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ABSTRACT
We compute the short distance asymptotics of a tau-function appearing in the work of
Sato, Miwa, and Jimbo on holonomic quantum fields. We show that these asymptotics
are determined by the Widom operator. This same operator is fundamental in the
asymplotics of Toeplitz determinants with singular generating functions.

1. Introduction and Summary of Results

In their study of holonomic quantum fields, Sato, Miwa, and Jimbo! proved the
following result about r-functions:
Theorem 1. Define

o0 A2k
7(t;0,)) = exp —ZT(.’%(!;O) (1.1)

k=1
where

o0 oo 2k ('EX])(—-Tl't X +.’L'_-l) T1Ly e LoL g
(’,gk(l;()):/ (la:1~~-/ (l:l.';;kH (%) 2 )< 178 "‘-1) ,
0 :
j=1

0 &+ Tig TyXy - Top
(1.2)
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teRT, -1 < 0 <1, and 2944 = 21; then

7(t;0,)) = exp [—u-i—/t [s ((%—f-)2 — sinh? 1/)) - %Z-taﬂhg 11)] ds} (1.3)

where ¥ = 9(1;0, )) satisfies the differential equation

A% 1dy 1

g2
o T sinh 27 + el tanh (1 — tanh® ) (1.4)

with boundary condition

P(;0,2) ~2AKg(t) as t — 0 (1.8)

and Kp(t) is the modified Bessel function.

We remark that the notation (1.1) has been changed slightly from Ref. 1, that
the right-hand side of (1.1) can be rewritten as det(I — A%T}p) (see, e.g., Appendix
B), and that (1.4) can be transformed to Painlevé V (PV) by the change of variables
y(z) = tanh?® (1), z = t%;* and in fact, this PV is reducible to PIil. We also note
that the 0 = 0 case is closely related to the 2-point scaling functions of the 2D Ising
model?? and the Federbush model 2-point function®® can be expressed in terms of
(L 20, isin wB/B) where fis the coupling constant (in Ruijsenaars,” his “A” is our
o).

While the large { — oo behavior of 7 follows easily from (1.1), the short distance
behavior ¢ — 0% is more difficult to determine. In physical terms, the leading
short distance behavior is the conformal (or massless) limit. In 1982, Jimbo® in
Lis analysis of the connection problem for Painlevé functions, proved the following
result:

Theorem 2. Let 7(¢;0, A) be defined by the series (1.1). Assume that 212N —cos 0
is not a real number > 1, and let ¢ be defined by

miX? :sin—g((r+0)sin %(0‘——0), (1.6)
0 < %o < 1, then the shorl distance behavior { — 01 of 7({;8,A) is given by
(150, A) ~ (0, A7), (1.7)

(In Ref. 6, Ay =2wd, g = 12/4).

Jimbo actually proved a stronger result than (1.7) as he provided a method which,
in principle, gives any number of correction terms to (1.7). However, he did not
determine the constant (0, A).

" y 1 —_
% The parameters in PV are ¢ = %92, f=0,v=73, and 5 =0.
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In the case of the Federbush model, where ¢ = 0, Ruijsenaars® also proved
(1.7), but did not provide the correction terms that are in Jimbo or the constant
19(6, A). In unpublished notes dated February 1984, Ruijsenaars derived an infinite
series expression (the n'* order term being some (2n — 1)-dimensional integral) for
10(f, A) but did not evaluate the series.

More recently, the expression (1.7) was proved in the case § = 0 and the constant
was determined.” The purpose of this paper is to generalize the results given in Ref. 7
for 8 # 0. The next theorem summarizes our results.

Theorem 3. Let 7(t;0,)) be defined by the series (1.1) and define
20 = g, 28 =10. (1.8)

Then the constant

G+ e+ G+ a =BGl ~a+B)G(1 ~a = f)

0,)) =2~ : 1.9
(0, 2) G(L+ 20)G(1 = 24) (1.9)
where G is the Barnes G-function® defined by’
> \ ;
s — (90) 2 o/ 2=(14r)e 72 5 —ata? )2k
G(s+1) = (2m)/ e LH_I (1 ¥ k) e . (1.10)

One of the interesting features of the constant term 74 (8, A) is that it is closely re-
lated to the constant term found in the asymptotic formula for a particular Toeplitz
determinant. Consider the function ¢(i) defined by

togg [P, HO<t<m
t) = t =) . 1.11
wll) = (cot 5) {e"ﬁ”, ifr<t<on (1-11)
and then define
Do) = det(gi_;), 0<i,j < N, (1.12)

where @ has Tourier coefficients ;. The asymptotic behavior of these determi-
nants with this type of singular generating function was first studied by Fisher and
Hartwig® in 1968. They conjectured that

Do = lim Dy [p)N=2"=F%) (1.13)

existed and later it was shown in a series of papers!®~1® that

L,(uu_ﬂu)G(l +a+ Gl +a-0G(l—-a+ PGl — o~ ﬂ)

Dy =2 Gl + 20)G(1 — 2a)

(1.14)

b he G-function satisfies the functional equation G(b —+ 1) = l‘(.‘i)G(S) and has the special
values G(1) = 1, G(3) = exp (3¢ (=1) — Llog 7 + 75log2).
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Thus, we have
70(8,}) = 2= =87 Dy = 9= Ue*=F%) Jim D[N -e?=5%), (1.15)
—00

Glimpses of the connection between the asymptotics of T-functions, Toeplitz deter-
minants with singular generating functions, and the Barnes G-function, can also be
seen in the work of Lenard!® and Jimbo, et. al.!” in their analysis of impenetrable
bosons; in Wu'® and Wu, et. al.2 on Ising correlations; in Widom,!? Dyson?® and
Jimbo, et. al.!7 in random matrices (see also Chap. 12 of Ref. 21); and in McCoy,
Perk and Shrock?? in work on a critical field transverse Ising model. For a more
detailed account of this and the current status of the Fisher-Hartwig conjecture see
Ref. 23. It is also interesting to observe that Sarnak ! Voros*® and Fay*® have
found that the Barnes G-function appears in determinants of Laplacians on com-
pact Riemann surfaces. These determinants are of interest to string theorists (sce,
e.g., Ref. 27).

