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From Newton to Einstein 

Blake Temple and Craig A. Tracy 

1. INTRODUCTION. In 1687 Sir Issac Newton (1642-1727) published Philosophae 
Naturalis Principia Mathematica (known as the Principia by those who do not speak 
Latin), in which he explained the observed motion of the planets in the sky. In 
particular, he derived Kepler's laws of motion from the assumption that the sun 
pulls on a planet with a force that varies inversely with the square of the distance 
from the sun to the planet. The brilliance of this work lies in the fact that Newton 
had to invent the meaning of the word force, and in so doing he related the change 
of motion to the force applied through what we now refer to as Newton's Second 
Law: 

Force = Mass X Acceleration. 	 ( l . l )  

Newton then postulated that every particle of matter in the universe attracts every 
other particle with a force whose direction is that of the line joining the two, and 
whose magnitude varies directly as the product of their masses, and varies inversely 
as the square of the distance between them. Thus a planet of mass M, and the sun 
of mass M, separated by a distance r each experience an attractive force of 
magnitude F given by the formula 

where G, is the universal gravitational constant. From these strikingly simple 
assumptions, Newton was able to prove mathematically that the planets must obey 
the celebrated laws of Johannes Kepler (1571-1630); laws that Kepler had earlier 
formulated on the basis of detailed observational studies of the motions of the 
heavenly bodies, namely: 

(1) 	The planets move in elliptical orbits about the sun with the sun fixed at one 
focus of the ellipse. 

(2)  The velocity of a planet varies in such a way that the line joining the planet to 
the sun sweeps out equal areas in equal times. 

(3) 	The square of the time required by a planet for one revolution around the sun 
is proportional to the cube of its mean distance from the sun. 

Newton unified all of the planetary laws of motion which were known in his 
lifetime: laws that were written down by Kepler in the first decade of the 
seventeenth century and until Newton were understood only as empirical observa- 
tions. Thus, planetary motion was explained by the assumption that celestial bodies 
pull on each other (across millions of miles of empty space) with a force 
proportional to one over the separation distance squared. This point of view stood 
as the ultimate explanation of why the stars and planets in the sky move the way 
they do, and the fundamental starting points, (1.1) and (1.2), were elevated to the 

19921 FROM NEWTON TO EINSTEIN 	 507 



status of Laws of Nature. That is, until Albert Einstein (1879-1955) entered the 
scene in 1916 with his paper Die Grundlagen der allgemeinen Relativitatstheorie 
(The Foundation of the General Thebry of Relativity). Einstein took the point of 
view that heavenly bodies don't pull on each other across empty space, but rather 
the massive objects in the universe cause space itself to be curved, and the motions 
of the planets are explained as bodies moving along straight lines in a curved space. 
In fact, it is actually spacetime that is curved, and in Einstein's theory the 
curvature of spacetime evolves dynamically in an elaborate manner determined by 
the stars and planets in the universe. Einstein made mathematically precise sense 
of this, and used his constructions to show rigorously that with his assumptions, the 
planets would almost move in ellipses around the sun, but that there would be a 
small correction. In 1916 this correction to Newtonian theory was too small to 
observe in all the planets except Mercury (today this effect has been observed in 
other planetary orbits, but it is most pronounced in the case of Mercury (see 
[7, 81)). Einstein showed that if his theory were correct, then the perihelion of the 
orbit of the planet Mercury, the point at which the orbit was closest to the sun, 
would not be the same in every orbit as Newton's theory predicted, but would 
precess an angular distance of 43 seconds of an arc per century. This had been 
observed exactly to be the case in 1859 by Joseph Le Verrier (1811-1877)*, and 
this gave the first experimental evidence that Newton's theory was only an 
approximation to Einstein's more general theory. In fact, beyond our solar system 
the predictions of Einstein's theory diverge dramatically from Newton's predic- 
tions. Indeed, Einstein's theory implies the formation of black holes in extremely 
massive stars. These are stars in which everything sufficiently close, including light, 
is sucked into the center of the star. It is no wonder that at the moment of his 
derivation of the perihelion shift predicted by his theory, Einstein is quoted as 
saying that his excitement was so great as to give him "palpitations of the heart"! 
([61, pg. 253). 

