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Level-spacing distributions and the Airy kernel 
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Scaling level-spacing distribution functions in the "bulk of the spectrum" in random matrix models of N x N 
hermitian matrices and then going to the limit N --, o¢, leads to the Fredholm determinant of the sine kernel 
sin n(x - y ) / n ( x  - y ) .  Similarly a double scaling limit at the "edge of the spectrum" leads to the Airy kernel 
[Ai (x)Ai' (y) - Ai' (x)Ai (y) ] / (x - y ). We announce analogies for this Airy kernel of the following properties of the 
sine kernel: the completely integrable system of PDE's found by Jimbo, Miwa, M6ri and Sato; the expression, in the 
case of a single interval, of the Fredholm determinant in terms of a Painlev6 transcendent; the existence of a commuting 
differential operator; and the fact that this operator can be used in the derivation of asymptotics, for general n, of the 
probability that an interval contains precisely n eigenvalues. 

1. I n t r o d u c t i o n  

In this note we announce new results for the level 
spacing distribution functions obtained from scaling 
random matrix models of  N × N hermit ian matrices at 
the edge of  the support  of  the (tree-level) eigenvalue 
densities when the parameters  of  the potential  V are 
not "finely tuned." This universality class is already 
present in the gaussian unitary ensemble. It is known 
[ 1,2 ] that these distr ibution functions are expressible 
in terms of  a Fredholm determinant  of  an integral 
operator  K whose kernel involves Airy functions. 

There are striking analogies between the properties 
of  this Airy kernel 

A ( x ) A ' ( y )  - A ' ( x ) A ( y )  
K ( x , y )  = x - y  

where A (x)  = v ~  Ai (x) ,  and the sine kernel 

2 s i n ~ ( x -  y )  
n x - y  
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whose associated Fredholm determinant  describes the 
classical level spacing distr ibution functions first stud- 
ied by Wigner, Dyson, Mehta,  and others [ 1 ]. (In 
retrospect we should not have been surprised by this; 
the two kernels are, after all, both scaled l imits of  the 
same family of  kernels.) We describe below three of  
these which we have found. The first is the analogue of  
the completely integrable system of  PDE's  of  Jimbo, 
Miwa, M6ri, and Sato [3] when the underlying do- 
main is a union of  intervals. The second is the fact 
that in the case of  the semi-infinite interval (s, o~) 
(the analogue of  a single finite interval for the sine 
kernel) the Fredholm determinant  is closely related to 
a Painlev6 transcendent of  the second kind (the fifth 
transcendent arises for the sine kernel [3 ] ). And the 
third is the existence of  a second order differential op- 
erator commuting with the Airy operator  K. (The ex- 
istence of  such a differential operator  in the sine ker- 
nel case has been known for some t ime [4,5 ].) This 
last fact leads to an explicit asymptotic formula, as 
the interval (s, ec) expands, for the probabil i ty that it 
contains precisely n eigenvalues (n = 1,2 . . . .  ) (the 
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analogue of  results in ref. [6] ). 

2. The system of PDE's 

We set 

R ( a j , a j )  = Z ( - 1 )  k ( q j P k - - P j q k ) :  
aj - ak kCj 

+p~ -- ajq 2 - 2p jq ju  + 2q2v .  

These equations are derived very much in the spirit  
of  ref. [8]; see also ref. [7]. 

m 

I = U (a2j-  1, a: j)  
j = l  3. The ODE's 

and write D(1 ;2 )  for the Fredholm determinant  of  
K acting on I. We think of  this as a function of  a = 

(al . . . . .  a2m ). Then 

2m 

da l o g D ( I ; 2 )  = - Z ( -  1 ) JR(a j ,  a j )  daj  

j = l  

( 1 )  

where R ( x , y )  is the kernel of  the operator  K(1 - 
K ) - I .  We introduce quanti t ies 

qj = ( 1 - K ) - I A ( a j ) ,  pj = ( 1 - K ) - I A ' ( a j ) ,  

(which are the analogues of  the quanti t ies r±j of  ref. 
[ 3 ] ; see also ref. [ 7 ] ) as well as two further quantit ies 

u = ( A , ( 1 - K ) - I A ) ,  v = ( A , ( 1 - K ) - I A  ') 

where the inner products refer to the domain  I. Then 
the equations read 

Oqj = ( _  l )k qjpk -- pjqk qk ( j  # k ), 
Oak aj - ak 

Opj _ (--1)k q j P k - - P j q k  pk ( j  ~ k ) ,  
Oak aj - ak 

Oqj -- Z (-- 1 )k qjPk -- Pjqk qk 
Oaj ay - ak 

k ~ j  
+ p j  -- q j u ,  

O P___Z = - ~ ( -  1 )k qjPk -- Pjqk Pk 
Oaj ~ aj - ak 

kv~j 
+a jq j  + p j u  - 2qjv  , 

Ou 
= ( -  l ) / q ) ,  

Oaj 

Ov -- ( - 1 ) J p j q j .  
Oaj 

Moreover  the quantit ies R (aj, a j )  appearing in (1) 
are given by 

For  the special case I = (s, oc) the above equations 
can be used to show that q (s; 2) (the quanti ty q of  the 
last section corresponding to the end-point  s)  satisfies 

q" = s q + Z q  3, ( ,=  d )  
ds (2) 

with q ( s ;2 )  ~ v ~ A i ( s )  as s ~ oc. This equation is 
a special case of  the PIt differential equation [9-12] .  
One can similarly derive for R ( s )  : =  R ( s , s ) ,  which 
in view of  (1) equals 

d 
l o g D ( I ; 2 ) ,  

the third-order  equation 

1 ( R " ~ '  R R'  
\ ~ - 7 /  - ~ + = o .  ( 3 )  

