343 o, 0 o, 0 
12388779054 - 5540430474 0, 0 0, 0 

7781944320 - 3480191290 o, 0 0, 0 
3604574760,- 1612014840 o, 0 0, 0 
1162500012,-519885810 o, 0 0, 0 

233397882, 104378706 0, 0 0, 0 
21986883,-9832833 0, 0 o, 0 

a n d  % 2 ,  n a m e l y ,  

C,,o + k o c , , l  = - k 2 c , , 2  - C ° f o ( 2 k ,  P k - a )  - ( 4 . 2 )  

N o w  c o n s i d e r  t h e  x 2k+1 c o e f f i c i e n t .  W e  s e e  t h a t  

C O f o ( 2 k  + 1, P )  = C O f o ( 2 k  + 1, P k )  

= C O / o ( 2 k  + 1, ZipkQk)  + C O / o ( 2 k  + 1, e , - 1 )  = 0 .  ( 4 . 3 )  

H o w e v e r ,  Qk h a s  n o  x 1 c o e f f i c i e n t .  T h u s  

c o f 0 ( 2 k  + 1, ApkQk  ) = C O f o ( 2 k  + 1, AO* ) COfo(0  , Q k )  
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and hence (4.3) becomes 
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k COfo(0, Qk) = - C°fo(2k  + 1, Pk-1)  - (4.4) 

W e  m a y  el iminate  COfo(0, Qk) f rom eq. (4.4) using (4.1) and replace k - 1 by  k to 

ob ta in  

( k  + 1) c o f 0 ( 2 k  + 2, P , )  + COfo(2k + 3, P , )  = 0. (4.5) 

This  will give us a second equat ion in ck, o and ck, 1. All we need to isolate is the 
por t ion  of eq. (4.5) which only depends  on k. This is s traightforward.  Once this is 

done  we have  the two equations 

Ck.o+koc* , l=-k~ck ,2-C° fo(2k ,  Pk 1), k3ck , l=-2kok3ck , z+Lk ,  

where  

L~ = (k  + 1) co f , (2k  + 2, Aok ) cofo(2k, Pk 1) + cofo(2k + 3, Ap ~) cof0(2k, Pk l) 

- ( k  + 1) cofo(2k + 2, Pk ,) - co f , (2k  + 3, eJ,-1) • 

At  the k th iteration, the r ight-hand side is completely  determined.  Thus  we may  
recursively calculate ck, (i = 1,2) for k = 0 . . . . .  22. We already know that  ck, 1 = 0 
for  k >~ 13. So if desired, we may  use only one of the above equations once k >/13 in 
order  to speed up the algorithm. In order  to carry out the recursive calculation, we 
mus t  know the Laurent  series expansions of ff and A o out to x 44. 

4.2. p(Ap, z) = 0 FOR zip AND z IN THE ORDERED REGIME 

In  this subsect ion we will calculate the polynomial  P(A o, z) = 0 for Ap and z in 
the ordered  regime. The valences of  these functions are val (Ao)  = 4 and val(z)  = 8. 
However ,  we see that  Ap and z have the same cusp expansions at 8 cusp pairs. Thus 
we m a y  use theorem 3.1 and halve the degrees of P. This gives us 

4 2 

p(ap, z) = Z E c,jAp'zJ= 0. 
i = 0  / = 0  

The  coefficients  ci/ appear  in table 2. A change of variables f rom A p to O gives 
(1.9). 

Step 1. Consider  the cusp 0. Here  we see that  Ap has a zero of order  2 while 
z =Zo+Z3X3+ z6x6+  . . . .  This gives us two equations in the three unknown 
coeff icients  Co, o, Co, ~, and Co, 2. One arises immediate ly  f rom the x ° coefficient of 
p(Ap,  z) and the other f rom the fact that  z has no x I or x 2 terms. Since one 
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TABLE 2 

The  coeff ic ients  c,j of  P(A O, z) = 0 in the o r d e r e d  regime.  

j 0 1 2 

1 1 +  5 d  - 4  - 1 1 +  5V~ 

- 3 3  - 1 5 f 5  12 33 - 15~/5 

39 + 15V~ 54 - 3 9  + 15V/5 

- 12 - 10~f5 - 132 12 1 0 f 5  

6 66 6 

coeff ic ient  is a rb i t rary ,  we may  set c0, 0 equal  to 11 + 573- and de te rmine  %1 and 

Co, 2. Thus  we have de te rmined  Co, k for k = 0,1, 2. 

