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We formulate a holonomic quantum field theory of bosons on a Poincaré disk of radius R
(Dg) based on a monodromy preserving deformation of the laplacian operator defined on Dy.
First the isomonodromy problem for the laplacian is converted to an isomonodromy groblem for
a fuchsian system using the hyperbolic Laplace transform defined on Dg. The deformation
equations for the fuchsian system (Schlesinger equations) and an associated closed one-form w
are then discussed. Locally w = dlog+ defines a r-function which is then identified with an
n-point function of bosons defined on Dg. At every step we discuss the limit R — o where the
problem reduces to one on the euclidean plane. This facilitates a detailed comparison with the
original results of Sato, Miwa and Jimbo on the euclidean plane. The two-point function is
discussed in some detail and it is shown that.it can be expressed in terms of a Painlevé
transcendent of the sixth kind.

1. Ilitroduction

Conformal field theory tells us a great deal about correlation functions of
critical, or equivalently massless, 2D quantum field theories (see references in ref.
[3D. On the other hand, progress in correlation functions for massive 2D quantum
field theories has been restricted to a smaller class of models. The most general
methods presently available are those coming from a series of papers [15] by Sato,
Miwa and Jimbo (henceforth, SMIJ I, II, etc.) called Holonomic Quantum Fields.
The most important special case of their theory is the massive Ising field theory
[10,18] on R? (see also ref. [13]). One direction to pursue to enlarge the class of
solvable, massive 2D quantum field theories, is to construct holonomic quantum
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field theories on two-dimensional manifolds other than R?. Since the hyperbolic
plane is the universal covering space for Riemann surfaces of genus greater than
one, it is natural to first extend the SMJ analysis to massive Klein—-Gordon and
Dirac operators on the hyperbolic plane. For the case of the Klein—Gordon
equation this was initiated in ref. [17] and for the Dirac case in ref. [14]. The model
of 2D hyperbolic space used in these papers is the Poincaré upper half-plane. This
model of the hyperbolic plane has the disadvantage that it is difficult to make a
connection with the results of SMJ in R? in the limit the curvature tends to zero. It
is the purpose of this paper to establish a detailed connection between the
euclidean results of SMJ and the hyperbolic results for the Klein—-Gordon equa-
tion [17]. The corresponding results for the Dirac case will be considered in a
future publication.

The hyperbolic plane can also be modeled by the Poincaré disk of radius R, Dj.
In this model the curvature of the manifold is —(2/R)?. This then is a convenient
model to analyze the limit of zero curvature, or equivalently, R — «. In this paper
we will show that the results associated with monodromy preserving deformation
of the Klein-Gordon equation in SMJ III can be obtained as the limiting case of
the corresponding results on Dy. It is interesting to note that the analysis on Dy is
in some sense nicer than the euclidean case, i.e. irregular singularities in R? get
replaced with regular singularities in D, and the irregular singularities arise as a
confluence of regular singularities as R — . This point was also observed by
Atiyah [1] while working on the problem of monopoles.

A brief outline of the SMIJ theory [15] is as follows (the review by Jimbo [5] is
recommended): Consider the vector space W(L, A) of multivalued solutions ¢ of
the (elliptic) Klein-Gordon equation on R? —{a,, ..., a,} satisfying the conditions:
(i) any solution ¢ when analytically continued around any one of the points g,
picks up a phase exp(2mil;), where 0 </, <1 are fixed, and (ii) such ¢ are of finite
energy

[ (45606 +mPpd)dxdy <. (1.1)
o

An important result is that W(L, A4) is finite dimensional and has dimension equal
to n, the number of points removed from R2. The condition that the [, are fixed,
and hence independent of a, and a,, is the condition of isomonodromy. Picking a
basis of such wave functions, the Klein-Gordon system of equations satisfied by
this basis of wave functions can be extended to a total system of linear differential
equations in z and Z. The condition of isomonodromy now results in a set of
nonlinear equations, called the deformation equations, in the variables a; and a;
(j=1,...,n). Associated with these deformation equations is a closed one-form w.
It is shown in SMJ IV that this one-form w is locally dlog v where (a,,...,a,) is
the vacuum expectation value of n interacting bosonic quantum fields defined on
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R2. Although the analysis is carried out in the Klein—Gordon variables z and 2z, it
is pointed out in SMJ III that the (relativistic) Laplace transform of the extended
linear system in z and Z results in a system of ordinary differential equations in
the transform variable u. This transformed ODE has irregular singular points of
rank one at # =0 and u =o. The SMJ III deformation equations can then be
viewed as an irregular singular point version of the classic Schlesinger equations
[16]. That this is indeed the case was proved by Jimbo et al. [6] in their quite
general theory of monodromy preserving deformation of ordinary differential
equations which allows both regular and irregular singular points. Their theory
defines a closed one-form w associated to the deformation equations. When their
theory is applied to the special case of the transformed ODE appearing in SMJ I,
it is observed that the two w’s are equal.

In ref. [17] the corresponding problem of isomonodromy of the Klein—Gordon
equation on H? was studied. With the aid of the hyperbolic Laplace transform, the
extended linear system was transformed into a fuchsian system in the transform
variable. This is simpler than the euclidean case in the sense that the deformation
equations resulting from the condition of isomonodromy are the Schlesinger
equations. In their study of the Riemann-Hilbert problem [15], SMJ introduced a
closed one-form w expressible in terms of solutions of the Schlesinger equations.
Furthermore, they showed that this “Riemann-Hilbert/Schlesinger” o is the
logarithmic derivative of the vacuum expectation of a product of “Riemann-
Hilbert” fields @(a).