One of the earliest papers dealing with the Fisher-Hartwig conjecture is due
to Widom.!! In this paper Widom showed that the inversion of Toeplilz matrices
can be reduced to inverting a pair of infinite matrix equations. These infinite
matrices were then approximated by certain integral operators N, p defined on
Lag = La(0,00, (2 + 1)~*dz). The operator K, 5 is given by the kernel

[a] dz
Ky p(z,y) = cq _ 1.16
Caplzy) =c ,ﬂ[) (z4 2+ DBz 4 y+1)1+28 (1.16)
where
Cap = 7701+ 28)T(1 — 28) sin w(a + B)sin w(ox — (3). (1.17)

Perhaps the most significant aspect of the present paper is the fact that the short
distance asymptotics (1.7) of the r-function are also determined by the Widom
operator. This indicates that the connections between these various asymptotic
formulas take place on a very fundamental level.

The use of the Widom operator in computing (1.7) differs from the method
found in Ref. 7 for § = 0. Because of the difference in approach, the constant
19(0, A} has a different form in Ref. 7 than given in the present paper. In Appendix
C, we give a short proof of the equality of the two expressions using properties of
the Barnes G-function. Also in Appendix A, the inversion of I — K, g is described
using a factorization techunique. Finally, we point out in proving Theoremn 3, we
give an independent proof of the exponent %(0’-’ ~0%) appearing in Theorem 2.

2. Preliminaries and Exponent Evaluation

We define

gk

)‘Qk
E(t;G,A): Tegk(t;ﬁ) (21)

k

[t

1
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where e,;(t;0) are given by (1.2). We will prove that

ear(;0) = e_y ax log(1/t) + eg ax + 0(1), as t — 07, (2.2)
E(t;0,)) = E_ylog(1/t) + Eg + o(1), as t— 0%, (2.3)
where
=] A2k 0 )‘L’k
E__ - - —— vy = 2 . .
1 ;8 1,2k k and EQ kz_leo'bk k (24)

"The expressions (2.4) will follow from (2.2) once we show that the o(1) terms in
(2.2) remain o(1) when summed in (2.1). For the moment we take (2.4) as the
definitions of E_, and Ey, and later in §7 we will prove that the error terms do

indeed remain o(1). A proof that the series (2.1) converges for |A| < cos7f/7 and
for all { > 0 is given in Appendix B.

"To begin, we introduce the Mellin transform of e, (t;0):

o0
(}gk(z;ﬁ):/ t* Loy (t; 0) dt
0

<) S 2k 2k
:2ZF(Z)/ (1!1/ dxgy H(.’I‘] +Ij+1)_1(2(1'j —I--l/.’l,‘j))‘-‘7
0 0 im

j=1
) 0
T1Ly o Tok—1
X — e ——
Lolig Ly
We make a change of variables z; = pé§j, 621 = 1 =8, — -+ ~ bgk—1, 8O that (the

Jacobian is p**—1)

2k

1 1-6; 1=, - =ba2k -2 )
(fgk(z;()) = 221‘(;’)/ (161 / (162 . / dégk_l H(éj + 6j+1)_
0 4] 0

j=1
816a - bop ; 2
() [ eeae
where Aq(8) = 1/6; + -+ + 1/ég;. Performing the p integration results in

1 1=6, [U SO S
barlz0) = 272 [ oy [ b | dégi_
0 0 0

2k ¢ [
_ 8163 - bug - 2.5)
. =1 (0103 -1\ AL (52 (
x g(aJ +6i41) <“—”‘“"’""5,,54.,.52k ) 21(6)
= 277 (2 /2)090(2, 0)
where a5 = 1 — 6y — -« — bag_1, bak41 = 61, and Vax(z,0) is defined by the last

equality.  To get some preliminary feel for these functions, we evaluate é;(z;0)
explicitly:

ea(z;0) = 227103 (2/2)0(2/2+ 0 + V)T(2/2 = 0 + 1)/T(z +2).
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In general we will show that

eun(:0) = S5 4 S2L2E 4 o(1)

as z — 0. The Mellin inversion formula implies that é_s2r = e_1,9¢ and é_) 9 =
e0,2k (see §7).
Now consider that

. [+ 2k—1 £1Z3- - Tap1 )
Jzk(o):/ dml---/ drgpe %1773k H (25 +2j01)7" <~..__—_-———“ - )
0

TaXa- Xy
j=1 2:Lq 2k

= ¥21(0,8)

(2.6)
where the second equality results from the change of variables x; = pé; as ahove
followed by an integration over p. To evaluate Jak(0), first recall the Mellin convo-
lution theorem

1 1/ 2400
/ fz POG(L - ) de

" om 1/2—ic0

where F'({) = fo z~¢ f(z) dz and similarly for G(¢). Choosing f(z) = z~%/(z +¥)
and g(z) =e"%, it follows from the convolution theorem that

1 1 4io0 T k T £
J2k(0) 271'1/,-100 [sinr((-{-f))] [Sillﬂ(] ¢

(2.1

ol 2k-1/ 1

== 1€
2" . TcoshnE)F (cosnnE ~i)F %

Referring back to (2.4) and (2.6) we see that
o0 Ak N
E.1=2) “=Ju()

k=t (2.8)

1= w22
B —;r_/_oo log (1 " cosh 7€ cosh (€ — zO)) dé.