Step 2. N o w  proceed to the cusps im and ~. At  ~ we see that  A o is nonzero  

while  z has  a zero of o rder  3. In  this case we ob ta in  three equat ions  in c,,k, 
m = 0 . . . . .  4 which are def ined in terms of cjk, with j > m. 

To get a four th  such equat ion,  we move to im at which we see again that  A o is 

nonze ro  while  now z has a s imple zero. Recal l  that  f rom step 1, we a l ready  know 

Co, k. The re fo re  we have four equat ions  in the four unknowns  ci. k, ( i  = 1, 2, 3, 4), in 

t e rms  of  c~j for j < k and Co, k- In o rder  to implemen t  this recursive calculat ion,  we 

need  the cusp expans ions  of  A0 and z out  to X 14. 

4.3. P(O, ~) = 0 F O R  P A N D  K IN T H E  D I S O R D E R E D  R E G I M E  

In  this subsec t ion  we will calculate  the po lynomia l  P(P, ~) = 0 for 0 and x in the 

d i so rde red  regime. We see that  the valences are val (0  ) = 8 and val(K) = 22. At  the 
cusp pai rs  ( i ~ ,  i 4 1 3 , ) , (5 ,  g), etc., the cusp expans ion  of  K goes to - x  while O remains  

unchanged .  Thus  P(O, K) must  be even in K. W e  will let ff = x 2 and write 

22 4 

p ( o ,  = Z E c,jo' J = o. 
i = 0  j = o  

The  coeff ic ients  ci j appea r  in table  3. 

Step 1. Cons ide r  the cusps ~ and 112. At  each of these cusps p has a pole  of 

o r d e r  one while  ~ has a pole  of  o rder  10. Since P(p,  ~) can have no poles, we may  

c o n c l u d e  tha t  C22,4 = . . .  = C3, 4 = C22,3 ~- . . .  = C13,3 = 0 .  

Step 2. At  the cusp 7 N, we see that  P is nonzero  while ~ has a pole  of  order  2. By 

cons ide r ing  the x -8 and x -7 coefficients of the po lynomia l  P(p,  Y,), we get two 

equa t ions  in %4. Since one coefficient  in P is a rb i t rary ,  we may  set Co, 4 equal  to 1, 

and  solve for cl, 4 and c2. 4. Therefore,  af ter  comple t ing  steps 1 and 2, we have 

comple t e ly  de t e rmined  %4 for i = 0 . . . . .  22. 
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TABLE 3 

The coefficients c,i of P(O, if) = 0 in the disordered regime. 

0 1 2 3 4 
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0 186624 - i90944 3877 442 1 

1 -4105728  4574016 98398 - 6168 2 

2 43110144 - 5 1 3 2 1 6 0 0  1072713 37230 1 

3 287400960 360237888 - 6981832 i30984 0 

4 1365154560 1780447824 31291462 303237 0 

5 4914556416 6606372960 - 1 0 4 8 1 1 9 4 8  - 4 9 1 6 1 6  0 

6 13924576512 19147033584 276579010 576476 0 

7 - 31827603456 44499329856 - 595159240 494868 0 

8 59676756480 - 84438496656 i066656183 309375 0 

9 - 92830510080 132446333088 - 1610038466 137500 0 

10 120679663104 -173147673168  2055774797 41250 0 

11 - 131650541568 189573384960 - 2221200636 7500 0 

12 120679663104 174162517632 2026754828 625 0 

13 - 92830510080 134143224768 - i 5 5 6 0 0 2 7 0 0  0 0 

14 59676756480 - 86293880064 999566100 0 0 

15 - 31827603456 46038428352 532982500 0 0 

16 13924576512 - 20144497392 233167375 0 0 

17 4914556416 7110122976 - 82293750 0 0 

18 1365154560 1975050000 22859375 0 0 

19 - 287400960 415800000 - 4812500 0 0 

20 43110144 62370000 721875 0 0 

21 --4105728 5940000 - 68750 0 0 

22 186624 - 270000 3125 0 0 

Step 3. W e  move  to the cusps Joe, 35, ~70, and ~ .  At the cusp we see that ~ is 

nonzero  while  p has a zero of order 1. This gives us four equations (one at each 

cusp)  in the four unknowns  c,,,o c,, 1, c,,.2, and c,,,3. Each equation is defined in 
terms of  c~i with i < n and c,,,4. Therefore we may  recursively calculate the 

remaining  coeff icients .  In this case it is necessary to have the series expansions of 
and p out to the x 22 term. 