After some preliminary material on the Poincaré disk model of the hyperbolic
plane in sect. 2, we formulate in sect. 3 the bosonic problem on Dp. In sect. 4 we
derive the extended system of linear equations. Also in sect. 4, we use the
hyperbolic Laplace transform to convert this extended system to a fuchsian system
of order n with singular points at a, €D, and at the conjugate points Rz/ﬁj
(j=1,...,n). In sect. 5 we show that the limit of this fuchsian system as R — % is
precisely the transformed ODE of SMJ I11. The closed one-form o associated with
the Schlesinger equations is obtained as a function of R. It is shown that as R — o
this @ approaches the o obtained in SMJ III for the euclidean Klein—-Gordon
equation. Therefore, the w obtained on Dy, is then dlog 7 where t(a,,...,a,; R)is
the n-point function of bosonic quantum fields defined on D,. We study in sect. 6
the n = 2 case in some detail, and show that the differential equation satisfied by 7
is related to the Painlevé equation of the sixth kind (Py,). It is also shown that the
differential equation satisfied by 7 on D, approaches the differential equation
satisfied by the euclidean 7-function as R — <.

2. Poincaré model of hyperbolic geometry

In this section we present various properties of the Poincaré disk model of the
hyperbolic plane that we will use in later sections. A reference for this section is
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Helgason [2]. We keep the radius, R, of the disk explicit since we are interested in
obtaining the results in the cuclidean plane as R — o«. The metric on Dy is

dx?+dy?
dslz2 = 7 (213)
(1-(x*+y?)/R?)
and the invariant measure is
dxAdy
dug = (2.1b)

(1= (x2+y?)/R2)"

where x and y are the cartesian coordinates in the euclidean plane in which Dy is
embedded with the origin being at the center of the disk. The curvature is then
—(2/R)*. As R — » the disk Dy approaches the euclidean plane and the metric
dsz and invariant measure du, approach the standard euclidean metric and
measure, respectively. The disk Dy can be mapped onto the upper half-plane by

zZ+IiR

w= —j -
z—iR’

(22)

where z=x +1iy is the complex coordinate* on Dy and w is the corresponding
complex coordinate on the upper half-plane. The boundary of the disk D maps
onto the real line. There is also a connection between D, and a hyperboloid in
three-dimensional Minkowski space. This is seen by letting

z=Re" tanhir (2.3)

which is also called the geodesic polar coordinates on D, centered at the origin.
The metric given by eq. (2.1a) then becomes

ds? = LR?(dr? + sinh? r d6?) . (2.4)
The above metric is the usual Minkowski metric ds? = dx? + dy? — dr? restricted
to the hyperboloid x? +y% — 2= (R/2)>.

The Poincaré disk D, can be identified with the homogeneous space
SU(1,1)/80(2). An element g of the isometry group SU(1,1) is given by a 2 X 2

matrix
_ (a b)
&=\ a

* SM1J IIT use the convention z = %(x + {y). This must be kept in mind, when in the latter sections, we
identify certain formulae with those in SMJ IIIL.
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with the condition a@ — bb = 1. The action of g on z € Dy is given by

az+b
Z > =

bz+a’

(2.5)

The corresponding Lie algebra su(1, 1) has three generators; one choice being

{0 1 [0 i (i 0
Xl' (1 O)’ XZ (_l 0)7 X3 (0 _i)’ (26)
with brackets

[X,,X,]=-2X,, [X,, X;]=2X,, [X;, X,]=2X,. (2.7

To each X, € su(l,1) we associate a vector field L; acting on the C*-functions f:
D, — C by

d
(Lif)(x,y)= a;f(eXP(tX,-)(x,y))l,:(,' (2.8)

For the generators (2.1) we obtain

22 72\ _
L=|R-Z\a+|{R-2)3, L,=i
R R

L,=2i(zd—20d), (2.9)

where 9 = (3, —id,) and d = 3(, +id,). Using the transformation (2.3) the vector
fields given in eq. (2.9) become, respectively,

cosh r
sinh » ’

D=L, +iL,) = e"‘*(a,+i—a,,

D= (L, —iL,) o coshr
A AR AT &

M= —3ily= —id,. (2.10)

To construct for a point z € D, geodesic polar coordinates centered at a point
z,, we first send z, to the origin by the isometry

w  (z—2zy)R
z> —=——

2.11
R R*-Z,z (2.10)
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followed by the transformation (2.3) on w. It will be useful to express the L,’s in
terms of D, D, M and the point z,. The result is

_._.__1 2 2 2 =2\ R -
b= R*—z,z [(R _Z”)D“ﬂ+ (R ——Z”)Dz[)+2R(Zo“Zo)MzU],
0Zq
i —_—
L= = [(R+20) D, — (R*+2) D, + 2R(Z, +2) M, ).
040
2i L o
Ly= RI_2.3. [RZ() D, —Rz,D. + (R +z(,z(,)Mz”]_ (2.12)
020

The subscript z, on D, D and M indicates that the geodesic polar coordinates in
eq. (2.10) are centered at z,.

The invariant differential operators on the homogeneous space SU(1,1)/SO(2)
are polynomials of the hyperbolic Laplace operator:

2

‘AH = R2

x2+y?
1 - R

s\ 2
(a,3+a§)=4(1 - ﬁ) 30

2\* cosh r 1 1
= (E) [a} Tt e 862} = F(L2l +L3-1%).  (2.13)

The eigenfunctions of 4,; are now constructed by a geometrical procedure that
is analogous to the euclidean case. Given a point z € Dy we first construct a family
of parallel geodesics emanating from a point b on the boundary of D,. Then we
construct the curve (called the horocycle) that is perpendicular to all these
geodesics and passing through z. It is a circle tangential to the boundary at b. Let
w denote the point on the horocycle that is closest to the origin and let (z,b)
denote the distance between w and the origin (see fig. 1). If

P(z,b) =0, (2.14)
b
(/O

Fig. 1. Poincaré disk showing geodesics through b and associated horocycle through z.
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then it can be shown that

R*—2z ferz
P(z,b) = (_z_—T(z:iB_)} , (2.15)
where bb = R? and
A P(z,b)=5s(s—2/R)P/(z,b). (2.16)

It should be noted here that P(z,b) is the same for all points z on a horocycle
and is parametrized by a point b on the boundary. Also it is interesting to note
that P(z, b) is the Poisson kernel raised to the Rs/2 power. The eigenfunctions of
4,; are then of the form

f(z,2)= [ P(z,b)f(b)db. (217)
aDg
To be rigorous we must interpret f(h)db as a hyperfunction, see refs. [2,8]. We

now observe that

lim P,(z,uR) = exp|3s(zu™" +2u)], (2.18)
R—>»

which is the usual kernel, i.e. a plane wave, in the euclidean plane.
The following proposition tells us how the action of the vector fields L; translate
into operators H; acting on the functions f defined in eq. (2.17).