To evaluate this integral, first observe that

ar 0 1
_ =27 e
ai L /_oo cosh 7€ cosh w(€ — i6) — 72 )2 d€

Under the hypothesis that (cos 76 — 272X%)? < 1, an elementary calculation gives
(and using the parametrization (1.6))

OE_1/d) = 4r)e/sinwe and QE_,/fc =0
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since 9A/do = sinwo/4n). Since ¢ = # at A = 0, an integration gives

1
E_ = —2-(02 - 0%, (2.9)
which yields the exponent given in Theorem 2,

3. I’y and the Widom operator K, 5

To determine the eqop of (2.4) we must compute the residue of ézi(z;6). This
will follow if we can compute

1 ! 1-4, Tby— —bop—a 2k 1
1’)’~,k((),0) —_ —-:2/ d51/ (162 .. / déi!k—l H(‘SJ + 6j+1)_
1] 0 0

j=1
5153...5“_1)"

X logAQk(é) ( G984 -+ bay

To begin, consider

00 oo -1 L3 Tag—1 f
./'“.(0) = / d.’l’?l e / (l.’lfgkﬁ’—ml_x:‘)k H (-'L'] + xj-l—l)_l ('—1_—3"-——:——)
0 1

Laly - Lok
0 j=

((1171 oo+ thk)AEk(‘L')>
x log ’

x1 -+ Tak

(3.2)
make the by now standard change of variable z; = pé; in Jor(8), perform the p
integration, to find

J2(0) = 7024(0,0) — 204, (0, 0) (3.3)

where v s Buler’s constant. Write
1 (0) = I (0) + T4 (0) (3.4)

where

e

: k
00 o
'I'E:,L)(()) = / dxy - / dzqpe=1 T
Ju 0 j

x log Aai(x)

-1
(2 + 2j41)7 (
1

and

k-1 [
o o0 P R 1 [ X1%3 - Tk
2 . par e F1T T2k ; X ———
j,‘)k’(()) :/ dr, / dzaye l l (zj +2j41) Tola - Tak
- ] 0

ji=1
log J:1+---+l‘2k)
x log —-——'———'x1+12k .

(3.6)
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We now apply the identity
10g(f)=/ ad et _ e7E%) (3.7)
Y o ¢

to the logarithms appearing in the integrands of Jé';c)(ﬂ) to obtain

gy — 1 () 713) C o a e .
Jor (6) —elir(r)l+ (Ju. (&) — Joi (e)), i=12, (3.8)
where
o] df o 00 2k-1
J:I,‘(kl)(s) = / -——-e_E/ dzy / dzope™ "1 H (:L‘j + xj_H)'l
£ 5 0 [} j=1
T 'Z' PEEEE i 6
x (———————-——1 2 ”'l> e, (3.9)
Xolg- - Tak
o0 dE 0 =] 2k—1
J;’,Sl)(s) 2/ —é-/ d:vl---/ dz g (e 8/ [y )e=T1m—Ta H (z; +zj41)7"
€ 0 Q j=1
Tgdg - Tk ’
ek L ~£/rak
* (1’1-’53"‘3321:-1) (€ [e2k), (3.10)

2 o ge [ - 2k-1
o= [ e[ et 00 Loy e
€ i=1

8
y (171-’83"'1321:—-1> e~ (146020 (3.11)
LgZy - Tk

=1

x (:Elw:a"'m'.)k—l) e~ E%ak (3.12)

LaLyg - Tk

2 /e poo 00 2k—1
7 = fn [) e _/0 dag et em 1T Tk H (2 +zj40)7"
8

In obtaining the expression J;'}El)(a) we made the change of variables z; — &/a;

after applying the log(x/y) identity; and similarly z; — &x; followed by £ — 1/¢
for J;’,Sz)(e).
Comparing (3.9) with (2.6) we see immediately that

([ %)

(logé S o(l)) Ja(8).

I3 (e)

Il

(3.13)
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A similar Mellin convolution calculation as in the exponent evaluation shows that

’ ®d 1 -
(€)= ( —gm) Jai(0)

(3.14)
1 -
= log - Jox(0) +0(1) as e— 0t
Referring back to (2.5), we see that
e_rak = 2 (95,(0,0) + 02:(0,0)(log 2 — 7))
By (2.6) and (3.3) we can rewrite ¢_y o as
é_vok = —Jax(60) + (2log 2 — 7)Jax (6),
and then using (3.8), (3.13), and (3.14) this becomes
. | . 7 (1) "2)
é_y ok = llr{)) zlog-E—Jgk(())—i-zlogQ Jgk(())+]2k (e) + Jo, ()] -
Thus
/\zk
Fy =
0 £ A T €0,2k
(3.15)
= Az /1 ) "2)
T (1
- i Sz emee? -7+ 52 (00 4 8%0)

where we used (2.8) and (2.9).

We now relate (3.10) and (3.12) to the Widom operator Kog (we henceforth
use the @ and 8 notation (1.8) to conform with Widom’s notation). We begin by
first recording the (trivial) identities:

L / o= T g7 (3.16)
r+y 0
and (1) -
—(@+y ‘ ,
£ = / e~ TEHY) gy, (3.17)
r+y |

In (3.12) we use identity (3.16) applied to the factors
(mﬁj—l + 1’2]')—17 j - 172a~ '-1k7
and identity (3.17) applicd to the factors

et s (g 4 aai)” ' F= 1,2, k= L



92 K. L. Basor & C. A. Tracy
Interchanging the order of the z; integrations with the r; integrations (those inte-

grations coming from applying the identities), one can explicitly carry out the z;
integrations. Defining

Ya(7;8,8) =T(L+26)(r + £+ 1)1 %, (3.18)

recalling the definition of the Widom kernel K, 5(z,y), and the parametrization
(1.8), we find that

1/e
)\2,6_2];’]52)(5) :/0 (d’:!(‘»ﬁa(:),I\’,ﬁ;;llf)z('»—ﬁ,o) dC (3'19)

where (f,9) = f° [(2)g(z) dz.
Recalling that

[=5] ﬁ U/2
/ g’ e PlE-rm gy = 2 (;) K,(2v/B7)
0

(RF > 0,Ry > 0) where ,(z) is the modified Bessel function, we similarly find
that

WO = [ (0.0, K5 G0) k€ (320)
where
Pi(r;8,6) = 2(1 + )P Kop(20/E(1 + 7). (3.21)
If we define -
Lie) =Y a*270e), i = 1,2, (3.22)
k=1
then ”
Il(e)=/ ($1(1=B,€), (I = Ko )~ 1 (5 8,8)) deé (3.23)
and " . |
L) = | E(ﬂ!}z(-;ﬂ,g),(f—Kn,ﬁ)‘l%(ﬁ—ﬁ,z)) de. (3.24)