Both Newton's and Einstein's predictions involve the study of ordinary differen- 
tial equations. The fundamental ODE is the equation that describes how the 
radius of the orbit, i.e. the distance from the sun, varies as a function of time along 
a planet's orbit. In fact, it will be simpler to study the ODE that describes how l / r  
varies as a function of angle 0 (Astronomically, it is angular changes that can be 
measured most accurately with a telescope). In this paper we will derive this ODE 
in the case of Newton's assumptions (1.1) and (1.2). We will then write down the 
corresponding ODE which Einstein gets from his theory. We will observe that this 
ODE approximates the one Newton gets, but with a small perturbation. We will 
then use the principle of conservation of energy to determine the qualitative 
structure of the orbits predicted by these ODE'S. The analysis of Einstein's ODE 
gives an elementary qualitative picture of what happens in a black hole and how 
black holes arise in the theory of gravitation. Finally, an asymptotic expansion of 

*~ctua l ly ,  the observed perihelion advance is 574 arcseconds/century of which 531 arcseconds/cen- 
tury are accounted for due to the perturbing effect of the other planets on the Mercury-Sun system. 
Le Verrier found that the largest contribution comes from Venus, 278 arcseconds, and next Jupiter at 
153 arcseconds. The Earth's effect is third with 90 arcseconds and the remaining planets contribute 
about 10 arcseconds. Thus the total contribution coming from Newtonian celestial mechanics calcula- 
tions is about 531 arcseconds per century. The remaining 43 arcseconds/century is called the 
anomalous perihelion shift and it is this that is unaccounted for by Newtonian theory. A compilation of a 
decade's worth of data (1966-1976) by a group at MIT gave the anomalous part of Mercury's perihelion 
precession to be 43.11 k 0.21 arcseconds per century (see [81). 
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Einstein's ODE will enable us to estimate the difference between the predicted 
orbits, and we will obtain Einstein's famous result that in the case of Mercury, a 
precession in the amount of 42.98 arcseconds/century is predicted to occur in the 
perihelion of the orbit of planet Mercury when Einstein's equation is taken in 
place of Newton's. To within experimental error this is equal to 43.11 k 
0.21 arcseconds/century which is the observed anomalous precession in Mercury's 
orbit [8]. 

Once we assume the ODE that comes from Einstein's theory, our treatment is 
entirely self-contained. The actual derivation of the ODE in Einstein's theory 
involves an in-depth study of differential geometry and physics which is beyond the 
scope of this paper. It is remarkable, though, that once the fundamental ODE'S 
are established, both Newton's and Einstein's predictions can be derived by 
methods taught in an undergraduate course in differential equations. 

For an in-depth discussion of the history of this subject, the reader is referred to 
the book Subtle is the Lord by Pais [6]. A brief but informative discussion can also 
be found in the first chapter of Gravitation and Cosmology by Weinberg [7] (see 
also [4]). An introductory account of the experimental tests of general relativity can 
be found in Was Einstein Right? by Will [S]. A comprehensive study of black holes 
can be found in The Mathematical Theory of Black Holes by Chandrasekhar [5]. 

2. THE FUNDAMENTAL ODE'S. We will first derive the fundamental ODE 
predicted by Newton's theory. So assume that Newton's Laws (1.1) and (1.2) hold. 
We derive an ODE for the distance r as a function of the angle 0, and the final 
form of the ODE will be obtained by making the substitution u = l / r .  This will 
give us an ODE that must be satisfied along every trajectory that corresponds to a 
solution of (1.1) and (1.2). To start, let rp and r, denote the positions of the planet 
and sun, respectively, with respect to some (inertial) coordinate system. Then 
combining (1.1) and (1.2) (and accounting for the direction of the force) we have 

The dot here and throughout denotes differentiation with respect to the time t. 
We introduce r = rp - r,, the vector that points from the sun to the planet, and 
the center of mass r, = (Mprp + MSrS)/(Mp+ M,). Adding (2.1) and (2.2) shows 
that the center of mass r, moves freely (that is, its time dependence is c,t + c,,  c, 
and c, are vector constants). Subtracting (2.2) from (2.1), expressing rp and r, in 
terms of r and r,, and using r, = 0, we obtain 

G 
r =  --

I ~ I ~ ~ '  (2.3) 

where we set 

G = G,(M, + Mp) = GoMs. 

Note that the constant G is essentially independent of the planet considered 
because for all planets Mp/MS << 1.Thus (2.3) is an equation that holds for every 
planet. Since Mp/Ms << 1, the center of mass is essentially at the sun; and so, we 
may think of the sun at the origin and (2.3) describes the motion of the planet 
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about the fixed sun. Since (2.3) is a second order (nonlinear) ODE, the vector 
valued function r(t) that satisfies (2.3) is determined by the initial conditions 

r(0) = r, and r(0) = r,. 

As a consequence of (2.3), the orbit r(t) must lie in a fixed plane containing the 
sun. To see this, let r and r be given at time t, and M = r X r denote the cross 
product of r and r. Since r x r is perpendicular to both r and r, it suffices to show 
that M is constant in t. Using the Leibniz rule for the cross product, we obtain 

M = r x r + r x r = O ,  

because r is parallel to r by (2.3), and the cross product of parallel vectors vanishes. 
Thus the entire trajectory lies in the plane perpendicular to M. Let r = (x, y) 
denote Cartesian coordinates in this plane with the sun at the origin, and let r and 
8 denote the corresponding polar coordinates. Now a given trajectory 1-01= 

(x(t), y(t)) that satisfies (2.3) determines the functions r(t) and 8(t) through the 
relations x(t) = r(t)cos 8(t) and y(t) = r(t)sin 8(t). We now find the ODE that 
this trajectory in polar coordinates satisfies. To this end, note that (2.3) reads 

and using the substitution x = r cos 8, y = r sin 8, we obtain 

i = icos 8 - res ine ,  

y = i sin 8 + re  cos 8. 