Proposition 2.1. Let L; (j=1,2,3) be the vector fields defined by (2.9), and
suppose f(z, %) and f(b) are related by (2.17), then

(Lif)(2,2) = [ Pz b)(H,f)(b)db,

where
. Rs ) b\ Rs|b R bza
=l—-2{=|+=|=]|+|R-—
! (2 )(R) 2 \R R
u Rs 5 —ib ib & 23
=] — — —_ — + —
=5l ) E R e R

Hy=2i(1+bd,).
Proof. The proof is identical to the one in ref. [17]. QED
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3. The space W(L, 4) and local expansions

We are interested in spaces of multivalued solutions to the Klein—-Gordon
equation

2 2
AHf(x,y)=s(s——§)f(x,y), S>E’ (3.1)
with isolated singularities a; € D (j =1,...,n) and specified monodromy at each

point a;. It is convenient to introduce the diagonal matrices

a, L
A= , L= R (3.2)

where [; (j=1,...,n) are real numbers between 0 and 1. Let R(8) denote the
rotation by ¢ about a;.

Definition 3.1. W(L, A) will denote the complex linear space of multivalued
solutions to (3.1) on D, —{a,, ..., a,} with isolated singularities at a; (j =1,...,n)
satisfying

F(R)(2m)(x,y)) = exp(2mwil;) f(x,¥) (3.3a)
for (x, y) near a; and the finite energy condition

2
2+2

I(f,f)=[D (4(1_ * Rzy ) gfaf+s(s—%)ff_

dugr<w. (3.3b)

Because of the monodromy condition (3.3a), the functions ff and dfaf are
single-valued functions on D, and the integral in eq. (3.3b) is well defined.
Observe, at least formally, that as R — o, eq. (3.1) tends to the cuclidean
Klein—-Gordon equation (with the identification of s =m) and the finite-energy
condition (3.3b) approaches the euclidean finite-energy condition (1.1).

We develop a local representation of a function f& W(L, 4) (or local expan-
sion) near a point «; by expanding f in terms of the eigenfunctions of L4 which
have the appropriate monodromy given by eq. (3.3a). To achieve this we use the
representation of the hyperbolic laplacian in geodesic polar coordinates (see eq.
(2.13)) and separate the variables. This along with the finite-energy condition
(3.3b) results in the following expansion for f valid for z near a;

f(rj70j)= E cj(k’+)fl(rj’0j;k)

k== 1,001 +1,...

+ Z Cj(k’_)fZ(rj70j;k)’ (3.4)

k=1,~1,1,=2,1,—3,...
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where (r;,6;) are the geodesic polar coordinates (2.3) centered at a,
fi(r;, 0, k) = ek P,;Sk/z_l(cosh ),
£i(r;,0;5k) =e*% Py ,_\(coshr;), (3.5)

and P*(z) is the Legendre function of the first kind. The local expansion of f near
infinity is

f(ra,0.) = X cdk)flr,0.5k), (3.6)

k=L.12]
where (r,, 6,) are the geodesic polar coordinates centered at the origin of the disk,
fl 103 k) =™ QK , ((coshr.),  r,>R., (3.7)
Q*(z) is the Legendre function of the second kind,
I=0+...+1[Z], O0<I. <1,

and R, is chosen so that all the points a; (j= 1,...,n) are inside the circle
defined by R..

We now consider the limit of the eigenfunctions in eqs. (3.5) and (3.7) as R — «.
We focus on the Legendre function of the first kind, Pg,_(coshr). Since r is
dimensionless, we write r:=2p/R where p has dimensions of length. Using the
integral representation of the Legendre function we find that

Rs\*¥ p
: —k
i (3] o)

i ((Rs/2)sinh(p/R))" (1 _tz)k—l/z )
=R 24Vm Ik + 1) /—1 (cosh(p/R) +tsinh(p/R))k+'_R“/2
—Mk_ ! tps/2 k= 1/2

B \/171“(k+%)f_le (1-¢%)" i

=1k(PS/2), (38)

where I,(z) is the modified Bessel function. This then shows that the eigenfunc-

tions
Rs\* Py
(——2 ) P,;Y"/z_l(coshﬁ)e"“’
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on Dy go into the eigenfunctions I, (ps/2)e’*® of the euclidean laplacian as
R — . A similar limit holds for the Legendre function of the second kind.

Using the recursion relations for the Legendre functions it is straightforward to
prove:

Proposition 3.2.
Df(r,05k) =f(r,0;k—1),
Dfy(r.05k) = (k+ 3Rs = 1)(3Rs — k) fo(r,0;k - 1),
Df((r,0:k) = (—k +*Rs — 1)(3Rs + k) f,(r,0;k + 1),
Dfy(r,0;k) =f,(r, 05k +1),
Df(r,0;k) = (k+3Rs = 1)(3Rs — k) fr, 0:k = 1),
Df.(r,65k) =fAr.0;k+1),
Mf(r,05k) =kf(r,0;k), i=1,2,. (3.9)

Following exactly the arguments in SMJ 111 the following theorem can be estab-
lished.