4.4. P(p.  _-) = 0  F O R  p A N D  z IN T H E  D I S O R D E R E D  R E G I M E  

In this subsect ion we will consider the polynomial  P(O, z )  = 0, for p and z in the 

disordered regime. This is certainly the most  involved algorithm of the four. We see 

that va l (p)  = 8 and va l (z )  = 24 and we note  that the cusp pairs, ( ioc,  11~ t~ 301,~ 5, ~), etc., 
and the cusp expansions  of 0, z do not change. Thus we may use theorem 3.1 and 
halve the degrees  of the polynomial .  Hence  P looks  like 

12 4 

P(o, z) = E Z c,jo'z'= o. 
i - o  j o 

The coeff ic ients  c,j appear in table 4, 
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TABLE 4 
The coefficients c,) of P(p, z) = 0 in the disordered regime. 

0 1 2 3 4 

0 0 1 0 0 0 
1 1 - 18 0 0 0 
2 11 141 - 1 0 0 
3 - 55 - 635 15 0 0 
4 165 1840 90 0 0 
5 - 330 - 3641 264 1 0 
6 462 5095 - 319 - 13 0 
7 462 - 5148 - 264 66 0 
8 330 3795 1485 -165  0 
9 - 165 - 2035 - 2255 220 0 

10 55 770 1760 - 165 0 
11 - 11 - 1 8 7  714 77 - 1  

12 1 22 119 - 22 1 

Step 1. C o n s i d e r  t h e  c u s p  i ~  a t  w h i c h  b o t h  p a n d  z h a v e  a s i m p l e  z e r o .  T h i s  

i m p l i e s  t h a t  c0, o = 0 a n d  t h a t  

C1, 0 + C0,1 = 0 .  (4.6) 

Step 2. W e  m o v e  to  t h e  c u s p s  3, 3 ,  a n d  2 .  A t  al l  t h r e e  c u s p s ,  p h a s  a s i m p l e  

z e r o ,  w h i l e  a t  3, z h a s  a p o l e  o f  o r d e r  6; a t  ~ ,  z h a s  a p o l e  o f  o r d e r  3; a n d  a t  ~ ,  z 

h a s  a p o l e  o f  o r d e r  2. U s i n g  t h i s  i n f o r m a t i o n  w e  c a n  c o n c l u d e  f r o m  l o o k i n g  a t  t h e  

p o l e s  o f  P(p ,  z)  t h a t  

C 0 , 4 =  C1,4 = . . .  = C 1 0 , 4 = 0 ,  C0,3 = C1,3 ~ . . .  ~ C4,3 ~-.~-- 0 , C 0 , 2 = C 1 , 2 = 0 .  

L o o k i n g  a t  p o l e s  o f  l o w e r  o r d e r ,  w e  o b t a i n  t h e  e q u a t i o n s  

cof3/5 ( -13, P) = Cll,4 -~- c5, 3 = 0 ,  

c o  f3 /10 (  - 4 ,  P )  = c5, 3 + c2, 2 = 0 ,  

c o f 2 / 1 5 ( - 2 ,  P )  = c2, 2 + c0,1 = 0 ,  ( 4 . 7 )  

c o f 3 / 5  ( - 1 2 ,  P )  = c12,4 q- c6, 3 = - c o f 3 / 5  ( - 1 2 ,  Cll,4pllz 4-}- c5,3p5z3). ( 4 . 8 )  

T h e s e  wi l l  b e  u s e f u l  s h o r t l y .  
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For  steps 3 and 4 it is necessary to define a new function t5 by 
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= 0 / ( 1  - 0 ) .  

N o t e  that t5 has a pole where p has leading coefficient 1. In  addition it is clear that 

t5 is still modula r  with respect to the same modular  subgroup as 0 and it also has the 

same valence. 
Step 3. At the cusp ~ we see that z and t5 each has a p o l e  of order 1. This 

implies that  c12,4 = 1 and c11,4 = 1, and the coefficients c~j for j = 4 are determined. 