Equations (3.23) and (3.24) express (except for the elementary terms appearing in
(3.15)) the derivative of the constant £y with respect to A (equivalently «) in terms
of integrals of inner products involving the Widom resolvent.
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4. Evaluation of I, (¢)
We begin by introducing the Mellin transform of I,(e):

Ii(2) = /000 e* 1 (€) de

1 00
= ~-/0 € (91(5-0,6), (I = Kap)'1(,6)) de

z

4 o0 e8]
:;/0 dffz/; dzzP Kop(2V/Ex)

1 L—pBtico Tl-s—a-PBT(1—s54+a-7)

X — dsz
Wilypoico M= o)l(1-26-3)
1 [37PH® Pt BN+ o+ f)

X — dt dyy'tP-1 9 VE
218 Jy_pico LT (t + 28)(t — ) / vy Kap(2V/8y)

where we used (3.21), results from Appendix A (see (A.12)), and interchanged
the order of integration. Furthermore, the s-contour is indented at { = s so that
Rs < Rt. Interchanging the order of integration and performing the £ integration
by using eqn (36) in §7.14.2 of Ref. 28, we get

P21+ 2)T(L+ 28+ 2)I(1 - 28+ 2)

[i(z) =
(=) 212 + 22)
t-p+ico
/ (1.1,‘ /.2 dsx —2B-8-z2— 1F(1—-9—0—— )F(1_3+a“ﬁ)
218 Sy pico Fr1-s)f1—-28-s)
—fB+ioo _
o L g D= e+ BTt + o+ f)

2 Jy_pieo T + 28)(L — )

o0
X / dyyt2P =1y (14284 2,14 2;2 + 22,1 — %)
1

Interchanging orders of integration and making the change of variables v = z, and

u = -1+ y/x, we obtain
() = P21+ 2)P(14 20+ 2)l(1 ~ 28+ 2)
we 20(2 + 22)
1 [t Ples—a— BTl -s+a—f)
K e ds
2mi J i _pio T(1 —=s)I'(1-23-5)

L %‘“"“’d T(t — o+ ALt + o+ f)

2711 _p-ico C(OT(t + 28)(t — s)

oo
X / du(l+u)!*P- 1P (1 + 28+ 2,1+ 2,24+ 22, —u)
-1

oQ
X / dyv=*—iHL
1/(ut1)
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The v integration can now be done leaving

PN F2(1+4 2)I'(1 + 28 + 2)[(1 — 28 + 2)

h(z) (2 + 22)
1 %*/3+*'°°d Il-s~a—~pAT1—-5+a-p)
“Wmi)s g T T(I-s)(1-26—5)

B /%—‘“"“’ gL+ Br(t+a+p)
21t Sy poi  D(OT(E+2B)(E —s)(s+2-1)
o8]
X f du (u+ 1)’+"""“)ﬁ"L 2F(1+28+ 2,1+ 2,24+ 22, —u).
-1

We break the u-integration into intervals (—1,0) and (0, co0). For the interval (—1,0)
we use the (generalized) Euler transform (after letting u — —u)

F(d) ' c—1 d—c~1
3Fy(e,a1,ag;d,by52) = c)_/ N1 - 1) o Fi(ay, ag;byitz)dt
—¢) Jo

ORC

and for the interval (0, 00) we make use of the result (see, e.g., Ref. 29, pg. 315)

S|
; P dr =
/0 ~—"———-(1+$)p Qpl(a;bacy 1’3) £
P(c)l(a—1+p)T(b— 1+ p)T(1 - p)
P L(a)L(b)l(c ~ 1+ p)
x 3Fy(a—1+p,b—14p,pic— 1+ p,p;1).

3Fy(a,b,1;¢,2~p;1) +

Combining these terms gives (note the cancellation and the fact that the second
3 [y function reduces to 9 ) evaluated at 1 which in turn is expressible in terms of
gamma functions)

N 1 4 - B+ico
11(2):-12--/l b dsT{(l—s—a- BNl —s+a—-=B)'(z+28+s)I'(s+ )
1 (3Pt Dot BT+ o+ B)

X om Lo pico dt TOT({+ 28)(t ~ s)(s +z— 1)

We can now evaluate the ¢-integral by closing the contour in the right half plane
Rt > 1/2 where the integrand is holomorphic except for a simple pole at { = s+ z.
The result is

) 22 4 -pf+ico
Ii(z) = —
1) = o 3 p—ico

I'(l—-s—a~B)'(1—s+a—-B)(s+z—a+P)(s+z+a+p5) ds.

This integral can be evaluated by appealing to Barnes’ First Lemma:

Pla+ Nl(a+ OI(A+ 7B+ 6)
Pa+B+7+0)

1 - . - N
%AI(CY+S)F(E+S)I(7—3)1(6——.s)ds_. "
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where the contour C separates the poles of I'(e + §)T(B + s) from the poles of
(7 — s)['(6 — ). Doing this the final result is

i) = F(l—2cv+z)F(1+2a+z)F2(1+z)
1(z) = 2IT(2 + 22)

_ PO - 20T +20) PO 20)TAH20) (g 90y 1 g1+ 2a) - 2]

72 z

+0(1) as z—0

where 1(s) = I"(s)/T'(s). This implies that

h(e) = —2 oy L4 ATY (1 = 20)+ (14 20) —2) +o(1)  (42)

- ' -
sin 2mwa € sin 2T

as € — 0 (recall that T'(1 + 2)['(1 — 2) = 7z/sin7z).