Differentiating again and using (2.4) and (2.5) we have 

Now multiplying (2.6) by cos 8, (2.7) by sin 8, and adding the result we obtain 

and multiplying (2.6) by sin 8, (2.7) by cos 8, and subtracting we obtain 

Statements (2.8) and (2.9) hold so long as r # 0. Assuming this, (2.9) tells us that 

r29 = H ,  (2.10) 

where H is a constant determined by the initial conditions. Without loss of 
generality we assume that H is positive. We can use (2.10) to solve for e in terms 
of r, substitute into (2.8), and obtain the following ODE that relates r and t: 
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We now use (2.11) to obtain an ODE that is satisfied by r as a function 8. Indeed, 
(2.10) shows that e = H/r2  # 0 when H # 0 and r + 0, so in this case 0 is a 
monotone function of time along trajectories. Let us now assume that H # 0, 
r # 0, let r = r(8) give r as a function of 8 along a trajectory, and let prime denote 
differentiation with respect to 8. In this case the chain rule gives 

But e = H/r2  implies 8 = - (2H/r3)rte = - (2H2/r5)rt ,  SO we can obtain i: = 

r"(H2/r4)  - rt2(2H2/r5).  Substituting this into (2.11) gives us an ODE for r as a 
function of 8: 

We now use one final clever trick to simplify this ODE. We make the definition 
u = l / r ,  and substitute u in favor of r in (2.12) using the identities 

r t =  -ut/u2 and r " =  -u" /u2+2ut2 /u3 .  (2.13) 

This gives the final remarkably simple linear constant coefficient ODE 

Equation (2.14) is known as Binet's equation, and it tells how u = l / r  varies as a 
function of 8 along the trajectory of a planet (assuming Newton's laws are correct). 
In (2.14) we have transformed a nonlinear equation into a linear one which we can 
solve explicitly. To summarize, (2.14) is the fundamental ODE predicted by 
Newton's theory for the orbit of the sun-planet system. 

The predictions of Einstein's theory for a sun-planet system are similar. In 
Einstein's theory a derivation analogous to the derivation above leads to the 
conclusion that trajectories also lie in a fixed plane containing the sun and 
equation (2.10) is still satisfied, but the equation that u = 4 0 )  satisfies is no longer 
(2.141, but is instead the following nonlinear ODE which is a perturbation of (2.14) 
(cf. [I], pg. 207): 

Here c is the speed of light expressed in the units of time and length that G is 
expressed in. This equation is the same as the equation (2.14) except for the term 
(3G/c2)u2, which we might expect is small because the constant c2 is in the 
denominator, and the speed of light is very large. In the case of a star in which Ms 
is large enough so that G = G,Ms is on the order of c2, this term will not be 
small; and consequently, we expect the orbits of planets to be significantly different 
from those predicted from Newton's theory. Indeed, Einstein's theory predicts the 
existence of black holes when the density of the star is sufficiently large. 

Our analysis of Einstein's ODE in the next section will show that all planets 
near enough to the star (with low enough energy) will ultimately be sucked into the 
center of the star as they follow trajectories of (2.15). This contrasts strikingly with 
the conclusions of Newton's ODE, which predicts that the corresponding planets 
would enter stable elliptical orbits which would rotate around the star forever. In 
Einstein's full theory, one can show that when the density of a star is sufficiently 
large there is a distance, called the Schwarzschild radius; and that objects of all 
energies, including light, will be drawn into the star when the distance to the star 
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falls within this radius (the Schwarzchild radius for the sun lies well inside the 
surface of the sun). Thus radiation emitted from such a star cannot be seen, and 
hence the name black hole. This general result cannot be obtained from the ODE 
(2.15) alone. In fact the xt-coordinates in terms of which (2.15) is expressed do not 
separate space and time uniformly, curvature effects become dominant, and (2.15) 
is not a good approximation to Einstein's theory for distances near the 
Schwarzschild radius. In fact, the fundamental ODE (2.15) was obtained as an 
approximation to the Schwarzschild solution, an exact solution to the Einstein field 
equations, under the condition that G/Hc is small*. Even though our analysis of 
(2.15) is not strictly valid close to the center of very massive stars, the next section 
gives a nice qualitative indication of how black holes arise in the theory of 
gravitation. 

In Section 3 we determine the qualitative properties of solutions of (2.14) and 
(2.15) using the principle of conservation of energy, and in the final section we will 
show that the extra term ( ~ G / c ~ ) u ~  in Einstein's equation (2.15) gives rise to the 
observed anomalous precession in the perihelion of the orbit of the planet 
Mercury. 