Since c 1 1 , 4 = - 1 ,  we have from eqs. (4.7) and (4.8) that c5,3 = 1, c6, 3 =  - 1 3 ,  
c2, 2 = - 1 ,  and Co, 1 = 1 and from eq. (4.6) that cl, o = - 1 .  In particular, note that 
the coefficients cgj for i ~< 6 are determined. 

Step 4. We consider the cusps ~, ]0, and ~ .  Again using iS, we see that we have 

a si tuation much  like step 2, only with zeros and poles interchanged. Using a similar 

argument ,  we see that c12,o* = c11,o* = .-- = c2,0" -- 0. Here c~ indicates the coefficient 

of  the corresponding polynomial  in /5. Since Co, 0 = 0, we have that C*o,o = 0. There- 
fore only c* remains undetermined. It is straightforward to determine this and to 1.0 
hence conclude that 

We have now completely determined cis for j = 0 and j = 4. 
Step 5. We will now find a recursive set of equations which will determine cij 

for j = 1, 2, 3 in terms of cks for k > i and cts for j = 0, 4. We will start with i = 12 
and proceed in steps of - 1 .  

First we observe that at the cusp ion, both p and z have power series whose 

coefficients are elements of Q. This implies that the coefficients cij of  the polyno- 
mial P(p, z)  = 0 are also in Q. This is an important  fact, for we will have equations 

of  the form: 

4 

E ajc i j  = O, 
j = 0  

where the numbers  aj  are in Q(~ / 5 )=  {a + bye-: a, b ~ Q}, an extension of  Q. 

Def ine  conjugat ion in Q(~/5) by a + ~ - b  = a - v~b.  Note  that conjugation leaves 
elements of  Q unchanged.  Upon  conjugation of the above equation, we have a 
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second  equa t ion  in c, i, namely  

4 

d jc , j  = 0.  
j = 0  

C o n s i d e r  the cusps 17 and 3- At  ~ we have the power  series: 

p = p0x- l (1  + ~ l x + . .  ) ,  Z = : o O + Z 6 X 6 + . . . ) ,  

where  P0 = (v/5 ) 1, z0 = f25 = (11 + 5v~-) /2 ,  and  ri, z i c Q(V5-). As usual,  we m a y  

o b t a i n  one equat ion,  and  in this case a second by  conjugat ion,  for cnk, k = 0 . . . . .  4, 

which  is recursive in n. This p rocedure  is somewhat  compl ica ted  by  the fact that  z 

has  no x ~ coeff ic ient  for i = 1 . . . . .  5. 

To ob t a in  at least  one more equat ion,  we now look at the cusp ~. Here  we have 

the expans ions  

o = oox 1(1 + ~lx + . .  ) ,  z = ~o(1 + S6x + . .  ) ,  

where  P0, Zo, r,, and z i are the same as before.  In fact, we get the previous  

expans ion  of  z from this one by  replacing x by  x 6 and conjugat ing.  This fact is 

needed  in de te rmin ing  the recursive set of equat ions.  The  equat ions  we ob ta in  are, 

for  n = 12 . . . . .  7, 

co/1/7(0,  z,,) = 0, 

= [ - c ° f l / 6 ( - n + l ' R " + l  ) ,  n4=12 ,  
p'~co f l /6 (1 ,  Z,,) 

O, n = 12, 

where  Z,, = c,,,o + c,,,lz + . . .  ~-Cn,4 Z4 and R n = 012Z12 + . . .  +p"Z , .  We proceed re- 

curs ive ly  f rom n = 12 to n = 7. At  each stage the r igh t -hand  side is comple te ly  

de t e rmined .  Thus  we have three (actual ly  four) equat ions  in the unknown  coeffi- 

c ients  c,,. j ,  j = 1,2, 3. Once n ~< 6, only  c,,, j for j = 1 and 2 are unde te rmined .  Thus  

on ly  one equa t ion  and its conjugate  are needed.  A good choice would  be 

p~ co f l /7(O,  Z,,) = --co f l / v ( -  n,  R,,+ I ) . 

F o r  this po lynomia l  we need the cusp expans ions  of 0 and  z out  to x 12. 