5. Evaluation of I1(¢)
Using (A.5), (3.18), and standard integrals we have
oy = L0 2/3) . . .
(,(5)_1_2[3 JFI(L— 20,128 = 5,2 =28 — 5, —¢)
TO-24k) 1,
=Y L k<t
k)()l—Z/ﬁ-{—L s k!
This G(s) should not. be confused with the Barnes G-function. G(s) has poles at
s=1-=28+k, k=0,1,2,... 50 that
(1l —a—A1+a- (L - 20— )
G.(s)=
(#) T2 =209
X 31"‘2(1 o (Y [3, 1 +(.‘(—ﬁ,1 ——2ﬂ-—- 5;1,2——-2,8—8,-—6)

as follows from (A.9). Hence (A.11) in this case hecomes

P (s) = I'l—a—-pl(l+a-BI(l-s—a -1+ a—F—s)
-\= T(1—s)l(2— 28— 5)

X;jf;‘g(l——(Y—ﬂ,l+(,Y—ﬂ,1-—2/3—-5;1,2-—2[3—3;—5).

Thus the inner product becomes

F(1+ 28001 — o — AL(1 + o — B)
o0 .L._1+ioo oy . afl .
by 1 277 F(l-s—a—-pl(—s+a—p)
do (1 —-1=26____ L
x/{) dofe+ &4 1) :zm'A o T(1— 51 - 28— »)

4 —fl-i00

1 i i
x(x+ 1)"m:xl"z(l —a-Blta—pB1—20—s1,2-28—8-E)
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Interchanging the order of the z and s integrations, integrating over z results in the
inner product being equal to

—~B+ioco

F(1+28)I(1—a-p8)T (1+a—ﬂ)/ , dsT(1—a - (1 + a— f)

1
Xl—Qﬂ—s
Ml-s—a-All~s+a~p) 1
(1 —s)l(1-28~5s) 20+ s

3F2(1-—O[-—,8,1+a‘“‘,3:1"2:3"’3;1y2"‘2ﬂ_5;"£)

o (1+ 26,28+ s, 1+ 28+ s, =€)
Now
1
1—-28-
has simple poles at s = 1 - 20 +n, n = 0,1,... which are removed in the integrand
by the factor 1/T(1 — 28 — 8). Similarly,

3112(1*(1—,6,1'*'0/ ﬁ)1_2ﬁ_8)1)2—2ﬁ"5_£)

1
Fr(14+28,28+2:1 +28 + s, —
w+321(+/3,ﬂ+ + 28+ 5;,-£)

has simple poles at s = =20 — n, n = 0,1,.... The integration over s can be done

by closing the contour in the lefl half plane Rs < 1/2 with the result that the inner
product is

. Fl-a+B8+KTQ4 o438 +k)
(1—(1—/3)1(1441——,3)2 Y IIES)

M—O3MU—Q—ﬂJ+a—ﬂJ+hL2+h~O~
Now
'3[72(1—"-—,3,1+(Y——ﬁ 1+ k1,24 k€)=

I'(2+ k) Z I'l-e—-B+j)l(1+a-p+))
F(T+ k(1 -« = B)T(1+ a - §) & T2(5+ D)(1+ k + j)

(~€) =

/ldm [(2 + k)
0 M1+l —-a-r(l+a-7p)

M1 —a-f+ )01 +a—f+j
XY ——— raé+-n OB gyt

i=0
The inner product thus reduces to

/1 > l‘(l-a+[j+k)1‘(1+cy+[3+lc)(_5w)k
0 k=0 P21 + k) '

xiF(l—a—ﬂH)I‘(Ha—ﬁH)

e (—€xy
o 2(1+7)

1
= C]/ 2F(l—a+ g l+a+81,—€2) s Fi{l—a— 3,14+ a8 1;—€x) de,
Jo
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where ¢; = (14 a + )1 —a — B)T(1 + o — B)I'(1 — o + B), and hence

1/e 1
12(5)201/ df/ dzx oF1(1 —a+p8,1+a+ 8 1;-€x)
0 0
xoFi(1+o—-p,1—a—p;1;-£z).

Now let £z — z so that

1/e ! ¢
12(5):c1/ %/ dx gFl(l—fx+ﬂ,1+a+/3;1;——m)2F1(1+cr—ﬁ,l—a——ﬁ;1',-—:1:).
0 0

Integrating by parts gives

1 1/5‘
Lie) = ¢y log;/ 2l —a+ 8, 1+a+p;1;—x)
0

X oFi(l+a—-81-a-p01;—zr)dz

1/e
“ﬂ_/ log:chl(l—(x+ﬁ,1+a+/3;1;—37)

0

X oF(14a—03,1—a—p01;—z)de.
For z large the hypergeometric [unctions are at most |z|=122=F and |z|"1E*+E 5o
the product is at most || =¥, If jo| < 1/2, this is 27(1*4), 0 < § < 1 so we can

replace the integral from 0 to 1/e by the integral from 0 to oo and the error is o(1).
Thus

1 o0 .
]g(e)-_-log;cl/ 2P (1 —a+p,1+a+p51;—x)
0

xoFi(l+a—pg1—a—f1;—x)dx

oo 5.1
—01/ logzoF (1l —+p,1+a+F;1,-2) (5-1)
0
xoM(14+a—~pF1—-—a—-p061-2)d
+ o(1)

as e — 0%,
We now evaluate the integrals involving the hypergeometric functions. To this
end we define

(o)
I(s):/ 2R (l—a+ B, 14a+B; 1 —a)2 I (14a=B, 1—a—f; 1, —z) dz (5.2)
0

(we want (1) and I'(1)). We begin by first recalling

R I(c)l(a— s)I'(b— s)I(s) )
2" 9 Fi(a, b ¢ —z) dx = , 5.3
A 2 1((1. .E)( I“(G)F(b)r(('——- .‘)) ( )
and the inverse transform
“a)[® o S\D(b+ s
H@C®) 1 (0, by —2) = = Pat OPOF ) pgyevas,  (54)

I'(c) T omi ) D{e+s)
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where the contour separates the poles of I'(a + s)I'(b + 5) from the poles of I'(-s).
We now substitute (5.4) for the second hypergeometric function appearing in (5.2),
interchange orders of integration, and use (5.3) to obtain

11 [Tl-a=B+)(1+a—FB+t)l(s+1)

¢ 27 oo FA+9)0(1 -8 —1) (5.5)
xPl-a+f—-s-t)F1+a+F—s—t)[(-t)dt.

