Variance Calculations and the Bessel Kernel

Estelle L. Basor¹ and Craig A. Tracy²

Received April 20, 1993

In the Laguerre ensemble of $N \times N$ Hermitian matrices, it is of interest both theoretically and for applications to quantum transport problems to compute the variance of a linear statistic, denoted $\operatorname{var}_N f$, as $N \to \infty$. Furthermore, this statistic often contains an additional parameter α for which the limit $\alpha \to \infty$ is most interesting and most difficult to compute numerically. We derive exact expressions for both $\lim_{N\to\infty} \operatorname{var}_N f$ and $\lim_{\alpha\to\infty} \operatorname{var}_N f$.

KEY WORDS: Random matrices; Laguerre ensemble; variance; quantum transport.

1. INTRODUCTION AND STATEMENT OF MAIN RESULT

In the random matrix theory of quantum transport (see refs. 1, 2, and 6 and references therein) the following quantity is fundamental³:

$$\operatorname{var}_{N} f := \int_{0}^{\infty} f^{2} \left(\frac{(4N\mu)^{1/2}}{\alpha} \right) K_{N}(\mu, \mu) \, d\mu$$
$$- \int_{0}^{\infty} \int_{0}^{\infty} f \left(\frac{(4N\mu)^{1/2}}{\alpha} \right) f \left(\frac{(4N\mu')^{1/2}}{\alpha} \right) K_{N}^{2}(\mu, \mu') \, d\mu \, d\mu' \quad (1.1)$$

where $K_N(\mu, \mu')$ is the Laguerre kernel; that is,

$$K_N(\mu, \mu') = \sum_{j=0}^{N-1} \phi_j(\mu) \phi_j(\mu')$$

¹ Department of Mathematics, California Polytechnic State University, San Luis Obispo, California 93407. E-mail: ebasor@oboe.calpoly.edu.

² Department of Mathematics and Institute of Theoretical Dynamics, University of California, Davis, California 95616. E-mail: tracy@itd.ucdavis.edu.

³ The notational choice $f(\sqrt{x})$ rather than f(x) in (1.1) will be convenient later. It also agrees with the convention of Stone *et al.*⁽⁶⁾

and $\{\phi_j(x)\}\$ is the sequence of functions obtained by orthonormalizing the sequence

$$\{x^{j}x^{\nu/2}e^{-x/2}\}_{j=0}^{\infty}$$

over $(0, \infty)$ (here $\nu > -1$). In particular, one is interested in

$$\operatorname{var} f := \lim_{N \to \infty} \operatorname{var}_N f \tag{1.2}$$

in the limit $\alpha \to \infty$. In applications various choices are made for f, but we need assume here only that f is smooth and sufficiently decreasing at infinity to make the integrals well-defined.

In the random matrix model of disordered conductors, the quantity var f is related (via the two-probe Landauer formula) to the fluctuations of the conductance and the limit $\alpha \to \infty$ is the high-density (or metallic) regime. A lucid account can be found in the review article by Stone *et al.*,⁽⁶⁾ to which we refer the reader for further details and references. However, these authors did not evaluate $\operatorname{var}_N f$ in the limits of interest; namely $N \to \infty$ followed by $\alpha \to \infty$. It is the purpose of this paper to evaluate these limits. We will see that the result agrees with the prediction of Beenakker,^(1,2) who gave a heuristic argument for this limit.

By a change of variables we write (1.1) in the more suggestive form

$$\operatorname{var}_{N} f = \int_{0}^{\infty} f^{2} \left(\frac{\sqrt{x}}{\alpha} \right) \frac{1}{4N} K_{N} \left(\frac{x}{4N}, \frac{y}{4N} \right) dx$$
$$- \int_{0}^{\infty} \int_{0}^{\infty} f \left(\frac{\sqrt{x}}{\alpha} \right) f \left(\frac{\sqrt{y}}{\alpha} \right)$$
$$\times \left(\frac{1}{4N} K_{N} \left(\frac{x}{4N}, \frac{y}{4N} \right) \right)^{2} dx \, dy$$
(1.3)