It is also the case that R'  (s) = - q  (s; 2)2 and this gives 
the following simple formula for D ( I ; 2 )  in terms of  
a PI~ transcendent: 

D ( I ; 2 )  = exp - (x  - s ) q ( x ; 2 ) 2  dx  . 

This is much simpler than the corresponding repre- 
sentation of  D (I;  2) for the sine kernel in terms of  a 
Pv transcendent.  The fact that q (s;2) satisfies (2) can 
also be obtained by combining some results in refs. 
[10,12]. Thus in this case of  a semi-infinite interval 
our results have inverse scattering interpretations.  

4. Asymptotics and commuting differential operators 

Again we take I = (s, oc) and consider asymptotics 
as s ~ -~c .  (Asymptotics as s ~ oc can be obtained 
trivially from the Neumann series for (1 - K ) - I . )  
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From the random matrix point of  view the interesting 
quantities are 

E(n;s) , -  ( - 1 ) n  on D ( I ; 2 )  
n! 02 n =1 

This is the probability that exactly n eigenvalues lie in 
I. Using both differential equations (2) and (3), plus 
the fact that R'  = - q : ,  we can obtain the asymptotics 
of  R as s -~ - co :  

1S2 1 9 189 
R ( s ) , , ~  -8-~ + 64s 4 128s - - - 5  + ' ' ' "  

(We also use the fact [12] that q (s; l ) is asymptotic 
to X/Z-~2 as s -~ - ec . )  Therefore as s ~ - o c  

TO E(0 ; s )  = D(I; 1),,~ ~ e x p  ( I s 3 )  

( 3 2025 ) 
x 1 - ~ + 8192s------ ~ + . . .  , 

where z0 is an undetermined constant. (The analogue 
of  this formula for the sine kernel was obtained by 
Dyson [131.) 

For asymptotics of  E (n; s) for general n we intro- 
duce 

E(n;s)  
r(n;s) : =  

E ( 0 ; s )  " 

Successive differentiation of  (2) with respect to 2, 
plus the known asymptotics of  q (s; 1 ), allows us to 
find asymptotic expansions for the quantities 

o n q  ,~-1 q.(s) : =  b - f f  _ 

(for the analogue in the sine kernel case see ref. [6] ); 
and these in turn can be used to find expansions 
for r(n;s). One drawback of  this approach is that 
yet another undetermined constant factor enters the 
picture (in ref. [6] Toeplitz and Wiener-Hopf  tech- 
niques, not available for the Airy kernel, fixed this 
constant). Another drawback is that when one ex- 
presses the r (n; s ) in terms of  the q, (s) a large amount 
of  cancellation takes place, with the result that even 
the first-order asymptotics of  r (n; s) are out of  reach 
by this method when n is large. 

There is, however, another approach (briefly indi- 
cated in ref. [6] and with details in ref. [8] for the 
sine kernel case). We have 

2q --"2i, (4) 
r (n ; s )=  E ( 1 - 2 q ) . . . ( 1 - 2 i , ) '  

i 1 <...<in 

where 20 > 2t > . . .  are the eigenvalues of  the inte- 
gral operator K (with ;t = 1 ). Now quite analogous 
to the fact that the operator with the sine kernel com- 
mutes with the differential operator for the prolate 
spheroidal wave functions refs. [4,5], is that the Airy 
operator commutes with the differential operator L 
given by 

L f ( x )  = [ ( x - s ) f ' ( x ) l ' - x ( x - s ) f ( x ) .  

An application of  the WKB method, plus a trick (not 
at this writing rigorously j ustified), allows us to derive 
the following asymptotic formula for 2i with i fixed: 

2 5i+3 t 3i/2+3/4 exp 1 - 2i ~" ~ ( - ~ t  3/2) 

(s = - 2 t  ~ - o c ) .  (5) 

(The analogue of  this for the sine kernel is in ref. [ 5 ]. ) 
From this it is seen that the term in (4) corresponding 
to it = 0, il = 1 . . . .  , in = n - 1 dominates each of  
the others. In fact this term dominates the sum of all 
the others, and so 

1!2! .-. (n - 1)! t_3n2/4 
r (n , -2 t )  ,-~ gn/22(5n2+n)/2 

xexp(]nt3/2) . (6) 

Thus one can use (6) to fix the constant in ql (s) 
mentioned above. 
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