At s = 1 this reduces to

I(1) = LN Fl-a-B+0I(l+a—~B+ 1) (~a+pf~t)[(a+B—1)dt

¢y 271 J_je0

I(s) =

_ {1 -20)T(1+4 2a) (5.6)

Cy

by Barnes’ First Lemma.
To obtain I’(1) we expand the integrand of (5.5) in s about the point s = 1.
The result is that

1'(1):-:?2-17;; _':1*(1-a—ﬁ+t)r(1+a—ﬂ+t)r(-a+ﬁ—t)r(n+/f—z)
X [—p(—a+ B —t) = pla+ B —1t) + (L + ) +p(=1)] d. r
Consider o
A=5:—r; i:F(l—a—ﬂ+t)I‘(1+a—ﬂ+t)l‘(—a+ﬁ—t)l‘(u+/3~t)
X Pp(—o+ B —t)dt
= -2-175 j:OI‘(l—a-—ﬂ+t)[’(l+a—ﬂ+t)F(a+,B-l)F'(—cv+[f—l.)dt.

This last integral can be evaluated by differentiating Barnes’ First Lemma with
respect to one of the parameters, say § appearing in (4.1). Doing this and simplifying
the result gives

T
A= Py (2ay(1 — 2a) — 2¢). (5.8)
This same formula for the differentiated Barnes’ lemma gives
1 ioo
o Pl—a-f+)T(l+a—-B+0)(~a+ 8- (a+F - 1)d
—ioQ
m
= 200) — 20x) . 5.¢
e (2009(1 + 2a) — 2¢x) (5.9)

The remaining integral is (use ['(z)I'(1 — 2) = w/ sin 7z)
1 fie° w?
211 J_ieo sinm(a+ f ~sinw((—a+pf—1t)

(D1 +1) + (1)) .
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If one integrates

ez

sinw(a+ B —z)sinw(—a+ f—2) (¥(1+2) +¢(~2))

on the rectangular contour with vertices iN, iN 4+ 1, —iN + 1, and —iN, then in
the limit N — oo one finds that the remaining integral is

(@ + A (1 +a+ )+ (1 —a )
e = ) (W(1 = a+B) +Y(1 +a — B)) - da]. (5.11)

Combining (5.8), (5.9), and (5.11) gives I’(1) which along with the expression for
I{1) gives our final expression for Is(e):

2o 1

y —

Ih(e) = T
(%) sin 27y é"'es +si1127rcy

X (H(1+ a4 8)+ P(1—a = ) — (0= B ((1 = + 8) + $(1 + & = )]
+ o(1)

209(1 - 200) + 209(1 + 2a) — (@ + B)

(5.12)
as e — 0F,

6. Evaluation of Ej in terms of Barnes G-function

Referring to (3.15) and (3.23) we see that we must integrate the sum I () +
I2(¢) with respect to the parameter A. The coefficient of the loge term of this
sum is —4we/sin 2ma. If we call A the coefficient of the loge term of the infinite
series appearing in (3.15), then an elementary calculation (very similar to the one
occurring before (2.9)) shows that A = —2a? + 24%. Thus the loge terms in (3.15)
cancel, as they must. From (3.15) we therefore have

Iy = 2(a* — f*)log2 +
where 4 is the contribution from the infinite series. From (4.2) and (5.12) we

know 9FE,/8X, and thus by a change of variables we know 8£j/0a. Integrating
with respect to the parameter o we get (when A= 0, Eg =0 and o = B)

0 = /” l—lla: + 4zp(1 — 22) + dzp(1 + 22)
P
~(z+B) W +z+B)+¥(l-z-7P)) (6.1)
(=B (1 -2+ B)+ b1 43— B))| ds
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The apparently difficult integrals are those involving a ¢-function times the variable
z. Tt is here that the Barnes G-function enters the problem. Alexeiewsky’s integral®
is

/ logI‘(:v+a)d:c=%long—-;—(z-i-?a-—1)+(z+a—1)logF(z+a)
0

G(z+a)

- log E0)

— (a—1)log I'(a),
from which one can easily derive

/amw(m+a)dm=—a—ﬁ
ﬂ 2

log 27 + %(012 -8+ —é—(a - A)(2a—1)

6.2
I‘(a+a)+logG(a+a) (62)

'8+ a) G(f+a)

Applying (6.2) and the integral obtained from (6.2) by letting # — —z and then
o — —a, B — —f to E}, we find

Gl+a+ Gl ~a-NG(1l-a+ )G+ a—Pp)
G(1 + 20)G(1 - 20) ’

— (e —1)log

Ey = 2(a® ~ f*)log 2 — log

from which Theorem 3 follows immediately.

7. Error Estimates

In this section we derive an integral representation for eq¢(¢; 0) from which the
assertions after eqn. (2.4) will follow. In the inverse Mellin transform of ea(t;0),
we deform the contour to the imaginary axis except for a small semicircle of radius
¢ centered at the origin and lying in the right half plane. From this we arrive al

€_2 2k
egk(i‘, 0) = ——-?—

1. R
+5 (é—2,2klog(1/t) + é_1,28)

1 [s 0] 0
+ ;/ cos(ylog )N (2x(iy; 0)) dy + -3;/ sin(y log )& (Eax iy 0)) dy.
£ £

(7.1)
Now
1 % e oo 1 % e g .
?/E Ey—zfiCOS(ylogt)dy-F ;/e f——;;—gﬁsm(yloz;8)dy
a1, 5
= -——7?;2— — ;2- (e_gygk log(l/i) -+ C-l,')k) + 0(1) (72)

as € — 0% (since we take log! < 0). Subtracting (7.2) from (7.1) and combining
the integrals, we can then let € — 0% to obtain

ear(l;0) = é_g 0k log(1/t) + é_1 2k

1 [* L E_9 9
+2 [ costutog) (m(ezk(zy;em‘“ ;“*) dy
mJo Y

(7.3)