From asymptotic formulas for generalized Laguerre polynomials (see, e.g., 10.15.2 in ref. 3) it follows that $^{(4,7)}$

$$K(x, y) := \lim_{N \to \infty} \frac{1}{4N} K_N\left(\frac{x}{4N}, \frac{y}{4N}\right)$$
$$= \frac{J_v(\sqrt{x})\sqrt{y} J_v'(\sqrt{y}) - \sqrt{x} J_v'(\sqrt{x}) J_v(\sqrt{y})}{2(x-y)}$$
(1.4)

where $J_{\nu}(z)$ is the Bessel function of order ν . (The limit is uniform in x and y for $0 < x, y \le L < \infty$ and all L.) We call K(x, y) the "Bessel kernel." (This

Variance Calculations and the Bessel Kernel

417

kernel also arises in scaling the Jacobi ensemble of random matrices at either edge ± 1 .) Using this in (1.3), we obtain

$$\operatorname{var} f = \int_{0}^{\infty} f^{2}\left(\frac{\sqrt{x}}{\alpha}\right) K(x, x) \, dx$$
$$- \int_{0}^{\infty} \int_{0}^{\infty} f\left(\frac{\sqrt{x}}{\alpha}\right) f\left(\frac{\sqrt{y}}{\alpha}\right) K^{2}(x, y) \, dx \, dy \qquad (1.5)$$

where K is the Bessel kernel.

The problem is reduced to evaluating (1.5) in the limit $\alpha \to \infty$. We will show that

$$\lim_{\alpha \to \infty} \operatorname{var} \ f = \frac{1}{\pi^2} \int_{-\infty}^{\infty} |\hat{f}(2iy)|^2 \, y \tanh(\pi y) \, dy \tag{1.6}$$

where \hat{f} is the Mellin transform of f, i.e.,

$$\hat{f}(z) = \int_0^\infty x^{z-1} f(x) \, dx$$

This agrees with the result of Beenakker^(1,2) once one notes that his f(x) is our $f(\sqrt{x})$. For numerous applications of (1.6) we refer the reader to Beenakker.⁽²⁾

2. THE LIMIT $a \rightarrow \infty$

2.1. Use of Hankel Transform

It is convenient to define the kernel

$$L(x, y) := 2K(x^{2}, y^{2})$$

= $\int_{0}^{1} t J_{\nu}(xt) J_{\nu}(yt) dt$ (2.1)

where K(x, y) is the Bessel kernel. (A simple proof of the second equality can be found in ref. 7.) Then var f can be written

$$\operatorname{var} f = \int_0^\infty x f^2\left(\frac{x}{\alpha}\right) L(x, x) \, dx - I_1 \tag{2.2}$$

where

$$I_{1} = \int_{0}^{\infty} \int_{0}^{\infty} xyf\left(\frac{x}{\alpha}\right) f\left(\frac{y}{\alpha}\right) L^{2}(x, y) dx dy$$

$$= \int_{0}^{1} \int_{0}^{\infty} \left(\int_{0}^{1} \left(\int_{0}^{\infty} xf\left(\frac{x}{\alpha}\right) J_{\nu}(xt) J_{\nu}(xt') dx\right) t' J_{\nu}(t'y) dt'\right)$$

$$\times yf\left(\frac{y}{\alpha}\right) t J_{\nu}(ty) dy dt$$

$$= \int_{0}^{1} \int_{0}^{\infty} \left(\int_{0}^{\alpha} \left(\int_{0}^{\infty} xf(x) J_{\nu}(t\alpha x) J_{\nu}(t'x) dx\right) t' J_{\nu}\left(\frac{t'y}{\alpha}\right) dt'\right)$$

$$\times yf\left(\frac{y}{\alpha}\right) t J_{\nu}(ty) dy dt$$
(2.3)

where we used (2.1) to deduce the middle equality and we made the change of variables $x/\alpha \rightarrow x$ and $\alpha t' \rightarrow t'$ to obtain the last equality.

We now recall the Hankel inversion formula:

$$\int_{0}^{\infty} u\left(\int_{0}^{\infty} xg(x) J_{\nu}(xu) dx\right) J_{\nu}(u\xi) du = g(\xi)$$

which holds for $\sqrt{x} g(x)$ continuous and absolutely integrable on the positive real line and v > -1/2. First writing the t'-integration in (2.3) as the integral from $(0, \infty)$ minus the integral from (α, ∞) and then employing the Hankel inversion formula [with the choice $g(x) = f(x) J_v(\alpha tx)$] on the part containing the t'-integration from $(0, \infty)$, we see that this part exactly cancels the single integral appearing in the expression (2.2) for var f. Thus we are left with