3. STRUCTURE OF SOLUTIONS. First we discuss the solutions of the ODE 
(2.14). We rewrite (2.14) as 

This ODE is linear and has the general solution 

where D and K are arbitrary real constants. It is easily verified that (3.2) defines 
an ellipse, a hyperbola, or a parabola depending upon whether ID1 < G/H2, 
ID I > G/H 2, or ID I = G/H 2, respectively. We now verify the qualitative proper- 
ties of the solutions of (3.1) using the principle of conservation of energy. We could 
get this information directly from (3.2), but we wish to use a method which applies 
also to the study of Einstein's ODE which is nonlinear. 

Writing F(u) = -u + G/H2,  equation (3.1) becomes 

For equations of this type, the energy E(u, u') = u1'/2 + P(u) is constant along 
solutions u = u(8). Here ul2/2 is called the kinetic energy associated with (3.3); 
and P(u), the potential energy, satisfies P1(u) = -F(u). To check that E = 

E(u(B), ~ ' ( 8 ) )  is constant along solutions, we simply differentiate with respect to 8: 

E1(e)  = U'U" + P1(u)u '  = u'u" - F(u )u l  = 0. 

Thus, if our initial conditions for (3.1) are 

u(0) = u, and ul(0) = ub 

for some constants u, and ub, then E(u(81, ~ ' ( 8 ) )  = E(uo, ub) = E for all 8. 

*AS a historical note, this exact solution was derived by Karl Schwarzschild (1873-1916) in 
December 1915 while serving in the German army on the eastern front. This work was communicated 
to the Berlin Academy by Einstein on January 13, 1916, shortly before Schwarzschild's untimely death 
[S, p. 1361. 
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The positivity of the kinetic energy implies, 

E 2 P ( u ( 0 ) )  for all 0, 

and so the solution cannot take on values of u where P(u)  > E. Thus the energy 
controls "ahead of time" the possible values of u that a solution u(0) of (3.1) can 
assume. In technical terms, we say that (3.4) is an apriori estimate for (3.1). A 
graph of P will thus indicate to us the types of solutions that are possible for a 
given initial value of the energy E .  Since P is any antiderivative of F with respect 
to u, we can take P to be 

P ,  a quadratic function, is sketched in Figure 1. 
P 


Figure 1 

We see that P takes a minimum value of -G2/2H4 at u = G/H', so 
E, = -G2/2H4 is the smallest possible value that the energy E of an orbit can 
have because E 2 P all along the orbit. For trajectories having E = E,, u = l / r  
= G / H 2  is constant, so the orbit must be a circle of radius r = H2/G.  For 
trajectories that have energy E = El,  where -G2 /2H4  < El < 0 (see Figure I), 
E 2 P implies that the possible values of u taken on in the trajectory lie between 
the two values u1 and u, which satisfy P(u l )  = P(u,) = El. These trajectories 
correspond to the elliptical orbits in the plane that move between r = l / u l  and 
r = l /u, ,  the major axis of this ellipse occurring at the value 0 = 0, which 
satisfies 4 0 , )  = u,, and the minor axis occurring at 0 = 0, satisfying 40 , )  = u,. 

The trajectories with energies E = E,, 0 < E, < a,are restricted to taking on 
values of u between 0 and u, in Figure 1(recall that u = l / r  and hence must be 
nonnegative) with P(u,) = E,. Such trajectories correspond to hyperbolic orbits 
that come closest to the sun at r = l/u,, and then go off to infinity as u tends to 
zero and r = l / u  tends to infinity. Similarly, the E = 0 orbit is the lowest energy 
orbit for which r tends to infinity, and the nearest this trajectory comes to the sun 
is r = H2/G.  This trajectory corresponds to a parabolic orbit. Note that in the 
arguments given above for obtaining qualitative structure of orbits at various 
energies, we used the important observation that the angular velocity u' can be 
zero only at values of u where P(u)  = E.  This means that u, and hence r,  is a 
strictly increasing or decreasing function of 0 when u is in one of the intervals 
determined by the values of u where P(u)  = E ;  and hence solutions can "turn 
around" only at these special values. 

Note that none of the solutions ever crashes into the sun. Thus there is one 
solution missing from the above analysis; namely, the trajectory corresponding to 
an object falling straight into the sun. For such a solution, 0 = constant, and thus 
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we lost this one solution when we made the assumption H = r28 # 0. Note also 
that the above energy analysis told us that a trajectory in Newton's theory behaves 
like an ellipse, hyperbola, or parabola, but it did not tell us the exact shape of an 
orbit. For Newton's equation we can find a simple formula (3.2) for the trajecto- 
ries; and we can verify directly from the formula that the orbits truly describe conic 
sections in the xy-plane. In the following analysis of Einstein's equation, we do not 
have the luxury of an elementary formula for the solutions, and we will use the 
energy method to understand the behavior of the orbits. 