Theorem 3.3. The dimension of W(L, A) is n. There exists a basis { f“}:=1 of
W(L, A) such that if the local expansion (3.4) of [, at a, is written as

fulr,.0,) = r Cul ks +)fi(r,.0,;k)

k=1,~1,0,.0,+1,...

* r bk, =) fo(r,,0,5k),

k=1,—1,1,~2,1,-3,...

then ¢, ([, —1,+)=35

wet

The basis in this theorem is called the canonical basis. We now introduce the
following matrices which will be useful for later purposes.

[C.(k)]=cl, 1%k, ), G=—(sinwL) 'C"Y(0)C,(0),
A=G'AG, A*=C;N0)C,(1),
A”=(sinwL)'CZ(0)C_(1)sinwL, a=A/R,
Fr=la,A"]+(I-aa)(I-L), F=[a, A ]l-(I-aq)(I-L).

(3.10)
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We shall write p(x,y) for a polynomial in x and y with constant coefficients.
Now define a space of multivalued functions W(L, A) by
WL, A)={p(L,,L,)wiweW(L,A),degp<1}. (3.11)
The following gives a useful characterization of WI!(L, A) in terms of local
expansions.

Theorem 3.4. The multivalued function f is in W'(L, A) if and only if it
satisfies the Klein-Gordon equation (3.1) on D —{a,...,a,} and

(i) f(Rj(27r)(x,y))=exp(27rilj)f(x,y), (x,y) near a;.
(i) The local expansion at a; is of the form

f(rf’01)= Z Cj(k’+)f|(rj’0i;k)+ Z Cj(k’_)fz(rj’oj;k)a

k=l=2,0;=1,1,,... k=l 0=1.0;-2,...

(iii) There exists R, >0 such that for geodesic polar coordinate r, greater
than R,

f(roo’ooc)= Z Cm(k)foo(rm’oeo;k)‘

k=1.[Z]

Proof. The proof is similar to the one in ref. [17]. We note that the existence of
the inverse of A — A must be assumed. QED

4. Extended system of equations

If {f);_, is any basis of W(L, A), then a basis for WXL, A) is
{L\f,,Lyf, f,}i—1 Using eq. (2.12), proposition 3.2, and theorem 3.4 it is easy to
check that L,f, is in W'(L, A). Hence there exist coefficients B, B and BS),
independent of z and Z, such that

n
Lyf,= ¥ (BQL\f + BRL,f, + BRSfL) (4.1)
A=1
or in matrix notation,

L.f=BWL,f+B®L,f+BYf. (4.2)

A local expansion of both sides of eq. (4.1) at a, (v=1,...,n) (see (3.4)) and
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equating coefficients of f(r,,6,;1, —2) and f,(r,,8,;1,) leads to the equations
2iRC_(0) A =B"C_(0)(R*[ — 4%) +iBPC, (0)( R + A?),
2iRC_(0)A4 = —~BOC_(0)(R* —A%) +iBPC_(0)(RU+A%). (4.3)
We define
B*=B®+iB"®,  G=RA™', pP=2(B*)",
M =1pgdp- B = Lig®p® (4.4)
Solving for B and B in the canonical basis, we get
BV =(a-d)a(a—ad) 'a=(a—a)ala—a) 'a
BP=(a’~@)(a-a) '=a+(a-@)a(a—-a) '=a+(a-d)i(a—a) "

(4.5)

Equating the coefficients of fi(r,,6,;1, — 1) results in

ﬂ(3)=[—F*a+(a—d)d(a—&)WIFJr](I—“a)_l’ (4.6)

where F' is defined in eq. (3.10)*. Equating the coefficients of filr,0,:1, -1
results in the following identity

GBYG '(I-aa)=-A"-2a(I-L)-GBVG 'A~a* - 2GBMG'a(1-L)
+GBPG A @+ GBPG (I +aa)(I-L), (4.7)

which is one of an infinite sequence of identities that now arise from eq. (4.1).

We now use the hyperbolic Laplace transform (2.17) to transform f(z, Z) into
f(b). We note here that for f(z, 2) to have the prescribed monodromy around the
a/’s, the function f(b) is expected to have branch points and therefore a deforma-
tlon of the boundary of Dy is expected in the actual situation. We now use
proposition 2.1 to transform the extended system (4.2) into a system of ordinary
differential equations:

df le o o (R \bI.
AB) gy = | B 5y TBO B+ (7—2)5 £ (4.8)

* Note the misprint in going from eq. (A.3) to (4.5) of ref, {17}.
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where A(b) = (b2/R)I — bB® + RB™. It can then be shown that
A~'Y(b)=R"! b[ B bI ) 7)) 4.9
(=~ |(gi=a) -(1-d) @@ @9

Thus the system (4.8) has the form

df/db=A(b)f, (4.10)
where
b b ! .
aim = (B1-a) = (31-4) oo
X —B“)—I-e—zi +ﬁ(2)+3(3’+(§-s——2)21 (4.11)
2b 2 R | '

We now reduce A(b) to the standard form

A, A, A

J

+ —,
b—a; b-R/a

(4.12)
j=1

where A,, 4; and A4} are the n Xn matrices
Ay= —3Rsl,

J

AN (1>st @4 go o (B 2
Aj=Ej(a—a) -B ZZ—+B +BY + 7—2 EI ,

A= _F oy (1)“71 @ 4 g® Rs -2 R[ 4.13
]._—j(a—a) -8B —2—+B B+ ) ﬁ_j ’ (4.13)
with

(E,),, =68 E =G 'EG.