$$\operatorname{var} f = \int_{0}^{1} dt \int_{0}^{\infty} dy \int_{\alpha}^{\infty} dt' \int_{0}^{\infty} dx$$

$$\times xytt'f(x) f\left(\frac{y}{\alpha}\right) J_{\nu}(\alpha tx) J_{\nu}\left(\frac{t'y}{\alpha}\right) J_{\nu}(t'x) J_{\nu}(ty)$$

$$= \alpha^{4} \int_{0}^{1} dt \int_{0}^{\infty} dy \int_{1}^{\infty} ds \int_{0}^{\infty} dx$$

$$\times xytsf(x) f(y) J_{\nu}(\alpha tx) J_{\nu}(\alpha sx) J_{\nu}(\alpha sy) J_{\nu}(\alpha ty) \qquad (2.4)$$

We remark that the Hankel transform plays the analogous role for the Bessel kernel that the Fourier transform plays for the sine kernel

$$\frac{1}{\pi} \frac{\sin \pi (x-y)}{x-y}$$

in the Gaussian unitary ensemble.

2.2. Residue Calculation

Introducing the (inverse) Mellin transform

$$f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \hat{f}(z) \, x^{-z} \, dz \qquad (c > 0)$$

into (2.4) and interchanging the orders of integration, we see that

$$\operatorname{var} f = \alpha^{4} \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dz_{1} \hat{f}(z_{1}) \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dz_{2} \hat{f}(z_{2})$$
$$\times \int_{0}^{1} dt \, t \int_{1}^{\infty} ds \, s \int_{0}^{\infty} dx \, x^{-z_{1}+1} J_{\nu}(\alpha tx) \, J_{\nu}(\alpha sx)$$
$$\times \int_{0}^{\infty} dy \, y^{-z_{2}+1} J_{\nu}(\alpha ty) \, J_{\nu}(\alpha sy)$$

The x and y integrations can be performed using (6.5762) in ref. 5; namely,

$$\int_{0}^{\infty} x^{-\lambda} J_{\nu}(ax) J_{\nu}(bx) dx = \frac{(ab)^{\nu} \Gamma(\nu + (1-\lambda)/2)}{2^{\lambda} (a+b)^{2\nu-\lambda+1} \Gamma(1+\nu) \Gamma((1+\lambda)/2)} \times F\left(\nu + \frac{1-\lambda}{2}, \nu + \frac{1}{2}; 2\nu + 1; \frac{4ab}{(a+b)^{2}}\right)$$

where F(a, b; c; z) is the hypergeometric function, a, b > 0, $2\Re(v) + 1 > \Re(\lambda) > -1$.

In the resulting integral we make the following change of variables:

$$u = \frac{4ts}{(t+s)^2}, \qquad v = t+s$$

which has Jacobian

$$J(u, v) = \frac{v}{4(1-u)^{1/2}}$$

In the vu plane we are now integrating over the region in the first quadrant bounded above by the curve

$$u = \frac{4(v-1)}{v^2}, \qquad v \ge 1$$

and bounded below by the ray $[1, \infty]$ on the v axis. The v integration may now be trivially done with the result that

$$\operatorname{var} f = \frac{1}{4^{2\nu - 1} \Gamma^{2}(\nu + 1)} \frac{1}{2\pi i} \int_{c - i\infty}^{c + i\infty} dz_{1} \hat{f}(z_{1}) \, \alpha^{z_{1}} \frac{\Gamma(\nu + 1 - z_{1}/2)}{\Gamma(z_{1}/2)}$$

$$\times \frac{1}{2\pi i} \int_{c - i\infty}^{c + i\infty} dz_{2} \hat{f}(z_{2}) \, \alpha^{z_{2}} \frac{\Gamma(\nu + 1 - z_{2}/2)}{\Gamma(z_{2}/2)}$$

$$\times \frac{1}{z_{1} + z_{2}} \int_{0}^{1} u^{2\nu + 1 - z_{1} - z_{2}} (1 - u)^{-1/2}$$

$$\times \left[(1 + (1 - u)^{1/2})^{z_{1} + z_{2}} - (1 - (1 - u)^{1/2})^{z_{1} + z_{2}} \right]$$

$$\times F_{\nu}(z_{1}, u) F_{\nu}(z_{2}, u) \, du$$

where

$$F_{\nu}(z, u) := F\left(\nu + 1 - \frac{z}{2}, \nu + \frac{1}{2}; 2\nu + 1; u\right)$$