We now discuss Einstein's ODE (2.15) which we write as 

This is a nonlinear equation, and the energy E associated with (3.6) is given by 

E ( u ,  u') = +ut2+ P ( u ) ,  

where P is a cubic function of u given by 

One can verify that the critical points in the graph of P are u+ and u- given by 

where A = G/H2, B = 3G/c2, and e = AB are positive constants. Note that for 
E << 1, the case for the sun, a Taylor expansion of d- shows that it is 
approximately 1 - 2.5 = 1 - 2AB, and substituting this into the formula for u- 
gives the value u -= A, the critical point in Newton's potential. However, u, does 
not correspond to a critical point in Newton's theory. A graph of P is sketched in 
Figure 2. 

Figure 2 

In this figure, E - =  P(u-), E + =  P(u+), and Ei ( i  = 1,2) are sample values of 
the energy lying in the intervals determined by E -  and E,. For fixed E, the states 
ui are the va1u.e~ of u where P(u) = E. The states u,, u2 and u, are graphed for 
energy level E = El  in Figure 2. The qualitative structure of an orbit depends on 
which of these intervals the energy of the orbit lies. If E > E,, then E 2 P 
implies that u' is never zero. Thus, if u' < 0, then u tends to zero, r tends to 
infinity as 0 increases, and this corresponds to a trajectory that escapes the sun's 
gravitational pull in Newtonian theory. Similarly, if u' > 0, then u(0) will continue 
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out to infinity as 8 increases; and hence, r tends to zero and the planet crashes 
into the sun. Thus, unlike Newton's equation, Einstein's equation predicts that if 
an object moves toward the sun with enough energy, it will necessarily crash into 
the sun. 

Consider now the orbits in the case with energy E satisfying E - <  E < E +  say, 
E = El. Then E 2 P implies that the values of u taken on by the trajectory must 
either lie within the interval [u,, u,], or else within the interval [u,, m], as the 
dotted lines at energy level E l  indicates in Figure 2. The case u(8) in [u,, u,] 
corresponds to the orbits of Newton's theory. When u, > 0 and u(8) ranges 
between u, and u, (exemplified by E = El  in Figure 2), we obtain a cyclic 
trajectory that rotates between r, = l/u, and r, = l/u,, and these correspond to 
the elliptical orbits of Newton's theory. When u, < 0 (exemplified by E = E, in 
Figure 2), then u(8) in [u,, u,] implies that u(8) actually ranges between 0 and u, 
because 4 8 )  > 0. Such solutions can move out to the maximum value u where 
P(u) = E, (a distance of closest approach), and then they turn around and move 
monotonically to u = 0 (equivalently r = m). These solutions correspond to the 
hyperbolic orbits of Newton's theory. Note that nothing we have said implies that 
the minimum value r, for one of the cyclic orbits will be taken on at the same 
value of 8 in every cycle. Indeed, it is the precession of this angle that we will 
calculate in the next section for the orbit of Mercury. 

For the case E-< E < E +  (again, say, E = El), u(8) > u,, u' < 0, u(8) de- 
creases to u = u, where u' = 0, and then "turns around" and u(8) increases to 
infinity. If u' > 0 then u(8) increases monotonically to infinity. In either case this 
corresponds to an orbit crashing into the sun. The same is true for trajectories for 
which E < E - (see Figure 2). We can conclude that objects close enough to the 
sun or with low enough energy will necessarily crash into the origin. There are no 
corresponding trajectories in Newton's theory. At this point it is important to note, 
however, that our analysis above assumes throughout that the sun is a point mass 
located at the origin. In fact, the radius of the sun actually occurs at u < u+, so the 
solutions with u > u+ that crash into the origin are not really observed in our 
solar system because u > u+ lies inside the surface of the sun*. In contrast, for 
very massive stars the radius of the star can lie at a value of u well outside of u+,  
and one can show that there is in fact a critical value of r, the Schwarzschild 
radius, inside of which everything, including light, falls into the star, in analogy 
with the orbits in the last case above. Although the above analysis is a nice 
indication of the behavior of orbits near a black hole, a complete analysis requires 
a deeper understanding of general relativity and cannot be obtained from the 
ODE (3.6) alone (see [S]). As a final comment, note that the solution correspond- 
ing to E = E -  is a stable circular orbit at radius r = l/u-; and solutions sitting at 
u+ with energy E +  are unstable circular orbits, and can just as well fall into the 
sun as drift away to infinity. Also there is an omitted solution corresponding to an 
object falling straight into the sun with = 0, and as in Newton's theory, this 
solution is not accounted for in (3.6). 