It follows from eq. (4.13) that

Ao+ fj(A,.+A;.)=(§Rs—2)1, (4.14)

j=1

which implies that the system (4.10) has a simple pole at infinity. Hence the system
(4.10) is fuchsian of order n with 2n singularities at a, R?/a,. The residue of the
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singularities at zero and infinity are proportional to the identity, and can therefore
be moved to any other point, say b, by a transformation

f—’fb_Rs/z(b - b())er-
We note that the matrices A4 ;and A i are rank one due to the rank one nature
of E,. We now proceed to compute the traces of 4 ; and Aj. For convenience, we

let U=(a—a@) " and U'=GUG™'=(GaG™' —a ")~". To compute the trace of
A; we note that it is of the form E;M and that

Tr(EM) = Y. 8,8,M, =M,
k1l

Then using the identities*
UBY =ala - a, UBP =aqU+ Ua —1,
UB® = (aUF*— UF*a — F*)(I - a&) ', (4.15)
we find that
Tr(A;)=3Rs+1,—2. (4.16)
To compute the trace of A} we note that it is of the form EjM and that
Tr(E;M) =Te(G™'E,GM ) = Tr( E,GMG ') = (GMG ') ;.
Then using the identitics*
GUBPG '=a 'Uat+a !,
GUBPG '=a 'U+Ua ' +1,
GUBYG™'=(a 'Fa+a 'Va 'Fa-Ua 'F)(I-aa)” ", (4.17)
we find that
Tr(A;)=3Rs —1,. (4.18)

Collecting these results together we have

* These identities are derived in an analogous way that the identities in the appendix of ref. {17] were
derived.
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Theorem 4.1. Let {f}/_, be a basis for W(L, A) and f the column vector
fi
S If
f’l
f(z,2) = [ P(2.6)f(b)db,
R

then f(b) satisfies the fuchsian system

df A no A A .
A e v I
db b b—a; b—-R°/a;

j=1

where Ay, A; and A} are n X n matrices given by eq. (4.13) and they satisfy (4.14).
Further A; and A; are rank one and

Tr(A;) = 3Rs +1,- 2,
j=1,...,n.
Tr(A}) = 3Rs — 1},

Proof. The only part that remains to be proven is that the contour I} as in fig.
2 gives the correct monodromy around all the points a; (=1,...,n).

First of all, one comment is in order. The singularities at 0 and « in the
differential equation for f can be moved to any other point because A, and A,
(given by eq. (4.14)) are proportional to the identity. In particular they can be
moved to one of the pairs a; and R?/a,. This is the reason why there is no branch
cut connecting 0 and « in the contour I'g.

2,
R¢/a,

A2/,

R2/a,

Fig. 2. The contour I'.
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RZ/z

Fig. 3. The contour I'}.

We first analyze the case n = 1. The proof for the general case will then follow
naturally. Without loss of generality we can choose a, = 0. For this case the space
W(L, A) is one-dimensional and it is spanned by

f(z,2) —e'”'*”"QRS/2 (cosh r). (4.19)
We now show that this result comes out of the fuchsian system with the choice of

contour I'} (fig. 3).
From theorem 4.1, the fuchsian system reduces for n = 1 to

T'his can be integrated to give

f(b) =fob"72, (4.21)

where f, is the integration constant. Substitution of eq. (4.21) into (2.17) gives

i — Rs/2 s
f(z,%) f,u(z—b)(z—b) fob""2db, (4.22)

where I is the contour for the case of n = 1 and is shown in fig. 3. To perform
the integration, we write z=Retanhr/2 and b =uR. Then the integral (4.22)
reduces to

f(z,2) =f(,R’1‘l/ | [cosh r — Lsinh r(ue~ + (1/u)e')] TR2uh=2gy . (4.23)
FR 1
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A contour integration then shows that (4.23) is a multiple of (4.19). Note that the
correct phase factor of exp i(/, — 1)8 arises from the factor b'""2db in eq. (4.22).
Now we comment on the general case. We need to prove that the contour
chosen gives the correct monodromy around every a;, thus we investigate the
situation when z is close to a;. We first make a transformation
f—»ﬂ)”“/z(b __aj)Rs/z(b B Rz/ﬁj)m/z_z,
which brings the singularities at 0 and o to a; and R?/a; respectively. Next we
send the point a; to 0 by an isometry of the type given by eq. (2.11). The pole at
b =0 in the fuchsian system is then (A, + A4;)}/b. We now diagonalize A, +A; by
a similarity transformation on the fuchsian system, and using egs. (4.13) and (4.16)
we find that the pole at b =0 is (/;—2)/b and the branch cut connects b =0
and b =, This part of the contour integration is then similar to eqs. (4.20) and
(4.22) and the associated contour I which implies the correct monodromy
around a;. QED

We now investigate the R — = limit of the fuchsian system in theorem 4.1. We
first set b = Ru where uii = 1. We write the a; in geodesic polar coordinates as

. p; :
a;=Re" tanh—EJ =p; e+ O(R™?) =a} +O(R7?), (4.24)
where a is the corresponding point in R2. Next, we establish a connection
between the coefficients ¢, (k, +) in theorem 3.3 and the limiting coefficients in
the euclidean case. In eq. (3.8) the connection between the Legendre functions and

the Bessel functions was established. This along with the local expansion for
f(z, 2) in theorem 3.3 imply that if we set

ek, £) = (ARs = 1)*¢,, (k. 1), (4.25a)
then
Jim ¢, (k, +) = cE(k, ), (4.25b)

where ¢E,(k, + ) are the local expansion coefficients of the limiting basis in R’ But
if we start with a canonical basis, i.e. ¢, (I, — 1, +) =§,,, then the limiting basis in
R? is not canonical. Therefore, we change the basis on the hyperbolic plane by
multiplying all coefficients by (Rs/2—1)'""». We now write down the limiting
behavior of the hyperbolic local expansion coefficient matrices C L0 and C, (D
which will be of use later:

C.(0) ~1, C_(0) ~CE(0)(4Rs — 1)2(1714)