C.A.T.  would  like to thank Prof. Avner  F r i e d m a n  and Prof.  Wi l l a rd  Miller ,  Jr. for 
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CUSP EXPANSIONS 

Appendix 

In tables A.1-A.5 cusp expansions are given. To simplify the tables we will use 
the following notation: 

[j]= fi  (l__XJm), {j,k}= fl  (l_x,m k), 
r n = l  m = l  

[j,k]= ~ (1--xam-k)(1--X jm+k J), 
t;*t = 1 

TABLE A.1 

Cusp expansion of k o ( r )  = ~/5(0 0c), ordered regime, at inequivalent cusps of F 1 [15] 

Cusp Local expansion 

o,¼ 

1_ ! 
6 ' 9  

1 1 
2"7  

t 2 
3 " 3  

1 4 
5 , 5  

2 3 
5 , 5  

2 x2( ) .11.53,E156 2 
2 

[5,212 
2 

([15] ] [5,21115,61 
1 [51 ] [ 1 5 , 3 1 2  

2 ,( )i15,3115,21 
[5,1] ~ 

2 
3-~ /5 - ( [1 ] t  [1;%][3;%] 

6 1 [311 [1; ~0212 

1 - ~5 / [ 3 ] ]  2 [1; ,4113; ,o~1 
2 1 [1]] [3;,o212 

2 1 +~  ([3] I [1: ~,][3: 4] 
2 [1]] [3; %]2 

3+¢~ (W1213:4][1~4] 
6 [3] ] [1; ~]~ 
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[ j ;  a ]  = f i  (1 - axJm)(1 - a - l x J m ) ,  
m = l  

[ j ,  k; a ]  = f i  (1 - a x  J ' '  0 ( 1  - a 1xJm+k-J). 

In each  of  the tables, let % = e x p ( 2 ~ r i / n ) .  To convert a local  expans ion  in F 1 [5] to 
F x [15] or F 1 [30] use the convers ion  tables A.6 and A.7. For example,  to find the 
cusp expans ion  z in the ordered regime at the cusp ~ ,  use the expans ion  of  z given 
at the equivalent  cusp of F 1 [5], namely,  ira, and replace x by x 2. 

TABLE A.2 
E x p a n s i o n  o f  K3(q), ordered regime, at inequivalent  cusps of  /'1 [15]. Use the lower  sign for second  cusp. 

q = sin 2 ( ~r/5)/sin 3 (2 ~r/5) and c 2 = sin 2 (2 ~r/5)/sin 3 (~'/5) 

Cusp ~3(r) 

ioc,~5 + x - '  [5]6 [5'216 [3,1] 3 
- [3]6 [5,119 

[15] 6 [15,6] 6 
t ~ +i3 9/2 - - [ 1 ;  ~d3] 3 
5,s [116 [15,319 

o,¼ 
( 3~/J- )3 [3]6 [3; ~ ] 6 [ 5 ;  °)313 

± 1~-c2 [5] 6 [3 ;%]  9 

3 (C~o) x [116 [ 1 ; j ] 6  I t ± i  5 t~o ~] rl~ ~13 
~'" [1516 [1; o)sl 9 

3 

~,~ --+ q [5] 6 [3: o)2] 915' 

2 ! 
3,3 

t 2 5,5 

3 [15161116 [1;[1 
[15] 6 [15,3] 6 

+i39/2x9 [116 [15;6] 911'%]3 

[15] 6 [5,1] 6 
÷~, l~ _+x 2 [3]6 [~ ]~ ]3 ,1 ]  
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TABLE A.3 
Local expansions of o(r), disordered regime, at inequivalent cusps of F 1 [30]. 

p~ = (5 ( 5 ) / 1 0 ,  PNP = (5 + ~/5-)/10, and Oo = 1 / ( 5  

701 

Cusp Local expansion 

{6,3} 
3{,' g' ; - x  {2, 1} [5, 1][30,12] 

, 4 7 1 3  { 6 , 3 }  
~,s ..... 3o {2, 1 } [30,6][5,21 

. 9 ~ 4_ { 2 , 1 }  

.... ' . . . . . . . .  {6,3 } [10,2][15,3] 

I I 5 
0, l l "  12" 1"2 PO X 

{30,15} 
1 

{lO,5}[6: {o5111:{o~] 

{10,5} 
I 1 L ; 

. . . .  ~,~ & {30,15}[3; {o~][2; {o~] 

{10,5} 
J t 2 

. . . .  ' q ' 9  P N P  { 3 0 , 1 5 } [ 3 :  { O 5 ] [ 2 ;  {O5] 