*More precisely, 

1 2  B  6G ,. = - =  s 2 B = -
+ u+  1 + 4 m  c 

has the dimension of length (cf. 84) and corresponds to a radius much smaller than the radius of the 
sun. 
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4. THE PRECESSION IN THE PERIHELION OF THE ORBIT OF MERCURY. 
In this section we study the precession that occurs in the cyclical trajectories of 
Einstein's equation (3.6). Now the solutions of (3.6) should approximate the 
solutions of Newton's equation (3.1) when the term (3G/c2)u2 is "small". We then 
need a way to measure how small this term really is. It is tempting to take G/c2 as 
a measure of how small the term is, but a closer look shows that this makes no 
sense. Indeed, the absolute magnitude of G/c2 depends on the choice of units in 
terms of which we decide to measure mass, length and time. To make sense of the 
size of term (3G/c2)u2, we must construct a constant which has a value indepen- 
dent of units we choose. Then we can write (3G/c2)u2 in terms of this constant. 
Such a constant is called a dimensionless parameter. To obtain our dimensionless 
parameter, we must first determine the dimensions of the constants G, H ,  and c 
which appear in our equation. To this end, let L denote the dimension of length, T 
the dimension of time, and M the dimension of mass. Now let square brackets 
around a quantity denote the dimensions of that quantity. For example, 

[c ]  = L / T  

since c is a velocity. Letting X and Y denote two quantities, [ . I  has the property 
that 

[ X n Y m ]= [ x l n [ y I m  

for any two integers m and n. Thus, for example, 

[c2]  = L ~ / T ~ .  

We now use the following principle to obtain the dimensions of the quantities G 
and H :  Every term in the same physical equation must have the same dimensions. 
We call such an equation dimensionally correct. Indeed, this principle is really 
expressing the fact that if we have a function which satisfies a given physical 
equation expressed in one set of units, then the equation expressed in a new set of 
units should have as its solution the function obtained from the original one by 
rescaling it according to the dimensions of the solution variable. We now obtain 
the dimensions of G and H. 

Using that an acceleration has units L/T2,  from (2.3) we obtain 

L /T2  = [ i ]  = [G]/L',= ( [ ~ ] / [ r l ~ ) [ r ]  

so solving for [GI yields 

[GI  = L3/T2. (4.1) 

Equation (2.10) implies 

[ H I  = L2/T (4.2) 

since the unit of e, a frequency, is 1/T. Using (4.1) and (4.2) we can verify that 
G/Hc is the simplest dimensionless parameter constructible from G, H,  and c. 
Equation (2.10) implies 

[ H I  = L2/T 

since the unit of e, a frequency, is 1/T. Using (4.1) and (4.2) we can verify that 
G/Hc is the simplest dimensionless parameter constructible from G, H ,  and c. 

As an aside, statement (4.1) asserts that within Newtonian theory there is a 
universal constant G, independent of the planet considered, which has the dimen- 
sion L3/T2. This might well lead you to guess there is a quantity of dimension 
L3/T2 associated with each planetary orbit that is independent of the planet 
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chosen. Kepler's third law verifies that this intuition is correct, and that the 
simplest guess for such a quantity (mean distance to the sun cubed divided by the 
period of the orbit squared) is correct! In short, by dimensional analysis, one could 
guess Kepler's third law without making any headway whatsoever in rigorously 
solving Newton's ODE. When one is presented with a complicated equation, this 
type of intuition can be crucial. It can also be incorrect! 

We are now ready to study the perihelic motion which occurs in the cyclical 
trajectories in Einstein's theory when G/Hc K 1. But there is a problem. Since 
G/Hc is dimensionless, it will be the same when evaluated under any choice of 
units, and thus it is tempting to say that G/Hc is a true measure of how small this 
last term is. However, the rate at which a solution of Einstein's ODE (2.14) 
diverges from a solution of Newton's equation (2.15) also depends on the size of 
the initial conditions, and G/Hc is not a measure of the perturbation which is 
independent of the starting conditions. To obtain such a dimensionless parameter 
that accounts for the initial conditions as well, we "nondimensionalize" the ODE'S 
(2.14) and (2.15). To begin, let us fix on the underlying elliptical solution u, of 
(2.14) which corresponds to the orbit of Mercury in the Newtonean theory. The 
solution of (2.14) is given in (3.2) as 

u, = A + D cos(8 + K ) ,  (4.3) 

where A = G / H ~ ,  and we assume ID I <A, so that (4.3) describes an ellipse in 
re-coordinates. Since rotating the coordinate axes by an angle -K would elimi- 
nate the constant K in this formula, we can assume with no loss of generality that 
K = 0, in which case the initial conditions are 

u(0) = A + D ,  ~ ' ( 0 )= 0. (4.4) 

(To specify the orbit of Mercury, we must obtain the values for D and H from 
astronomical tables, but we will see that only the value of H affects the perihelion 
shift.) Since ID I < A ,  we can take A as a dimensional measure of the size of the 
initial conditions. Now back to our problem: we wish to find a dimensionless 
measure of the perturbation of solutions of the Einstein ODE (2.15) from the 
solution of (2.14) that accounts for the size of the initial condition. The idea is to 
obtain the equations for the dimensionless variable 