We now use z_1 and $z = z_1 + z_2$ as integration variables so that

$$\operatorname{var} f = \frac{1}{4^{2\nu - 1} \Gamma^{2}(\nu + 1)} \frac{1}{2\pi i} \int_{c - i\infty}^{c + i\infty} dz_{1} \hat{f}(z_{1}) \frac{\Gamma(\nu + 1 - z_{1}/2)}{\Gamma(z_{1}/2)}$$

$$\times \frac{1}{2\pi i} \int_{2c - i\infty}^{2c + i\infty} dz \, \hat{f}(z - z_{1}) \, \alpha^{z} \frac{\Gamma(\nu + 1 - (z - z_{1})/2)}{\Gamma((z - z_{1})/2)}$$

$$\times \int_{0}^{1} u^{2\nu + 1 - z} (1 - u)^{-1/2} \left[\frac{(1 + (1 - u)^{1/2})^{z} - (1 - (1 - u)^{1/2})^{z}}{z} \right]$$

$$\times F_{\nu}(z_{1}, u) F_{\nu}(z - z_{1}, u) \, du$$

Observe that the α dependence of var f resides solely in the term α^z in the above integral. To compute $\alpha \to \infty$ this suggests we should first deform the contour into the left-half z plane. The $\lim_{\alpha \to \infty} \operatorname{var} f$ will be determined by the residue of the pole at z = 0.

To calculate this residue (which is a function of z_1) we must know the principal part of the Laurent expansion (in z) of the integral involving the *u* integration. The divergence of this integral as $z \rightarrow 0$ is determined by

Variance Calculations and the Bessel Kernel

the behavior of the integrand in the vicinity of u = 1. This behavior near u = 1 is straightforward to compute since it is known⁽³⁾ that

$$F(a, b; c, u) \sim \frac{\Gamma(c) \Gamma(a + b - c)}{\Gamma(a) \Gamma(b)} (1 - u)^{c - a - b} \quad \text{as} \quad u \to 1$$

Thus $\lim_{\alpha \to \infty} \operatorname{var} f$ is expressed as a single integral over the variable z_1 . If we now make use of the Γ -function identities⁽³⁾

$$\Gamma(z) \Gamma(-z) = -\frac{\pi}{z \sin \pi z}$$

$$\Gamma(1/2 + z) \Gamma(1/2 - z) = \frac{\pi}{\cos \pi z}$$

$$\Gamma(2v + 1) = 2^{2v} \pi^{-1/2} \Gamma(v + 1/2) \Gamma(v + 1)$$

we obtain

$$\lim_{\alpha \to \infty} \operatorname{var} f = -\frac{1}{2\pi^2 i} \int_{c-i\infty}^{c+i\infty} \hat{f}(z_1) \, \hat{f}(-z_1) \, \frac{z_1}{2} \tan\left(\frac{\pi}{2} \, z_1\right) dz_1$$

We now deform the contour to the imaginary axis (and send $y \rightarrow 2y$) to obtain (1.6).

ACKNOWLEDGMENTS

The authors wish to thank Prof. Harold Widom for his helpful comments.

REFERENCES

- 1. C. W. J. Beenakker, Universality in the random-matrix theory of quantum transport, *Phys. Rev. Lett.* **70**:1155–1158 (1993).
- C. W. J. Beenakker, Random-matrix theory of mesoscopic fluctuations in conductors and superconductors, *Phys. Rev. B* 47:15763-15775 (1993).
- A. Erdélyi, ed., Higher Transcendental Functions, Vols. I and II (McGraw-Hill, New York, 1953).
- P. J. Forrester, The spectrum edge of random matrix ensembles, Nucl. Phys. B 402:709-728 (1993).
- 5. I. S. Gradshteyn and I. M. Ryzhik, *Tables of Integrals, Series, and Products*, Corrected and Enlarged Edition (Academic Press, San Diego, California, 1980).
- A. D. Stone, P. A. Mello, K. A. Muttalib, and J.-L. Pichard, Random matrix theory and maximum entropy models for disordered conductors, in *Mesoscopic Phenomena in Solids*, B. L. Altshuler, P. A. Lee, and R. A. Webb, eds. (North-Holland, Amsterdam, 1991), Chapter 9, pp. 369-448.
- 7. C. A. Tracy and H. Widom, Level spacing distributions and the Bessel kernel, to appear in *Commun. Math. Phys.*

Communicated by J. L. Lebowitz