’

C.()~CE()(ERs—1), € (1) ~CE()(2Rs-1)* . (4.26)
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Finally, we establish a connection between f and the corresponding f E in the
R — o limit. If we denote by f*(z, 7) a multivalued wave functions in R2, then it is
related to fE by [SIM III]

s . du
fE(z,2) =frexp[5(zu“ +2u)] fE(u)-u—. (4.27)

w0

The contour I, is essentially the same as the one in fig. 3 and is connected to the
contour I'y in theorem 4.1 in the following way. First scale the contour I’ % by the
change of variable b = uR. This then moves the singularities in the fuchsian system
in theorem 4.1 to a;/R and R/a,. As R — «, using eq. (4.24) we see that all the
singularities at a;/R (j = 1,..., n) accumulate at the origin and all the singularities
at R/a; (j=1,...,n) accumulate at = giving rise to the contour I', as shown in fig.
3. Note that there is no need for a superscript n in the contour I . because the
singularities for all n are only at 0 and ». Comparing eq. (4.27) with (2.17) and
(2.18) we establish the following connection between f and fE. First define
f(u) = Ruf(Ru), then

f(u) ~FE(u). (4.28)

The fuchsian system (4.10) for f then results in a system of equations for f(u),
namely,

df(u)/du=[u="1+RA(Ru)] f(u). (4.29)
We now let R — o« in the above equation. Using eqs. (3.10) and (4.24) we get
a=AE/R+O(R™Y), (4.30)
where (A4%),; = af35,;. From egs. (4.4) and (4.24) we find that
@=R(A®) "'+ O(R™"), (4.31)
where A" =G~ '4"G. We note that egs. (3.10) and (4.26) imply
G=—(sinwL) '(3Rs —1)*""(CE(0)) " = (4Rs — 1)** 7V GE,
and therefore A® =(G®)" 4 G". Using egs. (3.10), (4.26) and (4.30) we find that
Fr=3s[ AP Af] +1-L+O(R™") = Ff+O(R™ ), (4.32)

where Af = C%(1) in the canonical basis. Using egs. (4.5), (4.6) and (4.30)-(4.32)
we get

BV =(A") "' 4F + O(R?), B =R(A%) '+ O(R™Y),

B =R(AE) 'F +0(1). (4.33)
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Using eq. (4.13) along with (4.33) then gives

A;=E; ZaEAE_I’FE +O(R™),
L J
[ Rs . 2 .
Ap =B = AB+ 1+ Ff — = A5 |+ O(R™"). (4.34)
LZai a;
Using
1 ar
=—1+—=-+0O(R?)|,
b—a; Ru Ru
! EJE 1 EIE O(R™? 4.35
=1+ =+ B .
b—R*/a; R? R (R (4.35)
egs. (4.12) and (4.29) we finally obtain
lim [u~'T+ RA(Ru)| = ysu=24" — 3s4° —u " 'F . (4.36)
R->x
This implies that as R — o the fuchsian system (4.29) approaches
d - -
u—a—+%suAE—%su"AE+F;{ fE(u) =0, (4.37)
u

which is the result in SMJ I1I for the euclidean case (after a change of variable
u-ub.

5. 7-functions

In the last section it was shown that the extended system of equations corre-
sponded to a fuchsian system of equations given by theorem 4.1. We now require
that the monodromy group remain constant when the a; (and ;) are varied. This
requirement is consistent with theorem 4.1 since this theorem implies that the local
monodromy matrices are independent of a; (and a;). The necessary and sufficient
conditions for isomonodromy are the A; and A (j=1,...,n) satisty the
Schlesinger equations [9, 11, 15, 16]. It is a major result of SMJ 11 (see also ref. [11])
that there exists a quantum field operator ®gy(a,!) such that the logarithmic
derivative of the vacuum expectation value

m(ay,...,a,) :=<(pRH(al’ll)"'(DRH(an’ln)>
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is a one-form, denoted here by wpgy, that can be expressed in terms of solutions
Afa,,...,a,) of the Schlesinger equations. The wg,; resulting from our fuchsian
system is a function of R, the radius of the Poincaré disk (or the curvature of the
manifold). In this section we will show that limg _, , wgy is equal to wy, the closed
one-form defined by SMJ III that is associated to the monodromy preserving
deformation of the (elliptic) Klein-Gordon equation in R2. Since the R — o limit
of the fuchsian system in theorem 4.1 is given by eq. (4.47), the limiting r-function
also corresponds to the r-function arising from the deformation equations of
(4.47). That the 7-function corresponding to (4.47) is the same as the r-function for
the Klein—-Gordon equation in SMJ II1 is shown in ref. [6] (see their example 5.3).
Therefore, we conclude (though this argument is not a proof) that the r-function
obtained from the fuchsian system corresponds to the vacuum expectation value of
n interacting bosonic fields existing in the Poincaré disk. Stated somewhat differ-
ently, we are claiming that the r-function associated with the Klein—Gordon
equation in the hyperbolic plane is the same as the “Riemann-Hilbert/
Schlesinger” r-function associated with the transformed Klein—Gordon equation.
We now present the details of the calculation.