T

1 [*® e 1 o
+ -/ sin(y log ) (S(ézk(iy;O))Jr 61;/“) dy
0 &
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The Riemann-Lebesgue lemma shows that the integrals tend to zero as t — 0% and
hem".g €_g2k = €_19; and &_y 9 = eg gy as asserted earlier.
I'he argument that this o(1) error term remains o(1) when summed in (2.1) is

essentially identical to the proof given in Ref. 7 for the § = 0 case. Thus we omit
the details.
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Appendix A

The integral operator Ko was first introduced by Widom!! where a Wiener-
Hopf type factorization procedure for inverting I — K, 5 was also described. The
evaluation of the integrals I (¢) and I(e) was accomplished by use of this inversion
formula. We include an account of the procedure for completeness sake. Recall that
the Widom operator K4 g is defined by (1.16) and (1.17).

Suppose that

(I-Kap)f =9, f,9€Lag. (A.1)

Then (A.1) can be written as

o o0 d
fe=V=eus [ =0y [ s =g, 2> L ()

Define

e 1
F_(s) = /1 2z - 1) de, Fo(s) = /0 2z = 1) da. (A.3)

Notice that F.(s) (Fy(s)) belongs to H, of the hall-plane Rs < 1/2— 4 (Rs > 1/2—
£) and that f(z) can be recovered from F_(s) using the inverse Mellin transform.
We extend g(z) to zero in the interval (—1,0) and define f(x — 1) by (A.2) for
z €(0,1). Thus (A.2) is valid now for z > 0.

Next, multiply both sides of (A.2) by 2*~!, —f < Rs < 1/2 — 3, integrate over
z between 0 and co, and interchange the z and y integrations. Using the definitions
given in (A.3) we obtain

(1 _sinm(a + f)sinn(a — )

sinwssinw(s + 203) )F—(5)+F+(S):G(5) (A1)

where

G(s) = /0 (x4 1) 1g(z)dr. (A.5)
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Since
_ sinr(a + ) sin t{a — ) _ sinw(s — a+ f)sinw(s 4+ o+ F)
sinrssinm(s+28) sinwssin (s + 23)

_ T(8)I(1 = s)T(s+20)T(1 —s—20) AS
FMs—a+pls+a+AIM(1l-s+a-p(l-—5s—a-f) (A.6)

1

(A.4) can be rewritten as

P-s)l(1-5-28) . T(s+athl(s—a+§)
1‘(1_s+a—/3)r(1—s_a—ﬂ)F‘(sH T(5)I'(s + 25) Fi(9)

_Ts+a+p)l(s—a+p)
= T8  C (A7)

Now set
I'(s +a+ B)I(s —a+f) G(s) = G_(s) — G4(s) (A.8)

L(s)l(s + 20)
where (7_(s) { G4(s)) belongs to Hy of the hall-plane ®s < 1/2 -3 (Rs > 1/2—f).
The functions G4 (s) can be described in integral form by

L [EPHO P a AT e+ B) G g o]
Ciy(s) _/% OB GEED) Tsdt, Rz - B (A9)

T2 S pico
Substituting (A.8) into (A.7), we have for ®s =1/2 -
P(1—s)I(1 — s —28)
F_(s)—G_(s) =
I’(l~S+{'y_ﬁ)l‘(1_5”'LY—ﬂ) (5) (9)

I'(s+a+ /(s —a+p) '
PTG 28 )~ (A.10)

and since this implies both sides of (A.10) vanish,

0 e [‘('1—.5‘+a—ﬂ)[‘(1,_5,,,a_ﬂ)
Fols) = (1 = s)I(1—s— 2B) G_(s) (A.11)

and thus (using Mellin inversion);

N y-ptico p(p g4 o= BI(1 —5 — a = f) s
J(x)= 2?/% (= 50 (1= 5= 28) G_(s)(z +1)""ds.
(A.12)

—f—fo0

Putting all of this together, we see that for finding f = (I — Kop)~'g we begin
with g(z), find G(s), G_(s), F'-(s) and then finally flz).
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Appendix B

In this appendix we prove that the series (1.1) converges for |A| < cos 73 /7 and
for all ¢ > 0. To begin we define the integral operator T : L%(0,00) — L*(0,00) by

To(z.y) = ePe-tlar1inra (/m (f"'(‘“")”
]

2y B —ty+1/y)/4 B.1
Py T z)“ (B.1)

so that
eqi(t;20) = Tr(Tg) (B.2)

and
7(1;20, ) = det(I — /\QT,@). (B.3)

The operator Ty is Hilbert-Schmidt for all £ > 0. Let Ag > A; > ... denote

its eigenvalues and ¢, ¢1,... its respective normalized eigenfunctions. Let f &€
L%(0,00), f(z) >0, then

T ood /00 l oad ﬁe—-%(l‘l‘i'l/ﬂl)c—%(f?"‘l/”!)
y = ' axsy Hige Xy )xr
(1 To]) ./o "o /o afle)n (21 + z2)(z2 + 23)
x 25 Po= 1@t zs) o8 g ) (B.4)

o0 o0 00 -203
<[ de d d s 2 B (2).
,_/0 11/0 wz/O- x3 flzy)xy (ml+z2)(z2+x3)1‘,gf(ﬂ".s)

Define

o0 -2p
) = o =2 Iy | 28 B.5
M(zy,23) = 2 (/0 e +m2)($2+x3)(m“) Ty (B.5)

and observe that M(xzy,23) > 0, M(z3,z,) = M(xy,23), and M(Axy,Aey) =
A~ 1M(z1,z3). We recall the generalized Hilbert inequality:

Theorem. Let M(z,y) be nonnegative, symmetric, homogeneous of degree -1, and
let

o 1
MOZ/ M(z, )z~ 7 dz.
0

Suppose that M(z,1)z~% decreases strictly with z and M(1,y)y~* decreases with

. Then
/0 /o Mz, y)f(z)f(y) dedy < MO/O fAx) de.