U = u/A. (4.5) 

First, for the Newton equation, substituting ii into (2.14) gives 

u; = -u, + 1, (4.6) 
with initial conditions 

Similarly, for the Einstein ODE, substituting ti into (2.15) and assuming the same 
initial conditions, gives 

E"= -u  + 1 +&ii2 ,  (4.8) 

as the Einstein prediction for the same planetary orbit, where E = 3 G 2 / ~ 2 ~ 2 .  
Since [ii] = [E]= 1, the parameter E is a dimensionless parameter that reasonably 
gives an absolute measure of the perturbation of the Einstein solution ii from the 
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Newtonian solution E,. Conclude that by writing the non-dimensional equations 
(4.6) and (4.8) for the dimensionless variables E, and E, we have located a 
dimensionless perturbation parameter s that incorporates the size of the initial 
sonditions. Thus, let 

denote the fixed solution of Newton's ODE (4.6) corresponding to the Mercury 
solution (4.31, d = D / A .  When s -=K 1, the solution to Einstein's ODE (4.8) with 
the same initial data will remain close to this trajectory at least over changes of 
angle that are not too great. Thus we write the corresponding solution E to 
Einstein's ODE as E = E, + s v  so that s v  is the perturbation from the Newtonian 
trajectory. We wish to estimate this perturbation. Thus we plug E, + s v  into 
Einstein's ODE (4.8) and collect like powers of s .  If s is small, and the trajectory 
ranges over angles that are not too great, we can ignore all terms with powers of s 
smaller than or equal to s2.The term corresponding to the first power of s will 
provide an equation whose solution is a good estimate for the perturbation of the 
solution u from the underlying orbit u, of Newton's theory. Plugging in we obtain: 

E';, + E, - 1 + s[vr' + u - u;] + (higher order terms in s )  = 0. (4.11) 

Equation (4.11) is called an asymptotic expansion of (4.8). Now E';, + E, - 1 = 0 
because this is Newton's equation, and E, was assumed at the outset to be some 
given solution of this equation. Neglecting the higher order terms in s ,  we obtain 
an ODE that approximately describes the function v when s is small: 

Thus for E, known, the ODE (4.12) is a linear, constant coefficient, inhomoge- 
neous equation in v, and we can solve it directly. We conclude that, given a 
Newtonian trajectory E,, we can approximate the Einsteinian perturbation s v  
from this orbit by solving (4.12). Plugging (4.10) into (4.12) yields the ODE 

where we have applied the trigonometric identity cos2 8 = (1 + cos28)/2. Now 
(4.13) is an inhomogeneous linear ODE with constant coefficients, and v, = 

d' cos(8 + K') solves the underlying homogeneous equation for arbitrary constants 
d' and K'. To obtain a particular solution of the inhomogeneous problem, we can 
apply superposition and write v = v, + v 2  + v, where vi solve the separate 
equations: 

d 2  
v ; ' + v , = l + - ,  

2 

One can easily verify that the three solutions are 

d d 2  
v , = l + - ,  v 2 = d 8 s i n 8 ,  v 3 = - - cos 28. 

2 6 

Thus the general solution of (4.8) is v = v, + v ,  + v, + v,. Now in order that E, 
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and E satisfy the same initial conditions (4.7) and (4.91, v(8) must satisfy 

and thus it is easy to calculate that 

K t  = 0, 
and 

d' = -1 - d2/3. 

Our approximation for E can now be written down: 

- d d 
u = R, + sv = 1 + d cos 8 + sdtcos(8)  + E + 8- + sd8  sin 8 - E- cos 28.

2 6 

Now (4.14) is a messy formula, but we are only interested in the perihelion shift 
(the rotation in the angle at which the maximum value of either u or R is taken on 
in successive orbits) for the cyclical trajectory of u. But it is only the nonperiodic 
terms in (4.14) that can contribute to such a shift, and the only nonperiodic term in 
(4.14) is the term ~ d 8  sin(8). To see the effect of this term on successive perihelia, 
rewrite (4.9) as, 

R = 1 + d(cos 8 + ~8 sin 8)  + periodic terms of order E .  (4.15) 

The periodic terms can change the angle at which the perihelia are taken on, but 
being periodic, they cannot significantly affect the shift in the position of the 
perihelia that occur in successive revolutions. To see this more clearly, we can 
write 

cos 8 + ~8 sin 8 - cos 8 cos(s8) + sin 8 sin(s8) = cos(8 - ~ 8 )  (4.16) 

because, since we are neglecting higher order terms in E, Taylor's theorem implies 
that cos(e8) = 1 and sin(e8) = so. Using this in (4.15) we obtain 

-
u = 1 + d cos(8 - 68) + periodic terms of order E .  (4.17) 