As a first step, it is useful to transform the variable b (of theorem 4.1) defined
on a circle of radius R to a variable £ on the real line by

b+iR

= - . 51
‘bR (5.1)
Under this transformation, the fuchsian system in theorem 4.1 becomes
df A Al no4. A 1.
97 _ L Ly L (5.2)
dé E—i &+ j:]g_gj £-¢;
where
a;+IR 4 5 Rs 7 53
g]—— laj_l'R’ 0_( 2) I (')

the matrices A,, 4; and A} are still given by (4.13), (4.14) and (5.3) imply that

Ay +Ap+ Z(A,+A;)=0, (5.4)

j=1

which means that there is no singularity at infinity. We now require that the
fuchsian system (5.2) satisfy the condition of isomonodromy. This then results in
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the Schlesinger equations [9, 11,15, 16]:

dA, = - Zn; [A,-,Aj]dlog(é_—fj) - Z [4: 4] leg(?*é—’ )
j=1 /

§o—&; j=1 T
dAj= - ¥ [A;, 4;] dlog ST5) i[A;,A}]dlog Sy, (5.5)
ji=1 §0 ¢ j=1 £y — ¢

where £, is the point where the initial conditions are specified and d denotes
exterior differentiation with respect to §; and {;:] (j=1,...,n). Associated with the
above deformation equations is a “Riemann-Hilbert /Schlesinger” closed one-form
@ given by (SMJ 11, see also [6,7,9,11,13D*

n

o=1 ¥ [Tr(A4,4;)dlog(¢ - &)+ Tr(A4;4;)dlog(§ ~ &)]

i,j=1,i#j

+ 2 Tr(A;A})dlog(é — ). (5.6)

i,j=1

This differs from the one in SMJ II by an exact one-form. Now we want to make
the connection between this one-form and the r-function. For the 7-function to
describe expectation values of operators in a quantum field theory, we would want
the one-point functions to be a constant, independent of the position of the field
operator. This then implies that the one-form corresponding to the n =1 case
should be normalized to zero. For the case n =1, @ is given by

a')=(%+11—2)(—R2—S—l,)d10g(§1—§l) (n=1), (5.7)

where we have used theorem 4.1. We note that eq. (5.7) is an exact one-form. In
order to define a normalized one-form w, we have to subtract from @ in eq. (5.6)
an exact form at each of the singular points &; given by eq. (5.7). This then results
in the following closed one-form:

w=1 ¥ [Tr(A,-Aj)dlog(«fi—gj)+Tr(A;A})dlog(§i—§j)]
ij=1,i#j
+ Z Tr(AiA;)dlog(f,-—Ej)— Y

i,j=1 Jj=1

(? +1j—2)(§—1,)d10g(ff“f_/)'
(5.8)

* We drop the subscript “RH” from now on.
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This w is connected to the 7-function locally by
w=dlogT, (5.9)

where the 7-function describes the vacuum expectation value of a product of
quantum field operators properly normalized.

Now we will investigate the one-form w as R — ®. We first note that A ; is of
the form E;M; and that A} is of the form E,M;. Therefore

Tr(A,4;) = Tr(E;ME M) = (M), (M;)

Tr(A4)) = Tr(E,M7E M) = (GM;G™),(GM;GY)
Tr(A,4;) =Tr(E A,E;M/) = (MG™"),(GM}),,. (5.10)

Using eqs. (4.24) and (5.3) we find that

24F  2i(af)’

;o J

R R?

=i+ + O(R). (5.11)
Using egs. (4.44), (5.10) and (5.11) we get
Tr(A,A;)dlog(¢— &) = (FE)y(F&)adlog(af —af) + O(R™Y),  i#j,
(5.12a)

Tr(A;A;)dlog(& - §) = (GF,;G—I),.j(GFgG*)ﬁdlog(a,E —af)+O(R™),

i#j, (5.12b)
n _ iRs* .
_ZlTr(A,A;)dlog(gi—§,)=— 5 ~is|Tr(dA" - dA¥)
0=

— 35> Tr[A®d AF + A d A% + G 4P G d AE

+ARG 'dARG]+ O(R™Y), (5.12)

_Z (§+lf_2)(§ —lj)dlog(§j~g?,)

j=1
iRs? ‘ _ 52 o -
= —(T -—is)Tr(dAh—dA E) — ITr(AE-i-A E)(dAE+ dA E) +O(R71).

(5.12d)
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The above results when substituted into eq. (5.8) give the following:

lim w=1Tr(F£ O + @*GF{G™")

R
+152Tr(d(ABA B) — G4 BGdAF - ARG "' d A BG)
—wy, (5.13)
where
0, = (Ff),;dlog(af —a}); i#j
=0, i=J;
0y = (GF;G™'), dlog(af —ar), i+j;
=0, i=j. (5.14)

This limiting one-form wy is the bosonic one-form in SMJ 111 (see also refs. [6, 7]).

6. The n = 2 case

In this section we will discuss the n=2 case in some detail in order to
understand the two-point function of the underlying field theory. Our starting
point will be the fuchsian system (5.2). We will focus our interest on the one-form
associated with the n = 2 case. Referring to eq. (5.8) we note that o is indepen-
dent of the singularities at &£ = +i and those singularities can be placed anywhere
in the &-plane. We will make a particular choice and place both of them at £,
Then (5.2) for the case of n =2 reads

df A A A +A,+ A A, .
g L2y 1t Aot Ay | A 7. (6.1)
d¢ €& €-& E—¢, E-¢,

The next step is to perform an SL,(C) transformation which takes £, =0, £, >
and £, > 1by

2Tt IR (6.2)
fz_fx §‘§1

This takes (6.1) into

df [A, A4, Ay 1.

E;—[—)c—+x—t+x—l]f (6.3)
where

&6
=5 7| = e’ 36, 6), (6.4)
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and r(¢,,¢)) is the radial part of the geodesic polar coordinate of £, centered
around £;; i.e., it is the hyperbolic distance between ¢, and &,.