The constant My is best possible.

Referring to (B.5) and recalling that 8 < %, we see that both M (a, 1)z~ and
M(1,y)y~*% are decreasing. In this case an elementary calculation gives

2
™
Mo = (cosm@) '
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and thus

(f,Tsf) < (CO;’TBY /Ooo F(x) de. (B.6)

Applying this to ¢o(z) and recalling that ¢¢ is normalized we see that

Ao = holt, B) < ( " )2.

cos {3

This holds for all ¢t > 0 s0

2
sup Ao(t, B) < T
Sup ot B) < (COS w) ) (B.7)
The largest eigenvalue Ag satisfies for any f € L*(0,00)
(/i Tsf)
B (t) = == < Ap(t, B). .8
We choose
fla) = g i tEl/B)/e (B.9)
then
(f, f) = 2Ko(t) (B.10)
and

e—3{zatl/z2)

+22)(2s+73) (B.11)

o0 o o [3 1 ,
([, Ts)) :/ d;vl/ sz/ dzs xl_'ﬁ’e~5(:tx+1/m)
0 0 0 (21

1 .
X J;;wx{:—ge"%(”“/“).

We want sup,so By (t) which is determined by lim,_.o+ By (t) since By(t) is a de-
ereasing function of ¢.¢ To compute this limit we introduce the Mellin transform of
(B.11):

2”1‘(:5)/00(11 /mcla, /Oodx (2120~ 42y zaj(x +1/z:) N
& , : i T
0 : 0 : 0 J(91314-952)(51024-963)

i=1

which after the standard change of variables z; = p6;, and an integration over the
variable p becomes

1 1-6, B4 c-28 gt
s 67265 (1 — by — 62)° 3 —
227 2/ 6 / dy ~—2 As(8)~*12.
(/2) o (61 +82)(1 - &) ()

“One way to see the decreasing property is to make the change of variables Tj = péj. j=1,2,3,
by =1 — §; — 89 in (B.11), perform the p integration to find that the {-dependent part of of the
integrand of Bf(t) is K()('yt)/Kg(t) where 7, which is some function of 8, and 82, is always
greater than 1. This ratio of Bessel functions for ¥ > 1 is a decreasing function of { from which

it follows that Bj (t) i a decreasing function of .
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We need only determine the coefficient of the log(1/t) term of (B.11), and hence
only the coefficient of the double pole at z = 0 of the above Mellin transform. This

coefficient is 5
1 =1 pl-b =281 _ 5 _ §.\0-%
2/ a5, 21 / dsy S (=8 =873
0 1-b1 Jo b1+ 62

which after the change of variables 2 = (1 — §;)u on the inner integral becomes

L : [ gm(] — )Pt
2 [Can syt [ U
0

0 1——~1-—'§6:lu

The inner integral is now BEuler’s formula for the hypergeometric function. Thus
the coefficient is

P(1= 20T +13) [ -3 4ep g 3 1
F(%—ﬂ) [) 51 (1-"61) 2F1(1,1~2ﬁ,§—ﬁ,1——61)(161

— 11(1_2[3)F(ﬂ+l) l"_ﬁ_l N—pd - 1 . 3 o
== z[)a, Hl—o) P h R (G - A1 - 265 - Bia)de

2

Pz +A%5-0 1 .1 3 "
N ala(5 = 8,5 = B, =205 - 8,1 - 281)

=2

2
=2 (rz+ om0 - 9)
- 2
=2 ((‘.os wﬁ)

T

Thus we have as t — 0

2
10 =2 (s ) oslp)+ O,

cos 703
and, of course,

(f, f)=2Ky(t) = 2log(=) + O(1),

L

and hence

By(t) = (ZE.;?FEY +o(1).

Since supysq By (t) = lim_g+ By(t), we have

2
) < sup Ao(t, B),

t>0

( T
cos w3

which when combined with (B.7) gives

2
m 1+
e = () (012
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Referring to (2.1) and (B.2) we see that if the series appearing in (2.1) converges
(which for ¢ large enough and A small enough it clearly does)

E(t;28,)) = log(1— A*\;).

320

The above series can be expanded in a power series in A provided |AgA?] < 1. For
0 < 5plAl < 1, we have

[Ao(t, B)AZ] < sup do(t, B)|AI* < 1
t>0
by (B.12).
Appendix C
When 8 =0, eqn. (1.9) yields the formula

0t G(1+ a@)?G(1 — a)?

(0,4) =27 S 2a)G( = 2a)

(C.1)

However, in Ref. 7, the expression for 75(0,A) is seen to be (use (2.2), (2.5), (3.12),
and (4.7) in Rel. 7)

cos e G(1/2)*
G(3 +a)2G(5 — a)?

v 2
(0, A) = 27°%¢ (C.2)
We now show how these are equal. This is done through the use of the duplication
formula for the Barnes G-function, a generalization of the duplication formula for
the garnma function.® This formula is given by

e3¢ (DG (22)(2r)
(27,.)1/225/121"(m)(;(x)222m‘2—2r :

L1 " ~ ¢
G5 +e) = (C.3)

Thus

e (=D G (22)G(—2x)
(27) 2575 T (2) T (—2) G () 2C (—z) 22"

N 1 vy l o
G(— NV G(= — ) =
(5 + )G — )

3 5 -DGE (1 + 220)G(1 — 22)T(2)?T(~x)?
T 2m)BT ()0 (—2)G (1 + 2)2G (L — )29 T(2x)(—2x)

eSCEDGE 4 20)G (1 — 22) 27 sin 2w
(27)28/6292* G(1 — 2)2G(1 + z)?wrsin ma

_ D461 + 20)G(L — 22) cos T
(2m)25/624* G(1 — 2)2CG(1 + 2)?

(C.4)
Recall that G7(1/2) = 3D 2= A9 ot ¢ = o in (C.4) and substitute (C.4)
and the value of G(1/2) in (C.2). An elementary calculation then shows that the
RIS of (C.2) is indeed the same as the RHS of (C.1).