We now claim that the shift in the perihelion during one cycle is affected by the 
periodic terms of order E only in an amount that is second order in E; and so 
neglecting higher order terms, the shift observed in (4.17) after one revolution will 
be the same as the shift observed in the function E = 1 + d cos(8 ~ 8 )- after one 
revolution. We postpone the proof of this claim until the end of this section, where 
we show that the claim is a special case of a general principle. The function 
1 + d cos(8 - so) takes on successive maxima when 8 = 2n7r/(l - E) -
2 n d 1  + E). Therefore the shift in the angle at which the perihelia occur after one 
revolution (ignoring terms quadratic in E) is estimated as 

since E = ~ G ' / H ~ c ' .  TO apply this formula to the Mercury-Sun system, we must 
have numerical values for G, c, and H,  the latter applying to Mercury's orbit. 
From [3] we obtain current experimental values for G and c: 

G = 1.32712497 X cm3/sec2, 

c = 2.99792458 x 10'' cm/sec. 

The quantity H is somewhat more difficult to find because it is difficult to measure 
directly by astronomical observations. In constrast, the lengths of the major and 
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minor axes of the almost elliptical orbit of Mercury are readily observable since 
these are obtained from measurements of the closest and farthest distances that 
the planet comes to the sun. We claim that 

where L = a(l  - el, a is the length of the semi-major axis (the average of the 
major and minor axes of the ellipse) and e is the eccentricity for the elliptical orbit 
of Mercury (cf. [7]). We leave the verification of this claim until the end. Assuming 
(4.19), (4.18) becomes 

From [2] we find that a = 5.7909 X 1012 cm and e = 0.205628, which implies that 
L = 5.5460 X 1012 cm. Thus equation (4.20) gives 

A8 = 5.0187 X l op7radians per revolution 

= 2.8755 x lo-' degrees per revolution 

= 0.103518 seconds of arc per revolution. 

Since there are 415.2 revolutions in a century, we obtain that the precession in the 
perihelion of the orbit of the planet Mercury in one century is predicted by 
Einstein's theory to be approximately 415.2A8, which is approximately 42.98 
seconds of an arc per century. 

All that remains is to verify (4.19), and to prove our claim that the periodic 
terms of order E contribute order e2 in the perihelion shift. For (4.19), note that in 
Newtonian theory the orbit of Mercury is an ellipse with major and minor axes 
given by 

r,= (1  _f e)a .  

At u = u ,= l / r  +, u' = 0 since u, are critical points of u = ~ ( 8 ) .Thus evaluat- 
ing the energy integral at these values gives two equations: 

Subtracting these two equations and canceling a common factor of (u+- u-) we 
find 

In terms of a and e, 
2 

so that 

For Mercury, G/c2L = 2.7 X lo-', so we may neglect this term in (4.21) to obtain 
equation (4.20). 
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Finally, our claim that the periodic terms of order E in (4.17) contribute errors 
in the perihelion shift of order g 2  follows directly from the following: 

Theorem. Let F and f be smooth, real valued, 27-periodic functions of 8 and set 
~ ( e )= F ( e  - Ee) + ~ f ( e ) .  

Assume that 161 -=c 1, that 8, satisfies G(8,) = 0 and that F'(8, - ~ 8 , )= a f 0. 
Then 

G(8, + 2 7  + A8) = 0, 
where 

A8 = ~ T E+ terms of order c2. 

Our claim follows when we let 8, = 0, F(8) = cos 8, and f(8) = the periodic 
terms of order E. 

Proof: Let 8 = 8, + 2~ + A8 for 1A81 -=K 1, and set f'(8,) = b, then 

F ( e  - &e)= F(eO+ 2~ + A8 - ~ ( 8 ,+ 2~ + he)) .  

Using Taylor's theorem to expand F(8 - ~ 8 )  - + 2 7 ,  we about the point 8, ~ 8 ,  
obtain 

F(8  - ~ 8 )= F(8, - ~ 8 ,+ 2 7 )  + a(A8 - ~ T E )+ Errorl 

where' I Error, I Iconst(lA8l + I E  1 12.Similarly, 
~ f ( e )= &f(e0+ 2 7 )  + ~ b a e+ . . . 

= ~ f ( 8 ,+ 2 7 )  + Error2 

where IError21 I const(lA8l + 1 ~ 1 ) ~ .Thus, 
G(e) = F ( e  - &e)+ &f(e)  

= F(8, - ~ 8 ,+ 2 7 )  + ~ f ( 8 ,+ 2 7 )  + a(A8 - ~ T E )+ Error, 

= a(A8 - 2 7 ~ )+ Error, 

where I Error, 1 I const( 1 A8 l + I E  1 )2 and we have used the fact that G is 2~-per i -  
odic and G(8,) = 0. Therefore, G(8) will be zero when 

A8 = 2 7 s  + Error,. 

But this implies 1 A8 1 I const E, so I Error, 1 I const g2, and so we conclude that 

A8 = 2 7 s  + terms of order E ~ ,  
which verifies the claim. 
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