At this point we note that (6.3) is exactly the starting point of the analysis of the
Painlevé equation of the sixth kind (Py,) in appendix C of ref. [7]. We will use the
results of the analysis of Py, in ref. [7] and in so doing will adopt their notation and
their equation numbers. Comparing eq. (6.3) with (C.46) in ref. [7]* we make the
following identification:

Al(—)(AO)MJ’ Az“’(Az)MJ’ A'z“*(Al)Mj- (6.5)

On comparing the traces of 4, 4, and A% in theorem 4.1 with eqgs. (C.47) and
(C.48) we find

8p=3Rs+1,—-2, 0,=1Rs—1,,
6,=3Rs+1,—-2, 6.,=4Rs—1,. (6.6)
Referring to eq. (5.8) we find that the one-form w is given by

A() Al
w=Tr|— +——|4,dr -
t r—1

010r

i
z—1dz (6.7)

where we have used the notation of ref. [7] for the matrices (see eq. (6.5)). The w
in eq. (6.7) differs by an exact one-form from the one in eq. (C.57) because of the
normalization condition discussed in sect. 5. If we identify » with dlog 7 where 7
is the normalized two-point function, then we get the following connection be-
tween o in eq. (C.61) and :

dlog r
d¢

o=t(t—1) +at+b, (6.8)

where

1 , L[(Rs \?
a=—3(L,+1,-2), b=3 (7—1) (L =D-D). (69)

With this identification, we have the result that (C.61) is the differential equation
for o(¢) where 7 is the two-point function of a massive bosonic field theory on D,.

We now investigate the limit R — o of eq. (C.61) in order to obtain the
differential equation for the two-point function on R2. From the result in sect. 5
we know that as R — o, w — & and therefore 7 — 7E where 7E is the euclidean

*From here onwards in this section, we will just refer to the equation numbers in ref. [7] without
making an explicit reference to ref. [7] - such equations always begin with the letter C.
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two-point function. Next, if in eq. (6.4) we write
r=2i/Rs, (6.10)

then as R — », f— tE, where tF is the dimensionless distance in the euclidean
plane. If we now define

dlog 7F
oF = (BB By, (6.11)
dt
we find, using egs. (6.4) and (6.8)-(6.10), the following connection between o and
ot
1 48 . 1[(Rs \?
= —=|1-=|= Ey (1)) 4 < || = - ~ -
o 2( 3 RS) (oF + (1 ))+2[( > 1) +(L,-1D(,-1)
1 20 Ey2 ~4
_R2s2(11+12—2) (t5)"+O(R™%). (6.12)

Using egs. (6.4), (6.10) and (6.12) in (C.61) and taking the R — o limit we find that
(r5(a®)" = (0B)) = 4(20F — 15(a®))((F)2 = 4(F)’)
+ 401~ 1) (%) + 4B + 161, = L) (o)
(6.13)

This is (essentially) the differential equation satisfied by the two-point function TE
in R2. Now we note that eq. (6.13) is exactly the same differential equation as the
one in (C.29) which is the equation for the 7-function; or more precisely, the
o-function related to the 7-function by o (1) =t dlog 7(r)/dt, associated with Pyy,.
But P, is precisely the deformation equation associated with (447) in the 2X 2
case. Therefore we have succeeded in showing that the differential equation for
the two-point function on Dy, viz., eq. (C.61) goes into the differential equation for
the two-point function on R?, viz., (6.13) or (C.29) as R — c.

We now comment briefly on the long distance behavior of 7(r) which is
equivalently the limit 1 — 1 (see (6.4)). The analysis follows very closely that of
Jimbo [4]. The 7-function has an asymptotic solution of the form:

H1)=C(1—-0)"[1+a(1-1) +ay(1-1)""" +as(1 -0

+ i i a(1—1)" |, (6.14)

=2 k=~
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where C is an arbitrary constant and ay, ay, ay, ay, vy and v (0 < Rev < 1) will
be determined in terms of two integration constants since the associated o (see
(6.8)) satisfies a second-order differential equation. Upon substitution of eq. (6.14)
into (6.18) and the result into (C.61) we get the following results:

vy = %Vz - (1 - %Rs)z’
_ 1 2 1 2” 2 1 12]
al—ﬁ[v —4(1—1Rs)|[v2 - 41 - 1)},

1
2560*(1 — v?)

[ a0 = 3R [ - - (sas)

a5 =

Therefore v and, say, @, are the two free parameters and all others are deter-
mined in terms of them. The rfunction as normalized in sect. 5 is the two-point
function

(P(O)D(r)) /{ D(0)){ P(r))

and therefore one expects 7 — 1 as r — o, This additional boundary condition can
be satisfied only if », = 0 which then implies a;, a,a; = 0. Computation of several
higher-order terms in this special case makes it plausible that v, =0 implies the
solution is trivial, i.e., 7(r) = 1. This suggests two possibilities: (a) The form of the
r-function used in eq. (6.14) is not unique and there is another disconnected
two-parameter solution which is relevant for a field-theory interpretation.
(b) Because we are in a curved manifold the r-function does not factorize at large
distances and therefore it does not have to approach one. There does seem to be a
third possibility, viz., adjusting a and b in eq. (6.8) so that r — 1 as r — . This is
not really a possibility because the @ and b in egs. (6.8) and (6.9) were determined
by the normalization condition in sect. 5 which is the one that is consistent with the
interpretation of 7 — 1 as r— w, We hope to understand this better when we
analyze the Dirac operator on Dy, since the theory then has a direct connection to
the massive Ising field theory as R — .

Note added in proof

In the analysis of the large-distance behavior of the two-point function in sect. 6
(see eqs. (6.14) and (6.15) and discussion thereafter) it was assumed that we could
have an ordered phase at finite R, ie.7—1as r - o, Since our r-function agreed
exactly with the SMJ r-function as R — w this seemed reasonable because it could
be done in the euclidean plane (SMJ 1V). But there is a problem of order of limits
here, i.e. r — o and R — «, It has been shown by Callan and Wilczek in a recent
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work [19] that theories in hyperbolic space are always in the disordered phase.
Since we are taking the limit r — = at fixed R, we will end up in the disordered
phase and therefore we cannot impose 7 — 1.

The authors wish to thank N. Ercolani, M. Jimbo, T. Miwa, J. Palmer and
D. Pickrell for helpful comments and suggestions.
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