I t 1 5 
7 • 13 ~ 6 ' 6 PO X 

, { 3 0 , 1 5 )  

(10,5}[6; {o5] [1; {o51 

{2,1} 
L~), 7 2 7 m, ~5, ~5 x {6,3} [10,4][15,6] 

TABLE A.4 
Cusp expansion of ~'S(r) at inequivalent cusps of I" l [5]. In the ordered regime ,z = ~" 5 

in the disordered regime z = - f s .  ~'l = ( (5  1)/2 and f2 = ((5 + 1)/2 

Cusp Local expansion 

5 {[5,11] 'tv ) 
5 

o ~( ~)[1: {od 
5 1( I5,211 

' ~ \ [ 5 , 1 1 1  

5 (El:{o;l 1 
5 ~'-~ [1; %1 ] 
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TABLE A.5 
Cusp expansions of x(~'), disordered regime, at inequivalent cusps of F 1 [30]. 

Use lower sign for second cusp. q and c 2 are defined in table A.2. 

Cusp Local expansion 

[51215,11216,3116,21 
ioo, ~i I, ± 

[5,21316,1][612 

4 1 

,L, ~, 

l 4 
1 5 '  15 

3 2 

I~)' 3 

7 1 1~, ,% 

±12i~/~x 6 [3012130'612[1:-11[ 1;`o3 ] 
[30,121311; `o61[112 

±3i~/'fx 3 [1512115'31212'11[ 2;w3 ] 
[15,61312,1; `o3112] 2 

±4x 2 [1012110,21213;- 1[3,11 
[10 ,41313,1;  - 111312 

_+ 12i~/3 [3012130'121211;- 11[1; `o31 
[30,61311; %11112 

±3i!/3[1512[15,61212,1][2; `o3] 
[15,31312,1; `o3][21 / 

±4 [1012110'41213;- 1][3,1] 

[10,21313,1;- 111312 

7 ,3 + x - '  [51215'21216'3][6'2] 
~I, 3o 

[5,11316,111612 

6~/3 [61216; ̀o51215;- 1][5; `o3] 
0, ! ± __ q 

5 [6; ò5213 [5; `o6 ][512 

3v~ [31213;`0s12[10,51[10:`o3] 
10 [3; 2 3 `o, ] [lO,5; ̀o31[lO12 

2ic I [2]2[2; w512[15;- 11[15,51 
1 • 

5 [2; 2 3 ws] [15,5;-  1][15] 2 

5 l 
6 ' e ,  

t ,,~ ± - -  

t 1 i:,,~ 

2 1 

%] [30,151130,10] i -5 [112[ 1; 2 2 

± 1 --~c'x [1; ,o51313o,5113Ol 2 

3V~ [31213; ̀o512[10,51[10; ~31 
10 c2 [3;`o513110,5;`o31[1012 

6~/3 [61216; `o~]215;-1115;~31 
± ~ - c 2  [6; `o,1315;`o6][512 

2ic 2 [21212; ~ ] [ 1 5 ; -  11115,51 
± 

5 [2; ~513115,5; - 1][15] 2 

i - ,  [11211; `o~]2130,151130,10] 
± l'-oCzX [1; `o,1313o,511151 z 
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TABLE A.6 
Conversion table for local variable "x" in F l [5] to local variable in F, [30]. 

The cusps are grouped in F 1 [5]-equivalent sets. 
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Cusp New variable 

ioG t l  x 
• 3o 

I 4 X 6 
5 ~ 5  

X 2 

3 2 X 6 
5~5  

X 3 

2 7 X 2 
15' 15 
7 13 
~o, Y~ x 

0 ,  111 X 6 

1 1 X3 
4~ 14 

I 2 X2 
9 , 9  

1 5 X 
6 , 6  

L 1_ X 3 
2 , x  
i 1 X 6 
7 '  13 
1 2 ~ 2  
3 " 3  
1 
(2 ,52  X 

TABLE A.7 
Conversion table for local variable "x" in F 1 [5] to local variable in F l [15]. 

The cusps are grouped in F 1 [5J-equivalent sets. 

Cusp New variable 

x 3 0,~ 
1 1 
6" '~  X 

1 1 X 3 
2 ' 7  
t 2 
~,  3 x 

ioc, 4 x 
! 4 X 3 
5 , 5  

2 3 X 3 

& 7 
15, 15 X 
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